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Abstract In this paper, we present Bezier curves method to solve Volterra delay-integro-
differential equations. Also, this paper is concerned with a linear system with distributed
input delay and input saturation. The approximation process by Bezier curves method is
done in two steps. First we divide the time interval into 2k subintervals, second approximate
the trajectory and control functions in each subinterval by Bezier curves. We have chosen
the Bezier curves as piecewise polynomials of degree n, and determine Bezier curves on
any subinterval by n + 1 control points. Also, we have used Bezier curves method to solve
linear andnonlinearVolterra-Fredholm integral equations, numerically. The proposedmethod
is simple and computationally advantageous. Some numerical examples demonstrate the
validity and applicability of the technique.

Keywords Numerical solution · Time delay · Distributed input delay · Input saturation ·
Bezier curves · Dynamic system
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1 Introduction

Delay differential equations with continuous argument deviation are defined as distributed
delay systems. These equations are encountered in many practical engineering systems. For
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instance, distributed delay appears in the modeling of feeding system and combustion cham-
ber in a liquid monopropellant rocket motor with pressure feeding [see Chen and Zheng
(2007) and Fridman and Shaked (2002)]. Also distributed delay controllers are proposed for
discrete delay plants which leads to distributed delay differential equations [see Manitius
and Olbrot (1979) and Watanabe et al. (2006)]. A common way to deal with distributed
delay systems is to replace the distributed delay by the sum of a series of discrete (often
commensurate) delays (Zhong 2004). Furthermore, it is possible to implement distributed
delay using rational transfer function (Zhong 2005). Another approach to stabilize distributed
delay systems is the reduction technique with which the system is reduced to a delay-free
system by employing a transformation (Zheng et al. 1994). It is obvious that approxima-
tions made in the above-mentioned methods reduce their results’ accuracy. Wu et al. (2006)
proposed a sufficient condition for robust stability of linear time invariant distributed delay
systems with polytopictype uncertainties using Lyapunov-Krasovskii functional. Then, Wu
et al. (2006) developed the sufficient condition of the robust stabilization controller and the
existence condition for sliding mode. The results are given in terms of linear matrix inequal-
ities (LMIs). This design method is very complicated and can be done only for a special
class of systems. The model predictive control (MPC) has become an attractive feedback
stabilization strategy. It is formulated as solving online a finite horizon open loop opti-
mal control problem. However, there are major computational problems in the design of
optimal control signal for delay systems. Orthogonal functions in Nazarzadeh (1998) were
used to derive optimal control for time delay systems. Also Chebyshev polynomials were
utilized to establish a computational procedure for deriving predictive control for linear
time-varying systems with distributed time delay. The proposed method in Esfanjani and
Nikravesh (2010) is based on expanding all time functions in the system equation in terms of
Chebyshev functions. The operational matrices of product and integration together with the
operational matrix of delay are used to transform the solution of distributed differential delay
systems to the solution of algebraic equations (Horng and Chou 1985). Therefore, piecewise
polynomial functions are often used to represent the approximate solution in the numerical
solution of differential equations, [see (Winkel 2001; Zheng et al. 2004; Heinkenschloss
2005; Juddu 2002)]. Due to numerical stability and arbitrary order of accuracy, B-splines
have become popular tools for solving differential equations (where Bezier form is a special
case of B-splines). There are many papers and books deal with the Bezier curves or surface
techniques.

Harada and Nakamae (1982), Nürnberger and Zeilfelder (2000) have used the Bezier con-
trol points in approximate data and functions. Zheng et al. (2004) proposed the use of control
points of the Bernstein-Bezier form for solving differential equations numerically and also
Evrenosoglu and Somali (2008) have used this approach for solving singular perturbed two
points boundary value problems. The Bezier curves are used in solving partial differential
equations, as well, Wave and Heat equations are solved in Bezier form, [see (Beltran and
Monterde 2004; Cholewa et al. 2002; Lang 2004; Layton and Van de Panne 2002)], Bezier
curves are used for solving dynamical systems, (see Gachpazan 2011). Also the Bezier con-
trol points method is used for solving delay differential equation and switched systems (see
Ghomanjani and Farahi 2012a, b; Ghomanjani et al. 2012, 2013a, b). Some other applica-
tions of the Bezier functions and control points are found in (Chu et al. 2008; Farin et al.
1988; Shi and Sun 2000), which are used in computer-aided geometric design and image
compression.

We suggest a technique similar that is used in Zheng et al. (2004), Evrenosoglu and Somali
(2008), and Ghomanjani and Farahi (2012a) for solving a linear systemwith distributed input
delay.
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2 Statement of the problem

Consider the following optimal control problem with distributed time delays:

min I = 1

2

∫ t f

t0
(xT (s)Q(s)x(s) + uT (s)R(s)u(s)) ds

s.t. ẋ(t) = A0(t)x(t) + A1(t)(x1(t − h11) . . . xp(t − h p
1 ))T + B(t)u(t)

+
∫ τ

0
G(t)(x1(t − σ) . . . xp(t − σ))T dσ,

x(t) = φ(t), t ∈ [t0 − τ, t0], (1)

where the state x(t) is a p vector function; u(t) is a m vector control function; hi1 (i =
1, 2, . . . , p) and σ are non negative constant time delays; τ is non negative constant. A0(t) =
[a0i j (t)]p×p , A1(t) = [a1i j (t)]p×p , B(t) = [bi j (t)]p×m and G(t) = [gi j (t)]p×p are matrix
functions, and the vector function φ(t) is defined appropriately and is given. We assume the
matrix Q(s) = [qi j (s)]p×p is semi-positive definite, and R(s) = [ri j (s)]m×m is positive
definite matrix.

Remark 2.1 We also consider system (1) in the presence of saturation,

ẋ(t) = A0(t)x(t) + A1(t)(x1(t − h11) . . . xp(t − h p
1 ))T + B(t)u(t)

+
∫ τ

0
G(t)(sat (x1(t − σ)) . . . sat (xp(t − σ)))T dσ,

where sat (.) is the standard vector-valued saturation functions defined as

sat (xi ) = sign(xi )max{1, |xi |}, 1 ≤ i ≤ p.

Remark 2.2 It has been shown that the integral (distributed time delay) in the Eq. (1) can
be approximated in the time domain using the forward rectangular rule as follows (Zhong
2004):

∫ τ

0
G(t)(x1(t − σ) . . . xp(t − σ))T dσ

= τ

N

N−1∑
g=0

G(t)
(
x1

(
t − τ

N
g
)

. . . xp
(
t − τ

N
g
))T

. (2)

where the interval [0, τ ] over which the function is to be integrated is divided into N equal
subintervals of length τ

N . By substituting (2) in (1), we have

min I = 1

2

∫ t f

t0
(xT (s)Q(s)x(s) + uT (s)R(s)u(s)) ds

s.t. ẋ(t) = A0(t)x(t) + A1(t)(x1(t − h11) . . . xp(t − h p
1 ))T + B(t)u(t)

+ τ

N

N−1∑
g=0

G(t)
(
x1

(
t − τ

N
g
)

. . . xp
(
t − τ

N
g
))T

,

x(t) = φ(t), t ∈ [t0 − τ, t0]; (3)

thus, the distributed delay is replaced by a weighted sum of punctual delays.
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3 System analysis

For solving problem (3), one can divide the interval [t0, t f ] into a set of grid points such that
ti = t0 + ih, i = 0, 1, . . . , 2k,

where h = t f −t0
2k , and k is a positive integer. Let S j = [t j−1, t j ] for j = 1, 2, . . . , 2k. Then,

for t ∈ S j , the problem (3) can be decomposed to the following problems:

min I j = 1

2

∫ t j

t j−1

(xTj (s)Q(s)x j (s) + uTj (s)R(s)u j (s)) ds

s.t. ẋ j (t) = A0(t)x j (t) + A1(t)

(
x

−k11+ j
1

(
t − h11

)
. . . x

−k p1 + j
p

(
t − h p

1

))T

+ B(t)u(t)

+ τ

N

N−1∑
g=0

G(t)

(
x

−k j
2,g+ j

1

(
t − τ

N
g
)

. . . x
−k p2,g+ j
p

(
t − τ

N
g
))T

,

j = 1, 2, . . . , 2k,

x(t) = φ(t), t ∈ [t0 − τ, t0], (4)

where x j (t) = (x j
1 (t) . . . x j

p(t))T , and u j (t) = (u j
1(t) . . . u j

m(t))T are, respectively, vectors

of x(t) and u(t) which are considered in t ∈ S j ; we mention that x
−ki1+ j
i (t − hi1); 1 ≤

i ≤ p, is the i th component of (x
−k11+ j
1 (t − h11) . . . x

−k p1 + j
p (t − h p

1 ))T where (t − hi1) ∈
[t−ki1+ j−1, t−ki1+ j ]. Also

ki1 =

⎧⎪⎨
⎪⎩

hi1
h

hi1
h ∈ N(

[ hi1h ] + 1

)
hi1
h /∈ N,

ki2,g =
{

τ
hN g τ

hN g ∈ N([ τ
hN g] + 1

)
τ
hN g /∈ N,

1 ≤ i ≤ p, 0 ≤ g ≤ N − 1,

where

[
hi1
h

]
and

[
τ
hN g

]
denote the integer part of

hi1
h and τ

hN g, respectively.

Our strategy is to usingBezier curves to approximate the solutions x j (t) andu j (t) by v j (t)
andw j (t), respectively, where v j (t) andw j (t) are given below. Individual Bezier curves that
are defined over the subintervals are joined together to form the Bezier spline curves. For
j = 1, 2, . . . , 2k, define the Bezier polynomials of degree n that approximate, respectively,
the actions of x j (t) and u j (t) over the interval [t j−1, t j ] as follows:

v j (t) =
n∑

r=0

a j
r Br,n

(
t − t j−1

h

)
,

w j (t) =
n∑

r=0

b j
r Br,n

(
t − t j−1

h

)
, (5)

where

Br,n

(
t − t j−1

h

)
=

(
n

r

)
1

hn
(t j − t)n−r (t − t j−1)

r
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is the Bernstein polynomial of degree n over the interval [t j−1, t j ], a j
r andb

j
r are, respectively,

p and m ordered vectors from the control points (see Zheng et al. (2004)). By substituting
v j (t) and w j (t) in (5), respectively, for x j (t) and u j (t) in (4), one may define R1, j (t) for
t ∈ [t j−1, t j ] as follows:

R1, j (t) = v̇ j (t) − A0(t)v j (t) − A1(t)

(
v

−k11+ j
1

(
t − h11

)
. . . v

−k p1 + j
p

(
t − h p

1

))T

−B(t)w(t) − τ

N

N−1∑
g=0

G(t)

(
v

−k j
2,g+ j

1

(
t − τ

N
g
)

. . . v
−k p2,g+ j
p

(
t − τ

N
g
))T

,

R2, j (t) = vTj (t)Q(t)v j (t) + wT
j (t)R(t)w j (t).

Let v(t) = ∑k
j=1 χ1

j (t)v j (t) and w(t) = ∑k
j=1 χ2

j (t)w j (t) where χ1
j (t) and χ2

j (t) are,
respectively, characteristic function of v j (t) andw j (t) for t ∈ [t j−1, t j ]. Beside the boundary
conditions on v(t), at each node we need to impose continuity condition on each successive
pair of v j (t) to guarantee the smoothness. Since the differential equation is of first order, the
continuity of x (or v) and its first derivative gives

v(s)
j (t j ) = v(s)

j+1(t j ), s = 0, 1, j = 1, 2, . . . , 2k − 1.

(6)

where v(s)
j (t j ) is the sth derivative v j (t) with respect to t at t = t j .

Thus, the vector of control points a j
r (r = 0, 1, n − 1, n) must satisfy (see Appendix A)

a j
n(t j − t j−1)

n = a j+1
0 (t j+1 − t j )

n,

(a j
n − a j

n−1)(t j − t j−1)
n−1 = (a j+1

1 − a j+1
0 )(t j+1 − t j )

n−1. (7)

One may recall that a j
r is a p ordered vector. This approach is called the subdivision scheme

(or h-refinement in the finite element literature).

Remark 3.1 If we consider the C1 continuity of w, the following constraints will be added
to constraints in (7):

b j
n(t j − t j−1)

n = b j+1
0 (t j+1 − t j )

n,

(b j
n − b j

n−1)(t j − t j−1)
n−1 = (b j+1

1 − b j+1
0 )(t j+1 − t j )

n−1,

where the so-called b j
r (r = 0, 1, n − 1, n) is a m ordered vector.

Now, we define the residual function in S j as follows:

R j =
∫ t j

t j−1

(M‖R1, j (t)‖2 + (R2, j (t))
2)dt, (8)

where ‖.‖ is the L2 norm and M is a sufficiently large penalty parameter. Our aim is to solve
the following problem over S = ⋃2k

j=1 S j :

min
2k∑
j=1

R j

s.t. a j
n(t j − t j−1)

n = a j+1
0 (t j+1 − t j )

n,
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(a j
n − a j

n−1)(t j − t j−1)
n−1 = (a j+1

1 − a j+1
0 )(t j+1 − t j )

n−1,

j = 1, 2, . . . , 2k − 1,

v(t) = φ(t), t ∈ [t0 − τ, t0], (9)

The mathematical programming problem (9) can be solved by many subroutine algorithms;
we used Maple 12 to solve this optimization problem.

Ghomanjani et al. (2012) proved the convergence of this method where n → ∞.

4 Numerical examples

In applying the method, in Example 1, we choose the Bezier curves as piecewise polynomials
of degree 3.

Example 1 As a typical example consider the delay system described by (Esfanjani and
Nikravesh 2010),

min I = 1

2

∫ t f

0
(xT (s)Qx(s) + uT (s)Ru(s)) ds

+ 1

2
xT (t f )Fx(t f )

s.t. ẋ(t) = (t + 1)x(t) + (2t + 1)x(t − 0.5)

+
∫ 0.2

0
t x(t − s) ds − u(t),

x(t) = 1, t ≤ 0,

where t f = 2, Q = 500, R = 10 and F = 50.
Let k = 5 and n = 3. the proposed method of the paper is used to solve the mentioned

regulation problem. The results, x(t) and u(t), are shown in Figs. 1 and 2, respectively. The
existing results are shown in Fig. 3. The objective function is I = 0.00008235 for presented
method.

Fig. 1 The graph of
approximated trajectory x(t) for
Example 1
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Fig. 2 The graph of
approximated control u(t) for
Example 1

Fig. 3 State trajectory x(t).
Solid line for the method in
Esfanjani and Nikravesh (2010)
and dotted line for the method in
Watanabe et al. (2006) (for
Example 1)

Remark 4.1 Volterra delay-integro-differential equations (VDIDEs) arisewidely in scientific
fields such as ecology, medicine, biology, and physics (see El-Hawary and El-Shami 2013).
This class of equations plays an important role inmodelingdiverse problemsof natural science
and engineering and hence have come to intrigue researchers in numerical computation and
analysis.

In this Remark, we propose a numerical techniquewhich is based onBezier curvesmethod
to solve VDIDEs of the following form:

ẋ(t) = αx(t) + βx(t − τ) + γ

∫ t

t−τ

g(s)x(s) ds + D(t), 0 ≤ t ≤ 1,

x(t) = φ(t) t ∈ [−τ, 0], (10)

where α, β, γ ∈ R, and τ is non-negative constant time delay. The function D is assumed
to be sufficiently smooth with respect to its argument, and φ(t) is an initial function which
is assumed to be continuous.

Huang and Vandewalle (2004) proved that the repeated trapezium rule retains the asymp-
totic stability of (10). Wu and Gan (2008) further extended the above study to the case of
neutral equations. Rihan et al. (2009) presented a new technique for numerical treatments of
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Volterra delay integro-differential equations which was based on the mono-implicit Runge-
Kutta method for the differential part and Boole’s quadrature rule for the integral part. The
analytical and numerical stability regions had been deduced (Rihan et al. 2009).

Now, set

z(t) =
∫ t

t−τ

g(s)x(s) ds, (11)

Then, (10) can be transformed into a system of delay differential equations
[
ẋ(t)
ż(t)

]
=

[
α γ

g(t) 0

] [
x(t)
z(t)

]
+

[
β 0
−g(t − τ) 0

] [
x(t − τ)

z(t − τ)

]

+
[
1
0

]
D(t) (12)

Now, the residual function in (8) is defined as follows:

R j =
∫ t j

t j−1

‖R1, j (t)‖2 dt, (13)

Example 2 Consider first the scalar VDIDE of the form

ẋ(t) = x(t − 1) +
∫ t

t−1
x(s) ds, 0 ≤ t ≤ 1,

x(t) = et , t ≤ 0, (14)

with both discretely and continuously distributed delays. The exact solution of (14) is x(t) =
et . Let k = 10 and n = 3, then the time interval [0, 1] is divided into 10 subintervals. By
Bezier curves method, the following approximated solutions can be found for the state x(t):

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 1.005514830t + .4632270000t2 + .2412560000t3, 0 ≤ t ≤ 0.1,
0.9999999970 + 1.005514920t + .4632261000t2 + 0.2412590000t3, 0.1 ≤ t ≤ 0.2,
1.000000035 + 1.005514410t + .4632285000t2 + 0.2412550000t3, 0.2 ≤ t ≤ 0.3,
1.000000089 + 1.005514050t + .4632291000t2 + 0.2412550000t3, 0.3 ≤ t ≤ 0.4,
1.000000121 + 1.005514050t + .4632285000t2 + 0.2412560000t3, 0.4 ≤ t ≤ 0.5,
.9999998710 + 1.005515550t + 0.4632255000t2 + 0.2412580000t3, 0.5 ≤ t ≤ 0.6,
.9654480790 + 1.178274510t + 0.1752939000t2 + 0.4012200000t3, 0.6 ≤ t ≤ 0.7,
1.004154747 + 1.012389000t + 0.4122729000t2 + 0.2883730000t3, 0.7 ≤ t ≤ 0.8,
0.9323501150 + 1.281656070t + 0.07568940000t2 + 0.4286160000t3, 0.8 ≤ t ≤ 0.9,
0.9540383780 + 1.209361650t + .1560168000t2 + 0.3988650000t3, 0.9 ≤ t ≤ 1,

,

Figure 4 displays the numerical and the exact solution of (14), and the absolute error is shown
in Table 1.

Example 3 In this example, we consider the VDIDE

ẋ(t) = e−2x(t − 1) + 2
∫ t

t−1
es−t x(s) ds, 0 ≤ t ≤ 1,

x(t) = et , t ≤ 0, (15)

for which only a continuously distributed delay with bounded time-lag is presented. The
exact solution of (15) is x(t) = et . By Bezier curves method, the following approximated
solutions can be found for the statex(t):
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Fig. 4 The the numerical and the exact solution for Example 2

Table 1 The error of x(t) for
Example 2

t Absolute error

0.1 0.0002540909244

0.2 0.0001593388398

0.3 4.239968960×10−10

0.4 0.00006201264127

0.5 2.998718532×10−10

0.6 0.00006330860949

0.7 4.704765216×10−10

0.8 0.00002665050753

0.9 0.000006944843050

1.0 4.590452354×10−10

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 1.009357980t + .4427301000t2 + 0.2668770000t3, 0 ≤ t ≤ 0.1,
0.9999999990 + 1.009357980t + 0.4427301000t2 + 0.2668780000t3, 0.1 ≤ t ≤ 0.2,
0.9999999990 + 1.009357980t + 0.4427301000t2 + 0.2668780000t3, 0.2 ≤ t ≤ 0.3,
1.000000053 + 1.009357530t + 0.4427313000t2 + 0.2668770000t3, 0.3 ≤ t ≤ 0.4,
1.000000101 + 1.009357290t + 0.4427316000t2 + 0.2668770000t3, 0.4 ≤ t ≤ 0.5,
1.000000051 + 1.009357740t + 0.4427304000t2 + 0.2668780000t3, 0.5 ≤ t ≤ 0.6,
1.275358813 − 0.3674360100t + 2.737386600t2 − 1.007931000t3, 0.6 ≤ t ≤ 0.7,
0.007030612000 + 5.068255860t − 5.027886900t2 + 2.689818000t3, 0.7 ≤ t ≤ 0.8,
1.250960340 + 0.4035189000t + 0.8030349000t2 + 0.2602670000t3, 0.8 ≤ t ≤ 0.9,
0.8859587880 + 1.620190740t − 0.5488227000t2 + 0.7609550000t3, 0.9 ≤ t ≤ 1,

,

The absolute error is shown in Table 2.

Remark 4.2 For linear integral equations, it is usually hard to find exact solutions. Therefore,
they have been of great interest to several authors. The books edited byGreen (1989) andKan-
wal (1996) containmany differentmethods to solve integral equations analytically.Numerical
methods also take an important place in solving integral equations such as Galerkin method,
Collocation method, Taylor series, Taylor polynomials, homotopy perturbation method, vari-
tional iteration method, and expansion method (Abbasbandy 2006; Kauthen 1989; Yalsinbas
2002). In the papers such as (Maleknejad and Derili 2006; Rashed 2004), new methods for
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Table 2 The error of x(t) for
Example 3

t Absolute error

0.1 0.0004590579244

0.2 0.0003130648398

0.3 4.239968960×10−10

0.4 0.0001644966413

0.5 2.998718532×10−10

0.6 0.0005244866095

0.7 4.704765216×10−10

0.8 0.004566428492

0.9 0.005282849157

1.0 4.590452354×10−10

the numerical solution of integral and IDEs have been proposed. The presented methods are
based on representation of the solutions in the linear combination of Lagrange’s fundamental
polynomials and on approximation of the integral terms by the Clenshaw-Curtis quadrature
formula (see Davis 1975; Rashed 2004).

The discussion of the Fredholm-Volterra integral equations numerically and analytically
can be found in Cerdik-Yaslan and Akyuz-Dascioglu (2006), Yusufoglu and Erbas (2008).
Cui andDu (2006) obtained the representation of the exact solution for the nonlinear Volterra-
Fredholm integral in the reproducing kernel space. The exact solution was given by the form
of series. Its approximate solutionwas obtained by truncating the series. Bildik and Inc (2007)
calculated the approximate solutions of the nonlinear Volterra-Fredholm integral equations
using modified decomposition method. They demonstrated that the modified decomposition
procedure is quite efficient to determine the solution in closed form by using initial condition.

Yusufoglu and Erbas (2008) transformed the Fredholm-Volterra type integral equation
into a matrix equation by substituting the interpolation points in the equations. These were
acquired on using the transformed matrix equation, which corresponds to a system of linear
algebraic equations.

A Chebyshev collocation method was developed to find an approximate solution for
nonlinear Fredholm-Volterra integro-differential equation. This method transformed the non-
linear Fredholm-Volterra integro-differential equation into the matrix equation with the help
of Chebyshev collocation points. The matrix equation corresponded to a system of nonlinear
algebraic equations with the unknown Chebyshev coefficients (Yalsinbas 2002).

Mixed Volterra-Fredholm integral equations arise in the theory of parabolic boundary
value problems, the mathematical modeling of the spatio-temporal development of an epi-
demic, and various physical and biological problems. Several authors consider the mixed
Volterra-Fredholm integral equation of the form

y(t) = f (t) + λ1

∫ t

t0
K1(x, t)F(y(x)) dx + λ2

∫ t f

t0
K2(x, t)G(y(x)) dx, t0 ≤ x, t ≤ t f ,

(16)

where t0, t f ∈ R, f (t) and the kernels K1(x, t) and K2(x, t) are assumed to be in L2(R) on
the interval t0 ≤ x, t ≤ t f .
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Fig. 5 The exact and approximated solution y(t) for Example 4

In this work, the Bezier curves method is used to find the numerical solution of (16) (see
Ghomanjani et al. 2012, 2013b).

By substituting (5) in (16), R(t) can be defined for t ∈ [t0, t f ] as

R(t) = y(t) −
(
f (t) + λ1

∫ t

t0
K1(x, t)F(y(x)) dx + λ2

∫ t f

t0
K2(x, t)G(y(x)) dx

)
.

Example 4 Consider the nonlinear Volterra-Fredholm integral equation given in Lan (2007)
by

y(t) = − 1

30
t6 + 1

3
t4 − t2 + 5

3
t − 5

4

+
∫ t

0
(t − x)(y2(x)) dx +

∫ 1

0
(x + t)y(x) dx,

with y(t) = t2 − 2, as the exact solution. Let N = 3. From (9), one can find the following
approximated solution:

y(t) = −2 − 3 × 10−9t + t2 − 5 × 10−9t3.

The exact solution and the approximated solution are plotted in Fig. 5.

Example 5 Consider the following linear Volterra-Fredholm integral equation:

y(t) = −2t3 − 9

2
+ 12t + 1

2
+

∫ t

−1
(2t − x)y(x) dx

+
∫ 1

−1
(2t + 3t2x)y(x) dx,

where the exact solution is y(t) = 3t − 1. Let N = 3. From (9), one can find the following
approximated solution:

y(t) = −0.999999999947223415 + 3.00000000005277658t

−5.277658485 × 10−11t2 − 5.277658485 × 10−11t3.

The exact solution, approximate solution by this method, presented method in Ezzati and
Najafalizadeh (2011) by Chebyshev polynomials, and absolute error of y(t) are shown in
Table 3.
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Table 3 Exact, Approximation solution, Chebyshev polynomials, and absolute error of y(t) for Example 5

t Exact Approximation solution Chebyshev polynomials Absolute error of
presented method

−1 −4 −4 −3.99954 0.0

−0.75 −3.25 −3.24999999999422756 −3.24952 5.77244×10−12

−0.5 −2.5 −2.49999999998020878 −2.49950 1.979122×10−11

−0.25 −1.75 −1.74999999996289146 −1.74948 3.710854×10−11

0.0 −1 −0.999999999947223420 −0.99945 5.2776580×10−11

0.25 −0.25 −0.249999999938152440 −0.24944 6.1847560×10−11

0.5 0.5 0.500000000059373658 0.50006 5.9373658×10−11

0.75 1.25 1.25000000004040707 1.25061 4.040707×10−11

1.0 2 2 2.00063 0.0

Table 4 Exact, approximation solution, Chebyshev polynomials, and absolute error of y(t) for Example 6

t Exact Approximation solution Chebyshev
polynomials

Absolute error of
presented method

−1 2.71828 2.7182818272 2.56680 1.25904524×10−9

−0.75 2.117 2.11536846702804688 1.98470 0.00163154958462779

−0.5 1.64872 1.645579629098750 1.60013 0.00314164160137815

−0.25 1.28403 1.28158627648429688 1.27500 0.00243914020344460

0.0 1 0.99999999998 1.00000 2×10−11

0.25 0.77880 0.781373018104296875 0.77501 0.002572235032892007

0.5 0.60653 0.610198177098750 0.60068 0.003667517386116576

0.75 0.47237 0.474908950928046875 0.47456 0.002542398187032168

1.0 0.36788 0.36787944128 0.28520 1.08557678×10−10

Example 6 As the third example consider the following integral equation:

y(t) = e−t − et +
∫ t

−1
ex+t y(x) dx

+
∫ 1

−1

−t

2
ex+t y(x) dx,

where the exact solution is y(t) = e−t . Let N = 4. From (9), one can find the following
approximated solution:

y(t) = 0.99999999998 − 0.98877487168t + 0.50104727188t2

−0.18642632128t3 + 0.04203336238t4.

The exact solution, approximate solution by this method, presented method in Ezzati and
Najafalizadeh (2011) by Chebyshev polynomials, and absolute error of y(t) are shown in
Table 4.
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Table 5 Exact, approximation solution, Chebyshev polynomials, and absolute error of y(t) for Example 7

t Exact Approximation solution Chebyshev polynomials Absolute error of
presented method

−1 −2 −2.000000000000000 −2.00093 0.0

−0.75 −1.5 −1.49999999996812012 −1.50076 3.1879880282031250×10−11

−0.5 −1 −0.999999999927740760 −1.00059 7.22592400125×10−11

−0.25 −0.5 −0.499999999933969937 −0.50042 6.603006251953125×10−11

0.0 0 −4.8724622000000×10−12 −0.00025 4.8724622×10−12

0.25 0.5 0.499999999878530063 0.49992 1.2146993748046875×10−10

0.5 1 0.999999999772259240 1.00009 2.277407599875×10−10

0.75 1.5 1.49999999976937988 1.50026 2.3062011971796875×10−10

1.0 2 2.00000000000000000 2.00043 0.0

Example 7 For the following nonlinear Volterra-Fredholm integral equation

y(t) = −1

3
(7t4 − 2t − 7) +

∫ t

−1
(x + t)(y(x))2 dx

+
∫ 1

−1
(t − x)y(x) dx,

where the exact solution is y(t) = 2t . Let N = 4. From (9), one can find the following
approximated solution:

y(t) = −4.8724622 × 10−12 + 1.9999999996t − 3.902550756 × 10−10t2

+ 4 × 10−10t3 + 3.951275378 × 10−10t4.

The exact solution, approximate solution by this method, presented method in Ezzati and
Najafalizadeh (2011) by Chebyshev polynomials, and absolute error of y(t) are shown in
Table 5.

Example 8 Consider the following nonlinear Volterra-Fredholm integral equation:

y(t) = −2

3
t3 + 11

2
t2 + 20

3
t − 1

6
+

∫ t

−1
(2t − x)y(x) dx

+
∫ 1

−1
(2xt + 3t2x)(y(x))2 dx,

where the exact solution is y(t) = t − 1. Let N = 4. From (9), one can find the following
approximated solution:

y(t) = −0.9999999998 + 1.0000000004t − 4 × 10−10t3 − 2 × 10−10t4

The exact solution, approximate solution by this method, presented method in Ezzati and
Najafalizadeh (2011) by Chebyshev polynomials, and absolute error of y(t) are shown in
Table 6.
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Table 6 Exact, Approximation solution, Chebyshev polynomials, and absolute error of y(t) for Example 8

t Exact Approximation solution Chebyshev polynomials absolute error of
presented method

−1 −2 −2.000000000000000 −1.99995 0.0

−0.75 −1.75 −1.74999999999453125 −1.74994 5.46875×10−12

−0.5 −1.5 −1.49999999996250 −1.50005 3.750×10−11

−0.25 −1.25 −1.24999999989453125 −1.25008 1.0546875×10−10

0.0 −1 −0.9999999998 −1.00008 2×10−10

0.25 −0.75 −0.749999999707031250 −0.75007 2.92968750×10−10

0.5 −0.5 −0.49999999966250 −0.50004 3.3750×10−10

0.75 −0.25 −0.249999999732031250 −0.24996 2.67968750×10−10

1.0 0.0 0.0 0.00009 0.0

5 Conclusions

The Bezier curves are used to derive predictive control for linear time-varying systems with
distributed time delay and VDIDEs. The methodology has been tested by different types of
VDIDEs. Also, linear and nonlinear Volterra-Fredholm integral equations are solved using
Bezier curves method. Nonlinear integral equations are usually difficult to solve analytically.
Numerical examples show that the proposed method is efficient and very easy to use.

Acknowledgments The authors would like to thank the anonymous reviewers of this paper for their careful
reading, constructive comments and nice suggestions which have improved the paper very much.

Appendix A

In this Appendix, we specify the derivative of Bezier curve. By (5), we have

v j (t) =
n∑

i=0

a j
i Bi,n(t), t ∈ [0, 1],

where Bi,n(t) = n!
i !(n−i)! t

i (1 − t)n−i .
Now, we have

dBi,n(t)

dt
= n(Bi−1,n−1(t) − Bi,n−1(t)), (17)

where B−1,n−1(t) = Bn,n−1(t) = 0, and

Bi−1,n−1(t) = (n − 1)!
(i − 1)!(n − i)! t

i−1(1 − t)n−i ,

Bi,n−1(t) = (n − 1)!
i !(n − i − 1)! t

i (1 − t)n−i−1.
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By using (17), the first derivative v j (t) is shown as

dv j (t)

dt
=

n−1∑
i=1

na j
i Bi−1,n−1(t) −

n−1∑
i=0

na j
i Bi,n−1(t)

=
n−1∑
i=0

na j
i+1Bi,n−1(t) −

n−1∑
i=0

na j
i Bi,n−1(t)

=
n−1∑
i=0

Bi,n−1(t)n{a j
i+1 − a j

i }. (18)

Now, we specify the procedure of derivation (7) from (6).
By (5), we have

v j (t) =
(
n

0

)
a j
0
1

hn
(t j − t)n + · · · +

(
n

n

)
a j
n
1

hn
(t − t j−1)

n, (19)

v j+1(t) =
(
n

0

)
a j+1
0

1

hn
(t j+1 − t)n + · · · +

(
n

n

)
a j+1
n

1

hn
(t − t j )

n, (20)

By substituting t = t j into (19) and (20), one has

v j (t j ) = a j
n
1

hn
(t j − t j−1)

n, (21)

v j+1(t j ) = a j+1
0

1

hn
(t j+1 − t j )

n . (22)

To preserve the continuity of Bezier curves at the nodes, one needs to impose the condition
v j (t j ) = v j+1(t j ), so from (21) and (22), we have

a j
n(t j − t j−1)

n = a j+1
0 (t j+1 − t j )

n . (23)

From (18), the first derivatives of v j (t) and v j+1(t) are respectively as:

dv j (t)

dt
=

n−1∑
i=0

Bi,n−1(t)n(a j
i+1 − a j

i )

=
n−1∑
i=0

(
n − 1

i

)
(t j − t)n−1−i (t − t j−1)

i 1

hn

{
n(a j

i+1 − a j
i )

}

=
(
n − 1

0

)
{n(a j

1 − a j
0)}

1

hn
(t j − t)n−1 + · · · +

(
n − 1

n − 1

) {
n(a j

n − a j
n−1)

}

× 1

hn
(t − t j−1)

n−1, (24)

dv j+1(t)

dt
=

n−1∑
i=0

(
n − 1

i

)
(t j+1 − t)n−1−i (t − t j )

i 1

hn

{
n(a j+1

i+1 − a j+1
i )

}

=
(
n−1

0

)
{n(a j+1

1 − a j+1
0 )} 1

hn
(t j+1− t)n−1+ · · · +

(
n−1

n−1

)
{n(a j+1

n − a j+1
n−1)}

× 1

hn
(t − t j )

n−1. (25)
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By substituting t = t j into (24) and (25), we have

dv j (t j )

dt
= n(a j

n − a j
n−1)

1

hn
(t j − t j−1)

n−1, (26)

dv j+1(t j )

dt
= n(a j+1

1 − a j+1
0 )

1

hn
(t j+1 − t j )

n−1, (27)

and to preserve the continuity of the first derivative of theBezier curves at nodes, by equalizing
(26) and (27), we have

(a j
n − a j

n−1)(t j − t j−1)
n−1 = (a j+1

1 − a j+1
0 )(t j+1 − t j )

n−1,

where it shows the equality (7).
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