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Explaining and Validating Stressed Power Systems
Behavior Using Modal Series

Naser Pariz, Hasan Modir Shanechi, Senior Member, IEEE, and Ebrahim Vaahedi, Fellow, IEEE

Abstract—In this paper, qualitative and quantitative differences
between nonlinear and linear modal simulations in stressed power
system are presented. For the first time in the literature, time-
domain nonlinear simulation is used to validate the accuracy of
the second order modal model, obtained by using modal series.
Furthermore three new selective indices are defined and used to
explain and predict the differences between nonlinear and linear
modal simulations. These indices also explain the under or over
damping results being experienced when a linear system theory de-
signed controller is applied to a nonlinear system.

Index Terms—Modal interaction, modal series, normal forms of
vector fields, stressed power system, system security.

I. INTRODUCTION

WHEN a stressed power system is subjected to a distur-
bance, it exhibits complex dynamic behavior. The com-

plexity of this behavior depends on the power system structure,
system loading, and type and location of the disturbance. For ex-
ample the inter-area mode phenomenon in stressed power sys-
tems and auto and hetero parametric resonance in power systems
can be addressed to some of these complex behaviors [1], [2].

A. Prologue

Two approaches are commonly used to study the power
system dynamic behavior. One is nonlinear simulation and
the other is linear modal analysis. It is difficult to understand
and gain a good feeling for the physical nature of the complex
dynamic behavior (of stressed power system) by nonlinear sim-
ulation. On the other hand, the validity of linear modal analysis
is restricted to a small neighborhood of the operating point and
therefore, when a system is subjected to large disturbances and
its states are driven away from operating point, the similarity
between real time responses and linear modal simulation is lost.

Recently, the technique of normal forms of vector fields has
been used to analyze the complex behavior of the power sys-
tems [3]–[6]. In this paper a new method, called Modal Series
Method [7], [8], is used to show, validate and explain the quali-
tative and quantitative differences between nonlinear and linear
modal simulation, in stressed power systems. These differences
are negligible in relaxed power systems.
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It is shown that some oscillation frequencies may appear
in stressed power systems which are not predictable by linear
modal analysis. This qualitative difference is clarified by
means of the discrete Fourier transform, and its physical nature
is explained, using second order modal analysis, obtained
via Modal Series. Also a comparison between nonlinear and
second order modal simulation results is made. It is shown that
these results agree with a good degree of approximation. These
have been lacking in the literature.

B. Modal Interaction

It is well known that when a linear system is excited in steady
state mode by a sinusoidal input, all system states have the same
frequencies as the frequencies present in the input. This is not
true when the system is nonlinear. For example when a static
quadratic system is excited by sum of two sinusoidal inputs with
frequencies and , one can see a DC component and AC
components with frequencies, , , , and at
the output, whereas with linear systems, only the frequencies
and are observed at the output.

In nonlinear dynamical system this behavior is more com-
plicated. Suppose are linear modes of a non-
linear dynamical system. Because of the nonlinearity in system
dynamics, these linear modes interact and produce many in-
teraction modes of the form ,
where and . The degree of the exci-
tation of these modes, in zero input response, depends on non-
linearities and initial conditions. In this paper the authors show
these interaction modes in stressed power system response. A
closed form approximate solution, based on linear modes, is
needed to understand and analyze the effects of modal inter-
action. Second order modal approximate solution, using Modal
Series, is used for this purpose in this paper. Even higher order
modal approximate solution is needed when an observed be-
havior cannot be explained using second order modal approxi-
mation. Our method would work as well with higher order ap-
proximations similarly to what is presented here for the second
order.

II. M ODAL SERIES

A. Introduction

By using Modal Series it is possible to represent nonlinear dy-
namic systems, as well as stressed power systems, in a manner
which yields a good deal of physical insight into the problem
under consideration. Moreover, the method of solution has the
great conceptual advantage of presenting a nonlinear system as a
rather straightforward generalization of the linear case, although
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it may be much more involved. As with the normal form tech-
nique, this method is restricted to polynomial nonlinearity there-
fore, the Taylor series of other nonlinearity types are needed.
Moreover, this method provides closed form solution to the dif-
ferential equations even in the face of resonance condition.

B. Taylor Series Expansion

Let in an generator system the dynamical equations gov-
erning the generators and their excitation systems have the gen-
eral form:

(1)

where, is the state
vector and is a smooth vector field. Let the total
order of the system (1) be . Expanding (1) as Taylor series
about a stable equilibrium point and using again and

as the new state variables yields;

(2)

where, it is assumed that belongs to the convergence do-
main of the Taylor series , is the th row of Ja-
cobian matrix which is equal to , and

is the Hessian Matrix.

C. Eigenvalue Analysis and Jordan Form of the System

Denote by the (complex) Jordan form of and by and
the matrices of the right and left eigenvectors respectively. Then
the transformation yields the following equivalent
system for (2)

(3)

where,

(4)

and is the -th element of the -th column of .

D. Modal Series

Let us decompose the solution of (3) for initial conditions,
, as

(5)

where, contains the terms that depends on any-statess
multiples of initial conditions. For example for ,
contains the terms that depend on any combination such as

for , , . Since (5) must satisfy (3):

(6)

The solution of (6) can be found by solving the following
differential equations with initial condition and

for [7], [8]:

(6-1)

(6-2)

(6-3)

...

Equation (6-1) yields linear approximate solution to the system,
its Laplace transform and time domain solution are given in
(6-1-1) and (6-1-2) respectively.

(6-1-1)

(6-1-2)

Equation (6-2) yields correction terms to linear approximate so-
lution by considering second order nonlinearity. It can be solved
by two dimensions Laplace transform [7]

(6-2-1)
To obtain the time domain solution, inverse transform of (6-2-1)
can be calculated as:

(6-2-2)

where

for

(6-2-3-a)

for (6-2-3-b)

The set contains all three tuples , which cause the
second order resonance condition, i.e., satisfy .
Similar procedure may be carried out to calculate and
higher order terms. Let us call the condition

second order quasiresonance and denote bythe
set of all three tuples , which cause the second order
quasiresonance. Neglecting and higher order terms,
and can be approximated by:

(7)
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(8)

where .
Rearranging second order modal effects i.e., the second term

in (8)

(9)

and defining new constants , and as:

(10)

(11)

where,

for (12)

the second order approximate response becomes:

(13)

It is well known that linear modal analysis gives as:

(14)

Similarly to (7) and (8) in this paper, (7) and (8) in [4] provide
another approximation to and using normal forms
of vector fields method. There are three differences between the
two methods:

• The coefficients of these equations in [4] depend on
which has nonlinear relation to , but in this paper they
depend on which has linear relation to .

• The calculation of these coefficients, in case of resonance
or quasiresonance, in the method in [4] is not as straight
forward as it is here.

• Most importantly, Modal Series Method provides a more
accurate approximation of the nonlinear system than the
normal form technique in that second order Modal Series
approximation captures more of the effects of nonlinearity
than second order normal form approximation [7], [8].

III. N ONLINEAR INTERACTIONS

By comparing (13) and (14), two differences can be seen. One
of them is the third term in (13) which gives an explicit correc-
tion term to linear approximate solution. It contains the second
order modes i.e., for all pairs and , .
The other is the difference between linear approximate solution
and the first two terms of (13). This difference indicates that the
linear modes can be modulated by time, in case of resonance,
and/or be excited or relaxed by higher order nonlinearity effects.
By using (13) one can extend linear participation factors concept
to include second-order modes [9].

IV. SECOND ORDERMODAL INTERACTIONSINDICES

The second order modal time response term, ,
is affected by two parameters. The absolute value of the con-
stant determines the maximum (at time zero) amplitude.
The larger this value, the more pronounced the effect of this in-
teracting second order mode will be. The time constant of this
second order mode, , determines how
fast this response vanishes. The larger this time constant is, the
longer the effect of this mode will persist. Therefore, , the
product of the two, is defined as a measure for the effects of the
interaction modes in the time response to capture both the am-
plitude and the duration effects of the interacting modes

(15)

Also, to analyze the time modulation and/or the excitation or
relaxation effects of the nonlinearity on linear modes, the fol-
lowing measures are used:

(16)

(17)

The maximum of envelope of the mode in the second term
of (13) is , therefore is selected as the
measure of the impact of this component. This is the component
that captures the effect of all resonating second order modes.
Note that the envelope of reaches its maximum at time

, therefore its maximum may be large but
it may not appear in simulation time and therefore its effects go
unnoticed in simulation results.

In linear modal analysis the excitation level of mode in
state is given by . This excitation level is modified
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and changed to by nonlinearity effects as is evident in the
first term of (8) and (13). A natural measure to assess the in-
fluence of the nonlinearity would be . The draw-
back for this choice is that when is very small this quo-
tient will be very large, even for small values of , indicating
that the nonlinearity has modified the effect of mode j in state i
greatly. This means that we will have a large measure but, be-
cause of the small value of , not a very pronounced effect. To
compensate for these cases the measureis defined. ap-
proximates the actual excitation level of each linear mode with
respect to that obtained via linear analysis, when its sign is pos-
itive, i.e., is not very small. It denotes the excitation
level with respect to when its sign is negative, i.e., in cases
that is very small. is a properly small positive number
such as 0.1 , in this paper it is chosen to be 0.1.
Therefore when is close to one, it means that the excitation
level of linear mode is not changed considerably by the non-
linearity, or even if it has changed it is still not very pronounced
in the state .

V. NONLINEAR INTERACTION IDENTIFICATION PROCEDURE

Based on the above indices, the following algorithm is pre-
sented for the identification of modal interaction.

1. For a given disturbance, the states
at the end of the disturbance are deter-
mined using nonlinear time domain simula-
tion.
2. The post disturbance stable equilibrium
point of the system is determined.
3. The Taylor series expansion of the
system around is obtained.
4. Using similarity transformation from
the eigen analysis of the linear part of
Taylor series, second order approximate
system is obtained in the variable.
5. The initial condition is
transformed to using and the
modal series analysis is done.
6. For each , indices using (15) are
calculated and compared to obtain dominant
second order modes.
7. For each , indices using (16) are
calculated to determine the modulated ex-
citation effects of the nonlinearity.
8. For each , indices using (17) are
calculated to identify the level of the
nonlinear excitation of each linear mode
with respect to that obtained via linear
analysis or to .
9. Using the results of step 6, 7 and 8
we can predict or explain the differences
between linear modal simulation and non-
linear simulation.

Fig. 1. Two-area four-machine test system.

TABLE I
MECHANICAL MODES OF THETWO-AREA, 4-GENERATORPOWERSYSTEM

VI. NUMERICAL EXAMPLES

A. Two-Area, 4-Generator Power System

1) Description: Two-area four-generator power system ([10 in
Section 12.8]) shown in Fig. 1 is used to show the differences be-
tween linear modal simulation and nonlinear simulation. Quasi
steady state parameters and constant impedance models are used
to represent the network and loads respectively. All generators
are represented by two-axis model equipped with static exciters.
The system parameters, load conditions and exciter data can be
found in [8]. For 0.4 second we open the line between buses 7
and 8 and then close it to simulate a fault. Increasing the fault
on time to 0.45 second made the system unstable.

2) Eigenvalues: This system has 27 eigenvalues without PSS;
14 representing 7 complex conjugate pairs and 13 real eigen-
values. Mechanical modes are listed in Table I. As we see in
this table, the uncompensated system has negatively damped
inter-area mode with frequency 3.3947 rad /sec (0.54 Hz), and
has two positively damped local modes with frequencies 6.6499,
6.6989 rad/sec (1.058, 1.066 Hz). A classical PSS is designed in
the frequency range (0.01, 2) Hz and placed on generator 1, its
parameters are given in [7]. New mechanical modes are listed
in Table I.

3) Difference between Linear Modal and Nonlinear Sim-
ulation Results: The original nonlinear system and the linear
modal approximate system were simulated to show the qual-
itative differences between nonlinear system and its linear
modal approximation. Some of the results are shown in Fig. 2.
There are considerable differences between the two simulation
results. Although both trajectories have the same initial state,
the response of the linear system is damped oscillatory around
zero, whereas the nonlinear response is a damped oscillatory
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Fig. 2. Nonlinear, linear and second order modal series simulation results.

around an exponentially decaying bias. The origins of these
differences are discussed in Section VII.

4) Similarity between Second Order Modal and Nonlinear
Simulation: Using (8), second order modal simulation results
were obtained and are shown in Fig. 2. The results show the
good correspondence between nonlinear and second order
modal simulation. Therefore, (8) can be used to explain the
mechanism that causes the differences between nonlinear and
linear modal simulation.

5) Identifying the Second Order Modal Interaction Frequency
Using DFT: We see two oscillation frequencies in nonlinear sim-
ulation results, one of them being dominant. Linear simulation
results show only one oscillation frequency. DFT was used to
identify these frequencies. Please see Fig. 3. The DFT of the
nonlinear system response shows that there are two oscillation

Fig. 3. Nonlinear, linear modal FFT’s.

frequencies, one of them is about 0.55 Hz (this is inter-area
mode which is dominant) and the other is about 1.1 Hz. Is the
later frequency from second order modal interaction or is it the
local mode frequency of the area 1? If it were the local mode
frequency, the nonlinearity effects must have excited it, because
it is not seen in linear system responses and their DFT’s. But
for this local mode, area-2 local mode, and inter-area mode are
respectively about 1.17,0.05 and 0.8 for and 1.09, 1.2
and 0.7 for , i.e., the nonlinearity effects do not change
the local and the two inter-area mode excitation levels consider-
ably. Therefore it is concluded that this is the frequency of one
of the second order interaction modes.

6) Predicting Nonlinear Interaction between Modes: Com-
pensated system has 30 eigenvalues. These 30 eigenvalues in-
teract with each other and produce many second order modes.
In other words, in the nonlinear system response, besides the
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Fig. 4. Indices plots.

30 eigenvalues detectable from linear model, many interaction
modes, like , also exist. We used the index
(15) to compare, and as a measure for, the effects of these in-
teraction modes in the time response and plotted it in three-di-
mensional coordinates. and coordinates are used to denote

and , and is used to show . Please see the plot of
in Fig. 4. This figure shows that the effects of , , ,

are dominant. These effects are discussed in the following
subsection VI-A-7.

7) Analysis of the Differences between Nonlinear and Linear
Simulation Results: Fig. 4 shows that there are considerable auto
and cross interaction between inter-area modes,and . On
the other hand inspection of indices shows that generally
zero mode causes quasiresonance condition. Therefore we con-
clude the following:

a) The interaction and ,
, produces relatively large exponential

term, in those states, which have
a considerably large index value (or ). This

term makes the nonlinear system response differ from the
linear modal simulation result. Therefore we must see an
exponential decay in nonlinear simulation results com-
pared with linear modal result. For example, please see

or in Figs. 2 and 4.
b) and produce exponentially decaying si-

nusoidal term with frequency 1.1065 Hz, i.e.,
in those

states which have considerably large index value
(or ). This term also makes the nonlinear system
response differ from the linear modal simulation result,
i.e., we must see 1.1069 Hz oscillation frequency in
states which have considerable interaction and
while this frequency is not seen in linear modal results.
For example please see or in Figs. 2 and 4.

c) The magnitude of for (1, 7, 2) and
are ten times greater than other quasiresonance condi-
tion. These quasiresonance conditions produce, sinusoids
with frequency of inter-area oscillation and with ampli-
tudes that are time modulated exponentially decaying;

. This term is added
to the linear modal approximation term, and depending
on its phase, we must see increase or decrease in the am-
plitude of the nonlinear simulation result with respect to
linear modal simulation at frequency 0.5534 Hz. For ex-
ample please see in Fig. 2.

Simulation results show that if the damping of the inter-area
mode is increased, nonlinearity effects become negligible and
nonlinear system behaves as linear system.

B. 50-Generator, 145-Bus Power System

A 50-generator, 145-bus power system [11] is used to show
the modal interaction phenomenon and the validity of modal se-
ries in simulating large power systems. Two axes model is used
to model six generators that are highly influenced by fault and
the classical model is used for other generators. This system
has 155 eigenvalues with negative real part; 122 representing
61 complex conjugate pairs and 33 real eigenvalues. The fre-
quencies of two damped oscillatory modes are 2.992 and 3.041
Hz and others are lying in the range, (0.003, 2.525) Hz.

For 0.9 second the line between buses 6 and 7 is opened and
then closed to simulate a fault in the stressed system. Increasing
the fault on time to 0.95 second made the system unstable. Fig. 5
shows considerable differences between linear modal and non-
linear simulation results, but shows negligible difference be-
tween second order modal series and nonlinear simulation.

The nonlinear system response and its DFT’s show that there
are some dominant oscillation frequencies, one of them is re-
lated to linear modes ,
which is predictable from linear analysis, but the others are
close to 2.5 Hz and are not predictable from linear analysis.
Some of them are greater than 2.525 Hz and so are not in the
range of linear mode frequencies. Inspection ofindices show
that the dominant one of them, with frequency of 2.5766 Hz, is
caused by and . Also, and indicate that
the dominant frequencies, 2.411 and 2.494 Hz, which are less
than 2.525 Hz and thus in the range of linear modes are only
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Fig. 5. Nonlinear, linear modal and second order modal series simulation
results.

Fig. 6. Nonlinear and linear modal DFT’s.

seen in nonlinear DFT’s. They are caused by , ,
and , where and are conjugate pairs,

[7].
Comparing two DFT’s indicates that there are some other

tops in linear modal DFT’s such as in frequency 1.7455 Hz,
related to the linearly excited conjugate pairs and ,

. These tops cannot be seen in
nonlinear DFT’s. Inspection of indices showed that, those
modes are relaxed more than ten times with respect to linear
analysis by nonlinearity effects [7].

VII. CONCLUSION

The results presented in this paper validate that, there are
considerable differences between nonlinear and linear modal
simulation when the power system is stressed with the non-
linear modal simulations results more accurately representing
the system behavior. The results also indicate that the newly de-
fined selective indices can be used very effectively to explain the
nature of these differences. Studies show three ways by which

nonlinear interaction between linear modes make the response
of nonlinear system differ from linear modal results; exponen-
tial decay, frequency combination and increase or decrease in
amplitude.

APPENDIX

In this appendix modal series method is illustrated by a simple
example. Let the solution of (A1) to the initial condition in some
interval be (A2)

(A1)

(A2)

By expanding this solution as a MacLaurin series with respect
to one can find (A3), where and

(A3)

Suppose (A3) has a nonempty convergence domainfor all
. If one expands the solution of (A1) to the initial condition

, where is arbitrary real number such that then he
finds (A4) and (A5)

(A4)

(A5)

Equation (A4) must satisfy (A1) for any arbitrary, i.e.,

... (A6)

therefore the coefficient of any order ofon both sides of (A5)
and (A6) must be equal, i.e.,

...
...

(A7)

The solution of (A7) can be found recursively using multi di-
mensional Laplace transform as (A8) and (A9). See equation
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...

(A8)

...

(A9)

(A8) and (A9) at the top of the page.Therefore the solution of
(A1) to the initial condition is given by (A10). This
is equal to the expansion of its analytic solution (A11)

(A10)

(A11)
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