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Abstract We investigate the cosmological consequences of
a scalar-vector-tensor theory of gravity known as modified
gravity (MOG). In MOG, in addition to metric tensor, there
are two scalar fields G(x) and μ(x), and one vector field
φα(x). Using the phase space analysis, we explore the cos-
mological consequences of a model of MOG and find some
new interesting features which are absent in �CDM model.
More specifically we study the possibility that if the extra
fields of this theory behave like dark energy to explain the
cosmic speedup. More interestingly, with or without cosmo-
logical constant, a strongly phantom crossing occurs. Also
we find that this theory in its original form (� �= 0) possesses
a true sequence of cosmological epochs. However, we show
that, surprisingly, there are two radiation-dominated epochs,
f5 and f6, two matter-dominated phases, f3 and f4, and two
late time accelerated eras, f12 and f7. Depending on the ini-
tial conditions the universe will realize only three of these
six eras. However, the matter-dominated phases are dramat-
ically different from the standard matter-dominated epoch.
In these phases the cosmic scale factor grows as a(t) ∼ t0.46

and t0.52, respectively, which are slower than the standard
case, i.e. a(t) ∼ t2/3. Considering these results we discuss
the cosmological viability of MOG.

1 Introduction

We investigate the cosmological consequences of a modified
theory of gravity known as MOG in the relevant literature
[1]. MOG is a relativistic theory which exploits three kinds of
gravitational fields, i.e. tensor, scalar and vector fields. More
specifically, in addition to the metric tensor, MOG possesses
two scalar fields G(x), μ(x), and a Proca vector field φα(x).
The vector field is directly coupled to the matter fields. There-
fore, this theory is not a metric theory of gravity and conse-
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quently the weak equivalence principle, in principle, can be
violated. Naturally, the free parameters of MOG are chosen
such as to make the theory consistent with the experimental
tests of the equivalence principle. The main motivation for
introducing this theory is to solve the dark matter enigma. It
is claimed that MOG can explain the flat rotation curve of
the spiral galaxies without adding any dark matter halo [2,3].
Also this theory explains the matter discrepancy in the galaxy
clusters [4]. It is worthy to mention that it is not the first time
that some modifications in the gravitational law can address
the above mentioned problems. For an explicit example we
refer the reader to Modified Newtonian Dynamics (MOND)
[5] and its relativistic generalizations such as Tensor-Scalar-
Vector theory (TeVeS) [6]. It has recently been claimed that
MOG is more successful than MOND in explaining the flat
rotation curves [7]. Also the local stability of spiral galaxies
in MOG has been investigated in [8]. The gravitational Jeans
instability for molecular clouds has been studied in [9].

Our purpose in this paper is to study the cosmological
behavior of a MOG model. It is important mentioning that
like f (R) gravity, MOG may refer to a large class of models
corresponding to different energy contributions for the scalar
and vector fields. In other words by changing the kinetic and
potential energy contributions of the fields, one may construct
a new model of MOG. In this paper we restrict ourselves to
a MOG model presented in [10].

The astrophysical consequences of this theory, more
specifically the astrophysical issues relevant to the dark mat-
ter problem, have been widely investigated. Since MOG is
still considered as an alternative theory to dark matter par-
ticles and has not been ruled out yet, it seems necessary to
check its cosmological consequences. We know that adding
only a single scalar field to a gravitational theory can lead to
significant outcomes in the cosmological issues. For example
we recall the quintessence model and Brans–Dicke theory.
Therefore it is natural to ask about the cosmological behav-
ior of MOG considering the variety of fields that have been
incorporated. On the other hand there are a few papers con-
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sidering the cosmology of MOG. For example in [10] the
Noether symmetries of the cosmic point-like Lagrangian of
MOG have been studied and some exact cosmological solu-
tions have been found. Also in [11] the perturbation growth
in the context of MOG has been studied. See [12–14] for
relevant work.

In order to check the main cosmological features of MOG,
and the minimum requirements that it must possess, we use
the dynamical system method (or the phase-space analysis).
This method provides a fast and reliable procedure to numeri-
cally solve the field equations. Note that the field equations of
MOG are drastically more complicated than Einstein’s gen-
eral relativity (GR); see Eqs. (12)–(15). More importantly,
this method enables us to project the dynamics into a com-
pact region and explore the most important “‘events”’ that
can be happen. One of the necessary requirements that a
cosmological model should satisfy is the existence of a true
sequence of cosmological epochs. More specifically, the cos-
mic evolution should start with a radiation-dominated phase.
After this phase there should be a proper matter-dominated
phase which is long enough to allow for the structure forma-
tion and fast enough to be consistent with the observations
of the age of the universe. Finally the universe should enter
an accelerated epoch consistent with the relevant observa-
tions such as the Supernovae type Ia data. Fortunately, the
dynamical system method is an excellent tool for checking
this important requirement. This method has been applied
to various alternative theories and cosmological models, for
example see [15–22].

This paper is organized as follows. In Sect. 2 we briefly
introduce MOG and the modified Friedmann equations. In
Sect. 3 we introduce the dynamical system variables and the
autonomous first order differential equations. Also we find
the critical points and explore their stability and physical
relevance. In this section we assume that the cosmological
constant is zero. In Sect. 3.2 we bring back the cosmological
constant and analyze the system. In Sect. 4 we study the
phase space of the system at infinity. Finally, conclusions are
drawn in Sect. 5.

2 Modified Friedmann equations in MOG

Let us start with an action for MOG presented in [10],

S = 1
16π

∫ √−g d4x

[
χ2

2
(R − 2�) + 1

2
gμν∇μχ∇νχ

+ χ2

4 gμν∇μψ∇νψ + ω0
[ 1

4 BμνBμν + Vφ

] ]
+ SM ,

where R is the Ricci scalar, � is a positive constant cor-
responding to the cosmological constant in the Einstein–
Hilbert action. It is noteworthy that, although in this paper
we will denote by � the cosmological constant, it can be

considered as the mass term for the scalar field χ . In other
words, it is not exactly the cosmological constant and one
may present different interpretations for its appearance in
the action. Also ω0 denotes a positive coupling constant, SM
is the matter action, and Bμν = ∇μφν − ∇νφμ is an anti-
symmetric tensor reminiscent of the Maxwell tensor in elec-
trodynamics. The new scalar fields χ and ψ are related to G
and μ introduced in [1] as χ2 = 2/G and ψ = ln μ; see [10]
for more details. It should be stressed that the scalar field G,
in principle, can be negative. This means that χ can be a pure
imaginary function. However, the Lagrangian density in the
above action remains always real. However, χ is an auxiliary
function for writing the action in a more common and com-
pact form, and our main scalar field is G. The potential Vφ

is chosen as Vφ ∝ e2ψφβφβ . This means that μ appears as a
time dependent mass for the vector field and plays a central
role for addressing the dark matter problem [1].

Varying the action with respect to the fields, one can find
the relevant field equations,

Gμν + �gμν = 1

χ2 (∇μ∇ν − gμν�)χ2 + 16π

χ2 (1)

∇μB
αμ + ∂Vφ

∂φα

= 16π

ω0
Jα (2)

�χ = χ(R − 2�) + χ

2
gμν∇μψ∇νψ (3)

�ψ = − 2

χ
∇γ χ∇γ ψ + 2ω0

χ2

∂Vφ

∂ψ
. (4)

Here Gμν is the Einstein tensor and Jα is a “fifth force”
matter current defined as

Jα = − 1√−g

δSM
δφα

; (5)

a nonzero Jα means that there is a coupling between matter
and the vector field φμ. This coupling can, in principle, lead
to a violation of the Einstein equivalence principle. In this
paper we assume that ∇α Jα = 0. This is an extra assumption
and in principle one may study different versions of MOG in
which this conservation equation is violated. Also, the total
energy-momentum tensor is defined as

T total
μν = Tμν + T φ

μν + T χ
μν + Tψ

μν, (6)

where Tμν is the energy-momentum tensor for ordinary mat-
ter, and

T φ
μν = − ω0

16π

(
B α

μ Bνα − gμν

(
Bρσ

4 Bρσ + Vφ

)
+ 2 ∂Vφ

∂gμν

)
,

T χ
μν = − 1

16π

(∇μχ∇νχ − 1
2gμν∇αχ∇αχ

)
,

Tψ
μν = − χ2

32π

(∇μψ∇νψ − 1
2gμν∇αψ∇αψ

)
.

In order to study the cosmological consequences of MOG, we
assume a flat Friedmann–Robertson–Walker (FRW) metric

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2),
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where a(t) is the cosmic scale factor. Also we assume that
the cosmic fluid can be characterized by an ideal fluid with
energy density distribution ρ, the pressure p and the velocity
four vector uμ. In this case the energy-momentum tensor is

Tμν = (ρ + p)uμuν + pgμν.

Finally, bearing in mind that χ2 = 2/G and ψ = ln μ, we
find the Friedmann equations:

ȧ2

a2 = 8πG

3
ρ + �

3

+
[
Ġ

G

ȧ

a
− 1

12

μ̇2

μ2 − 1

24

Ġ2

G2 −Gω0

3

(
Vφ

2
+ ∂Vφ

∂g00

)]
,

(7)

ä

a
= −4πG

3
(ρ + 3p) + �

3
+

[
1

2

Ġ

G

ȧ

a
+ 1

6

μ̇2

μ2

]

+
[

1

2

G̈

G
− 11

12

Ġ2

G2 − Gω0

6

(
Vφ − ∂Vφ

∂g00

)]
, (8)

∂Vφ

∂φ0
= 16π J 0

ω0
, (9)

G̈

G
= 32πGρ + 12

ä

a
+ 9

Ġ

G

ȧ

a
− 2

μ̇2

μ
+ Ġ2

G2

− 4Gω0

(
Vφ

2
+ ∂Vφ

∂g00

)
, (10)

μ̈

μ
= μ̇2

μ2 − 3
μ̇

μ

ȧ

a
+ Ġ

G

μ̇

μ
− Gω0μ

∂Vφ

∂μ
. (11)

Here a dot stands for a derivative with respect to time t ,
and ρ includes both matter and radiation contributions, i.e.
ρ = ρm + ρr . It is important to mention that the scalar fields
μ and G have negative contributions to the total energy den-

sity. More specifically the kinetic terms μ̇2

μ2 and Ġ2

G2 appear
with negative sign in (7). As we will show, this fact leads to
some phantom features in this model. It is obvious that if we
change the sign of the kinetic terms in the action, then the
cosmological consequences of this model, in principle, will
change.

In the following we restrict ourselves to the potential Vφ =
− 1

2μ2φαφα . This is the original potential of MOG presented
in [1]. In this case after some algebraic manipulations, we
rewrite Eqs. (7)–(11) as follows:

ȧ2

a2 = 8πG

3
ρ + �

3
+ Ġȧ

Ga
− μ̇2

12μ2 − Ġ2

24G2

+64

3

π2 J 2G

ω0μ2 , (12)

ä

a
= −44πG

15

(
ρ − 3

11
p

)
− �

15
− Ġȧ

Ga
+ Ġ2

12G2 + μ̇2

6μ2

−256

15

Gπ2 J 2

ω0μ2 , (13)

G̈

G
= −16πG

5
(ρ − 3p) − 4�

5
+ 2Ġ2

G2 − 3Ġȧ

Ga

+256

5

Gπ2 J 2

ω0μ2 , (14)

μ̈

μ
= μ̇2

μ2 − 3
μ̇ȧ

μa
+ Ġμ̇

Gμ
− 256π2GJ 2

ω0μ2 . (15)

Note that using the field equation of the vector field we have
replaced φ0, the only nonzero component of the vector field,
with 16π J (t)

ω0μ2 , where J = J 0 is the time component of the
matter current Jα . It is clear that these non-linear differential
equations, i.e. Eqs. (12)–(15), are drastically more compli-
cated than the standard Friedmann equations. However, as
we shall see, despite this complexity the dynamical system
approach provides a fast numerically stable integration of the
equations.

As we have already mentioned the equivalence principle
can be violated in this theory. Consequently the ordinary
energy-momentum tensor Tμν is not conserved [23]. How-
ever, fortunately in the isotropic and homogeneous FRW
space-time and with the assumption that ∇α Jα = 0, Tμν

is conserved and one may use the standard relations between
energy densities and the scale factor, i.e. ρm ∝ a−3 and
ρr ∝ a−4; see [23] for more details. In this case one may
straightforwardly set the matter current as J = κρm . Here
κ is another positive coupling constant. It is noteworthy that
in a non-homogeneous space-time because of the coupling
between matter and the vector field, these relations are not
true and one may expect significant departures from the
�CDM model. We recall that there are several attempts in
the literature to find a relationship between the cosmic-speed
up and the inhomogeneities in the distribution of matter,
for example see [24,25]. Therefore, regarding the energy
exchange between matter and the vector field in a non-
homogeneous background, it seems interesting to check the
possibility that MOG can explain the accelerated expansion
without invoking the cosmological constant just by taking
into account the matter inhomogeneities. This issue can be a
matter of study for future work. Therefore, in the following
we work in an isotropic and homogeneous background.

Now let us consider MOG as a dark energy model. In
order to find the equation of state parameter of dark energy,
i.e. ωDE, we rewrite Eqs. (12) and (13) as

3H2 = 8πGN (ρm + ρr + ρDE) (16)

−2Ḣ = 8πGN

(
ρm + 4

3
ρr + ρDE + pDE

)
, (17)

where GN is the Newtonian gravitational constant and H =
ȧ/a is the Hubble parameter and a dot denotes derivative with
respect to cosmic time t . Here ρDE and pDE are defined as
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8πGNρDE = 8π(G − GN)ρ + � + 3H
Ġ

G

− μ̇2

4μ2 − Ġ2

8G2 + 64
π2κ2

ω0

Gρ2

μ2 , (18)

8πGN pDE = ĠH
G − Ġ2

8G2 − �
5 − μ̇

4μ2 − 8π(G−GN )
3 ρr

+ 16πG
5 ρm+ 1216π2Gκ2ρm

2

15μ2ω
.

(19)

Now it is possible to express the equation of state param-
eter of dark energy by noticing that ωDE = pDE

ρDE
. It is also

useful to write the effective equation of state parameter ωeff,
which conveniently is defined to include all components of
the energy budget of the cosmos, namely

ωeff = ptot

ρtot
= −1 − 2Ḣ

3H2 . (20)

3 Phase-space analysis of MoG

In order to apply the phase-space analysis to MOG, we trans-
form the field equations (12)–(15) into the autonomous form
x′ = f(x), where x is the column vector constituted by an
appropriate set of new variables and f(x) is the correspond-
ing column vector of the autonomous differential equations.
Also a prime denotes the derivative with respect to ln a. The
fixed points xc of the system satisfy x′ = 0, and in order to
determine the stability of these points, we perturb the system
around the fixed points asx = xc+δ, where δ is a column vec-
tor for the perturbations. Expanding the autonomous equa-
tions up to linear order in perturbations, we have δ′ = M δ

where M is the stability matrix. Finally, the type and the sta-
bility of each fixed point, can be found using the eigenvalues
of the stability matrix [26]. Now let us define the following
dimensionless variables:

y = 8πG

3H2 ρm, r = 8πG

3H2 ρr z = Ġ

GH
m = μ̇√

12μH
,

x2 = �

3H2 , Q = G

3ω

(
8πκρm

Hμ

)2

. (21)

Substituting these dynamical variables into Eq. (12), we find
a constraint equation,
(
y + r + z + x2 − m2 − z2

24
+ Q

)
= 1.

If we assume that G > 0, then it is clear form the definition
of Q that it is a positive parameter. Therefore we rewrite the
constraint equation as

y + r + x2 + z − m2 − z2

24
≤ 1. (22)

After some algebraic manipulations, the modified Friedmann
equations take the following form:

y′ = −1

5
12m2y+ 2r y

5
− 6x2y

5
+ 3y2

5
− yz2

10
+ 7yz

5
+ 3y

5
(23)

r ′ = −1

5
12m2r+ 2r2

5
− 6r x2

5
+ 3r y

5
− r z2

10
+ 7r z

5
− 2r

5
(24)

x ′ = −6m2x

5
+ r x

5
− 3x3

5
+ 3xy

10
− xz2

20
+ xz

5
+ 9x

5
, (25)

z′ = −6m2z

5
+12m2

5
+r z

5
−12r

5
−3x2z

5
−24x2

5
+3yz

10

− 18y

5
−z3

20
+13z2

10
−18z

5
+12

5
, (26)

m′ = −6m3

5
−2

√
3m2+mr

5
−3mx2

5
+3my

10
−mz2

20
+ 6mz

5

− 6m

5
+2

√
3r+2

√
3x2+2

√
3y− z2

4
√

3
+2

√
3z−2

√
3.

(27)

It is important mentioning that although G (or equivalently
χ ) can be considered as a time dependent gravitational con-
stant, its sign is not necessarily positive. This means that, in
principle, anti-gravity is possible in MOG. In fact it is well
known that in non-minimally coupled scalar-tensor theories
of gravity, the anti-gravity regime can exist; see [27] and the
references therein. For more recent work we refer the reader
to [28–30]. There is also a non-minimally coupled scalar field
χ in MOG. However, in the following we explicitly show that
there is no transition from anti-gravity to gravity in the con-
text of MOG. More specifically, if the evolution starts from an
anti-gravity regime, it will remain permanently at that phase.
In other words, if G starts with a negative value, then its sign
will not change during the cosmic evolution. Therefore, it
has to start from a positive value and one can be sure that
y and r are also positive quantities during the whole ther-
mal history. To show this fact more precisely, let us rewrite
Eq. (12) as

HĠ

|G| = sgn(G)

(
H2 + μ̇2

12μ2 + Ġ2

24G2

)

−
(

8π |G|
3

ρ + 64

3

π2κ2|G|ρ2
mφ

ω0μ2 + sgn(G)
�

3

)
.

(28)

In the early universe we can neglect the � term. In this case,
supposing a negative value for G, one finds that Ġ is also
negative for an expanding universe. However, there may exist
a minimum for G and after that it can increase and finally
become positive. Note that there is a positive � term in the
right hand side of (28). Therefore, in principle, there is a
point where the � term dominates and so Ġ = 0 and G̈ > 0;

123



Eur. Phys. J. C   (2016) 76:490 Page 5 of 13  490 

see also Eq. (14). However, one may naturally expect that �

becomes important only at the late times. Therefore it is very
unlikely that we have an anti-gravity to gravity transition at
the early stages of the universe. Finally we deduce that y and
r are positive quantities. More specifically, we shall show that
if the evolution starts with suitable initial conditions includ-
ing a positive G, Ġ can be negative or positive during the
cosmic evolution but G remains positive.

Using the introduced dynamical variables, the equation of
state parameter of dark energy,ωDE and the effective equation
of state parameter, ωeff, take the following simple form:

ωDE = 6(5β+14)r−24m2+132x2+78y−(z−84)z−114

90β(r+y)−90
,

ωeff = 1

30

(
−24m2 + 4r − 12x2 + 6y − z2 + 4z + 6

)
.

(29)

Although ωeff can be written just in terms of phase space
coordinates, ωDE contains a new variable β = GN

G . It is clear
form the definition of ωDE that, in principle, the denominator
can become zero. Consequently this parameter can become
infinite. More specifically, this is the case for some initial
conditions considered in this paper; for example, see Fig. 2.

3.1 MOG without cosmological constant (� = 0)

As we have already mentioned, one of the main purposes of
the current paper is to check if MOG can be considered as a
dark energy model. To investigate if extra fields of MOG can
play the role of dark energy, we set the cosmological constant
to zero in the autonomous differential equations. It is equiva-
lent to setting x = 0 in the equations of motion. In this case,
the critical points (y, r,m, z) of Eqs. (23)–(26) are listed thus:

p1,2 :
(

0, 0,±
√

24z − 24 − z2

2
√

6
, z

)
ωeff = 1 − 2z

3
,

p3 :
(

65

27
, 0, 0,−4

3

)
ωeff = 4

9
,

p4 :
(

391

216
, 0,−

√
3

4
,−5

6

)
ωeff = 5

18
,

p5 : (0, 1, 0, 0) ωeff = 1

3
,

p6 :
(

0,
81

100
,

−1

2
√

3
,

1

5

)
ωeff = 4

15
,

p7 :
(

0, 0,− 5√
3
, 2

)
ωeff = −19

3
,

p8,9 :
(

0, 0,±
√

5

6
, 2

)
ωeff = −1

3
,

p10,11 :
(

0, 0,±
√

13

8
, 3

)
ωeff = −1. (30)

Surprisingly the fixed points are numbers and there is no free
parameter to be constrained. This point is also clear from
Eqs. (23)–(27), where because of the special choice of the
dynamical variables, free parameters do not appear in the
autonomous differential equations. In fact, in principle, the
free parameters appear in the coordinates of the fixed points
[15–22]. Since each fixed point corresponds to an exact solu-
tion for the fields of the theory, existence of the free param-
eters in the fixed points provides an opportunity to make the
model more consistent with the cosmological observations.
However, this is not the case in MOG.

In this sense MOG behaves like the �CDM model where
the fixed points are (�R,�m,��) = (1, 0, 0), (0, 1, 0) and
(0, 0, 1), where the � are cosmic density parameters. There-
fore, as we shall see MOG leads to clear cosmological con-
sequences as in the case of the �CDM model.

– p1,2: G-μ dominated curves
p1 (m > 0) and p2 (m < 0) correspond to two distinct
curves in the phase space. Every point on these curves
is a fixed point. In this case there is a constraint on z
as 1.046 < z < 22.95 to keep m real. These curves
cover a wide range of ωeff, from non-phantom, to slightly
phantom and strongly phantom as −14.3 ≤ ωeff ≤ 0.3.
Eigenvalues of the stability matrix for p1 and p2 are
(0, 2 − z, 3 − z,

√
2 − z ∓ √−(z − 24)z − 24), respec-

tively. It is easy to show that for p1 one of the eigenvalues
is positive for z < 3. Therefore, every point on the curve
p1 in this interval is unstable. On the other hand, in the
case of p2, for points in the interval 1.072 < z < 14.93,
there is at least one positive eigenvalue. Thus, these points
are unstable. Note that, for 3 < z < 22.95, the signs of
the eigenvalues of p1 are negative and the remainders
are zero. However, we cannot simply decide that these
points are stable. In fact, because of the existence of a
zero eigenvalue, our first order perturbation analysis does
not work and one has to use other methods, such as the
center manifold theory, in order to reliably determine the
stability of such a point. In the case of fixed points p10

we have used the center manifold theorem and we write
the results in the Appendix A.

– p3: G-Matter-dominated (GMD) era
This point corresponds to an expanding epoch in which
the radiation density is zero and μ is constant. In other
words, only matter and the scalar field G dominate the
evolution. Using the corresponding ωeff one can easily
show that a(t) ∝ t6/13, G(t) ∝ t−8/13 and φ0 ∝ t−18/13.
In this phase the vector field mass (μ) is constant. It is
noteworthy that the vector field’s equation in MOG can
be written as

μ2(t) = 16πκ

ω0φ0(t)
ρm(t). (31)
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Therefore the vector field mass directly depends on
the energy density. This situation is reminiscent of
chameleon scalar fields where the scalar field’s mass
depends on the environment’s density. It is well known
that this property leads to a screening effect for hiding the
scalar fields effect in the local experiments [31,32]. How-
ever, because of the appearance of φ0(t) in the denomi-
nator of (31), it is not trivial to claim that such a screen-
ing effect occur in MOG. However, screening effects are
not just for scalar fields, and they can happen in theories
with vector fields [33]. It is clear that this solution (p3) is
completely different from the standard matter-dominated
phase for which a(t) ∝ t2/3. Also, for p3 eigenvalues
are (− 13

6 ,− 13
6 ,−1,− 1

3 ). Therefore, surprisingly p3 is
an attractive/stable critical point. A simple interpretation
is that, in the context of MOG and in the absence of �,
the universe can enter a permanent matter-dominated era.
This is grossly inconsistent with the cosmological obser-
vations that imply that a matter-dominated epoch has
been replaced by a stable dark energy-dominated era [34].

– p4: Gμ -Matter-dominated (GμMD) era
This critical point corresponds to an exact solution a(t) ∝
t12/23, G(t) ∝ t−10/23, μ(t) ∝ t−18/23 and φ0 is con-
stant. Interestingly this is exactly a solution that has been
obtained in [10] using the Noether symmetry approach.
Also, p4 is an unstable critical point since the eigen-
values are (−2.28,−2.04,−1, 0.26). From the stability
point of view, it seems to be a true matter-dominated era.
We recall that the radiation and matter eras are expected
to be unstable critical points. However, p4 is significantly
different from the standard matter era for which the cos-
mic scale factor grows as a(t) ∝ t2/3. This situation is
reminiscent of metric f (R) cosmology where there is a
“φMDE” regime for which the cosmic scale factor does
not follow the standard behavior [35,36]. We have the
same fixed point ( f3 with a slightly different ωeff) even
in the presence of the � term. We shall discuss more
about these fixed points in the next section.

– p5: Radiation-dominated era
The case p5 corresponds to a standard radiation-domin-
ated epoch whose ωeff = 1

3 . Therefore the cosmic scale
factor grows as a(t) ∝ t1/2. In this era the vector
field mass remains constant. Note that in GμMD era
this mass increases with time. Also the eigenvalues are
(−1,−1, 1, 0), which establishes an unstable radiation
era. Therefore, although there is no standard matter-
dominated phase in MOG without � ,there is a standard
radiation era. It is also interesting that, unlike in the stan-
dard �CDM model, the expansion rate in the radiation-
dominated era is larger than in the matter era (p3).

– p6: Gμ-Radiation-dominated (GμRD) era
This point corresponds to an unstable Gμ-Radiation
epoch for which the eigenvalues are (− 9

5 , 1,− 9
10 , 9

10 ).

In this case, a(t) ∝ t10/19, G(t) ∝ t2/19 and μ(t) ∝
t−10/19. Therefore unlike the matter-dominated phases,
G(t) increases with time in this era. The behavior of this
radiation dominated era is slightly different from the stan-
dard case. Note that for this fixed point we haveωeff = 4

15 .
– p7: Strongly phantom attractor

Eigenvalues for this point are (−18,−17,−9,−9).
Therefore, p7 shows a stable dark energy-dominated era.
p7 corresponds to a strongly phantom behavior with
ωeff = −19

3 . It is easy to verify that the cosmic scale
factor vary as a(t) ∝ (trip − t)−1/8. Here t is smaller than
the constant trip. In fact if t = trip, the universe ends up
with a finite-time. Although this is a stable dark energy-
dominated epoch, the strong phantom crossing is incon-
sistent with the observation; see [37] for more details.
Also the other fields grow as G(t) ∝ (trip − t)−1/4 and
μ(t) ∝ (trip − t)5/4. It is evident that phantom crossing
can occur in MOG; see Fig. 4. It is important to men-
tion that the universe may not enter this phase. In fact,
the phase-space trajectory of the system can end at p3

before reaching the phantom attractor p6. In Fig. 1 we
have explicitly shown this fact. For some different ini-
tial conditions in the deep radiation-dominated universe,
we see that the dynamics reaches the stable p3 point and
stays there forever. On the other hand for slightly differ-
ent initial conditions the fixed point p6 is realized. This
fact explicitly shows that the dynamics starts from an
unstable point or close to it, i.e. p5. Of course there is no
need to set the initial condition very close to that of solid
lines in Fig. 1 in order to find p6. For example if one sets
�M to 3.7 × 10−4, p6 is still realized by the system.

More specifically, one may find initial conditions
which lead to late time solutions p3 or p7. We have shown
the system’s evolution for such a set of initial conditions
in Fig. 1. Solid lines end at the strongly phantom attrac-
tor p7. Note that the density parameters are related to our
dynamical system variables as

�m = y, �R = r, �� = x2,

�G = z − z2

24
, �μ = −m2. (32)

Furthermore, in Fig. 2 we show the evolution of ωeff and
ωDE.

– p8,9: Unstable unaccelerated era
These critical points are on the lines p1,2. In the case of
p8,9 the effective equation of state parameter is − 1

3 and
the eigenvalues are (−2(1 ∓√

10), 1, 0, 0), respectively.
In this case, there is no acceleration and the cosmic scale
factor grows uniformly with cosmic time. Also the other
functions vary as G(t) ∝ t2 and μ(t) ∝ t±

√
10. It is wor-

thy to mention that such a behavior for the cosmic scale
factor is impossible in the context of �CDM model. In
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Fig. 1 The cosmic evolution of �i in the absence of �. The initial
conditions are chosen deep in radiation dominated epoch, i.e. z ≈ 1.5×
107 (z is the redshift and should not be confused with the phase variable).
The initial conditions for solid lines are �R = 0.98, �M = 2.62716 ×
10−4, �G ≈ −0.0863 and �μ = −0.0289. For dashed lines, we pick
the same values except for �M , which is 2.62717 × 10−4. We see that
for the latter case the system falls in the stable GMD point which is
grossly inconsistent with the current cosmological observations

fact, in the standard model the acceleration ä(t) can van-
ishes only at a single moment. However, in MOG the
effect of the extra fields can effectively appear as “repul-
sive” force which can eliminate the attractive nature of the
gravity and provide an unaccelerated expansion. It is also
somewhat inconsistent with the expectation that MOG
should lead to a stronger force in the weak field limit. We
know that modified theories which try to address the flat-
ness problem of the rotation curves of the spiral galaxies
have to strengthen the gravitational force. However, it is
necessary to stress that the evolution does not necessarily
enter these epochs, i.e. P8,9 for a cosmologically viable
trajectory.

– p10,11: Unstable de Sitter-like era
These points are also on the lines p1,2. The effective equa-
tion of state parameter for these points is ωeff = −1.
Therefore p10,11 correspond to an epoch in which the
cosmic scale factor grows exponentially. The scalar fields
vary with time as G(t) ∝ e3t and μ(t) ∝ e±t

√
39/2. Also

the eigenvalues are (−3 ∓ √
78,−1, 0, 0). One may cer-

tainly conclude that p11 is an unstable fixed point. On the
other hand, the stability of non-hyperbolic point p10 can
be shown using center manifold theory. In the Appendix
A we use this theory to specify the stability character of
p10. Also in Fig. 5 we showed that p10 is also an unstable
critical point. Therefore, there is no late time stable de
Sitter phase in the cosmic evolution of MOG, when � is
zero.

Now let us summarize the general cosmological behav-
ior of MOG in the absence of the cosmological constant (or
equivalently when the scalar field G is not massive). In this

ωDE

ωeff

–15 –10 –5 0 5 10

–5

0

5

ln a

ω
i

Fig. 2 The evolution of ωeff and ωDE for the initial conditions pre-
sented in Fig. 1 for the solid curves. Although the effective equation of
state parameter vary smoothly with time and shows the strongly phan-
tom behavior, the dark energy’s equation of state parameter experiences
singularities at r + y = 1

β

case, it seems that MOG does not possess true consequences
for the cosmological phases. The fixed points are: unstable
radiation-dominated (p5) or unstable GμRD (p6), unstable
GμMD point (p4) followed by the late time strongly phan-
tom attractor p6. There is an interesting feature in the dynam-
ics of this model. In fact there is a matter-dominated attractor
GMD, i.e. the point p3. In other words, regarding the ini-
tial conditions, the universe can enter this matter-dominated
phase and stay there forever. Although one can choose initial
conditions for which the evolution does not realize p3, the
late time attractor p7 also is not physically accepted. In Fig.
1, we have plotted the evolution of the density parameters for
two set of initial condition. In the absence of �, MOG can-
not be considered as a dark energy model in the sense that its
extra fields cannot play the role of dark energy. Also, as we
have already mentioned, the standard matter dominated era
is replaced with the GμMD epoch at which the scale factor
grows as a(t) ∝ t12/23. Clearly this behavior is far away from
the standard case. We will discuss more about this important
point in the next section.

3.2 MOG with cosmological constant (� �= 0)

In this section we explore the original version of MOG, i.e.
� �= 0. In this case, x ′ �= 0 and we use the same dynamical
variables as introduced in Sect. 3.1 and find the relevant fixed
points (y, r,m, z, x). Setting to zero the right hand side of
Eqs. (23)–(27) we find the following critical points:

f1,2 :
(

0, 0,±
√−24 +24z−z2

2
√

6
, z, 0

)
ωeff = 1 − 2z

3
,

f3 :
(

65

27
, 0, 0,−4

3
, 0

)
ωeff = 4

9
,
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f4 :
(

391

216
, 0,−

√
3

4
,−5

6
, 0

)
ωeff = 5

18
,

f5 : (0, 1, 0, 0, 0) ωeff = 1

3
,

f6 :
(

0,
81

100
,

−1

2
√

3
,

1

5
, 0

)
ωeff = 4

15
,

f7 :
(

0, 0, 2,− 5√
3
, 0

)
ωeff = −19

3
,

f8,9 :
(

0, 0,±
√

5

6
, 2, 0

)
ωeff = −1

3
,

f10,11 :
(

0, 0,±
√

13

8
, 3, 0

)
ωeff = −1,

f12 :
(

0, 0, 0,−4

3
,±

√
65

27

)
ωeff = −1,

f13,14 :
(

0, 0,
−11

7
√

3
,
−2

7
,±2

7

√
46

3

)
ωeff = −1.

In the following we shall study the stability of the above men-
tioned fixed points and discuss their physical interpretation.
We emphasize again that we are checking the possibility that
if MOG can be a cosmologically viable theory.

The cases f1,2 indicate two different curves in the phase
space. Every point on these curves is a fixed point and the
relevant eigenvalues are the same as lines p1,2 in the previous
section. On the other hand, f3 is similar to the GMD phase
(where the matter and the scalar field G dominate the evolu-
tion i.e. p3) introduced in the previous section. However, it
is interesting that unlike the p3 point, f3 is an unstable fixed
point. In other words, existence of the cosmological constant
change the character of this fixed point. Eigenvalues of the
stability matrix are (− 13

6 ,− 13
6 , 13

6 ,−1,− 1
3 ) and the cosmic

scale factor grows as a(t) ∝ t6/13 and for the other fields
we have G(t) ∝ t−8/13, μ is constant and φ0 ∝ t−18/13. We
again are confronted with the question: does this point cor-
respond to a suitable matter-dominated era? If not, then this
fact puts serious doubt on the cosmological validity of this
model even if it passes the local experiments and addresses
the dark matter problem on a galactic scale.

– f4: GμMD era
This point is similar to GμMD point p4. The eigen-
values are (−3.37,− 23

12 , 23
12 , 1.45,−1). Therefore f4 is

an unstable critical point. Furthermore, the scale factor
grows as a(t) ∝ t12/23 and for other functions we have
μ(t) ∝ t−18/23, φ0 is constant and G(t) ∝ t−10/23. It is
interesting that there are two possible matter-dominated
phases in MOG, i.e. f3 and f4. The expansion rate in
f4 is slightly faster than f3 but still slower than the stan-
dard matter-dominated case. We emphasize that this point

is the main result of the current paper. The behavior of
MOG in the matter-dominated era is crucial because this
theory is an alternative theory for dark matter particles.
Therefore, it should possesses an appropriate matter era
in which structure formation happens without any need
to cold dark matter particles.

As we mentioned before, this fact may put a serious
doubt on the viability of this model. In fact a slower
expansion rate, in principle, changes the duration of
the matter-dominated phase. Consequently, there may
be some impact on the cosmic microwave background
(CMB) observations, for example on the angular size of
the sound horizon. On the other hand, the strength of the
gravitational force is different in MOG from the standard
case. Therefore the growth rate of matter perturbations
will be different from that of the �CDM model. So obser-
vational data of galaxy clustering may help to distinguish
the consequences of MOG. To summarize, existence of
a non-standard expansion rate in the matter dominated
epoch put a serious constraint on the viability of MOG but
does not necessarily rule out MOG. One need to explore
the cosmic structure formation in the context of MOG and
carefully check the impacts of this theory on the CMB
observations, in order to make a reliable decision about
the viability of the theory [38].

– f5: Radiation-dominated era
This point is a standard unstable radiation-dominated era
for which ωeff = 1

3 . Also the relevant eigenvalues are:
(2,−1,−1, 1, 0). We recall that even in the absence of �

there was an unstable radiation-dominated era p5. These
points, namely p5 and f5, are the only eras at which the
scalar fields are constant. It is worthy to mention that at
these epochs the vector field varies rapidly with time, as
φ0 ∝ t−2, since it is directly coupled to the radiation
density. However, after this phase the “running” of the
scalar fields starts and eventually they dominate the evo-
lution. Note that f6 shows the same behavior as p6, i.e. an
unstable GμRD era which is slightly different from the
standard radiation era since ωeff = 4

15 . One can choose
the initial condition in a way that the starting point of the
evolution of the universe is either f5 or f6.

– f7: Strongly phantom attractor
In this case eigenvalues are (−18,−17,−9,−9,−8).
Therefore, f7 is a stable critical point. This point is
exactly similar to p7 presented in the previous section.
Thus all our analysis for p7 are also true for f7. We just
mention that f7 is different from a standard phantom
crossing era and it cannot be considered as an accept-
able late time solution, because of the strongly phantom
crossing behavior. The initial conditions will specify the
final fate of the system, i.e. f12 or f7. It is interesting
that MOG provides two kinds of late time accelerated
expansions: de Sitter or a strongly phantom solution.
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Furthermore, f8,9 are the same as the unacceler-
ated solutions p8,9. In this case the eigenvalues are
(−2 ∓ 2

√
10, 1, 1, 0, 0), respectively, which show that

f8,9 are unstable points. For these solutions the scale
factor uniformly increases with time. Our analysis in the
previous section for p8,9 is also true for these solutions.
Also f10,11 with eigenvalues (−3∓√

78,−1, 0, 0, 0) are
similar to p10,11. It is clear that f11 is unstable and f10

is a non-hyperbolic fixed point. We tried to check the
stability of f10 using the center manifold theory as we
did for p10. However, unlike p10, we realized that even
the center manifold theorem does not reveal the char-
acter of these points. Therefore one needs to use more
advanced methods such as the normal form theory. On the
other hand we are considering a five-dimensional mani-
fold and these methods become very complicated and are
out of the scope of this paper. Thus we have to rely on our
phase-space trajectories to decide about the stability of
this point. We see in Fig. 5 that f10 appears as an unsta-
ble critical point. This is also consistent with the result
that we have already obtained for p10. Note that f8,9 and
f10,11 are special cases of the lines f1,2 with z = 2 and
z = 3, respectively.

– f12: de Sitter-like attractor
This point corresponds to the stable dark energy-domin-
ated universe where the dynamics is dominated with the
cosmological constant and the scalar fieldG. Eigenvalues
are (− 16

3 ,− 14
3 ,− 13

3 ,− 13
3 ,− 13

3 ) and the cosmic scale
factor grows exponentially. Also this point corresponds
to the exact solution G(t) ∝ e−4t/3 and μ = constant. We
recall that in the absence of the cosmological constant
there is no stable dark energy-dominated era with ωeff =
−1.

– f13,14: Gμ� era
These points correspond to an epoch at which the scalar
fields together with the cosmological constant dominates
the evolution and the ordinary matter and radiation energy
densities are zero. The cosmic scale factor grows expo-
nentially and for other functions we have G(t) ∝ e−2t/7

and μ(t) ∝ e−22t/7. Also the relevant eigenvalues are
(−6.03,− 30

7 ,− 23
7 ,− 23

7 , 2.74), which clearly show that
these points are unstable. Obviously these points cannot
be considered as early time unstable fixed points (i.e.
points which can show an inflationary period). The con-
tribution of the cosmological constant is comparable to
the other components while we know that � does not
play an important role in the early universe. Also one
may expect for a very early time unstable fixed point all
the eigenvalues should be positive. It is also clear in Fig.
5 that f14 is neither a late time fixed point nor an early
time one.

A true cosmological path could start from an unsta-
ble radiation-dominated epoch, f5 or f6 (which differs
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Fig. 3 The evolution of �i for two set of initial conditions. The initial
conditions for the solid lines are: �M = 10−4, �R = 0.999, �x =
10−30, �G ≈ 0.99 × 10−4 and �μ = −10−8 at z = 3.43 × 107.
One can see a true sequence of the cosmological epochs for this choice
of initial conditions. The initial conditions for dashed lines are �M =
2.62716 × 10−4, �R = 0.98, �x = 10−30, �G ≈ −0.086 and �μ =
−0.0289 at z ≈ 107. Solid lines reaches the de Sitter-like attractor f12
through the f3 while dashed lines end at the strongly phantom attractor
f7 passing f4. A common feature in the dynamics of these different
initial conditions is that the scalar fields remain constant during the
early stages of the universe

slightly from the standard radiation-dominated epoch),
continue toward an unstable matter-dominated epoch,
f3 or f4 and finish in a stable dark energy-dominated
point, f12. Note that strongly phantom attractor, f7 is not
acceptable as a standard late time solution. It is clear form
Fig. 5 that for specific initial conditions the phase tra-
jectory of the system passes through unaccelerated eras
f8 and f10. However, this trajectory is not acceptable
because it does not realize the matter-dominated points.
Also we have plotted the behavior of ωDE and ωeff in Fig.
4. It is important to mention that although ωeff remains
always greater than −1, ωDE becomes smaller than −1
about present time. In other words, MOG can provide
slightly phantom solutions at present time.

Let us summarize the main results of this section. We
explicitly showed that MOG possesses true cosmological
sequence of the cosmological epochs. In fact there is a
standard radiation-dominated point f5. Also there are two
unstable matter-dominated phases which are not standard
in the sense that the cosmic scale factor grows slowly than
the standard case. On the other hand there are stable late
time solutions f12.

4 Phase-space analysis at infinity

It is important to stress that from Eq. (12) one may straight-
forwardly conclude that H , in principle, can become zero.
In such a moment, our dynamical variables become infinite.
Therefore it seems necessary to check this possibility. In other
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Fig. 4 The evolution of ωDE and ωeff. The initial conditions are the
same as for Fig. 3 for solid lines. The phantom crossing behavior is
clear
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Fig. 5 The phase space of the system in poincaré coordinate. The
dashed (red) line shows a cosmological path that starts from radiation-
dominated epoch f5, passing through matter-dominated epoch f3 and
ends at the stable de Sitter-like attractor f12. The dotted blue line shows
a cosmological evolution starting from radiation-dominated f5 pass-
ing through q4 and reaches f7. The long-dashed line shows that uni-
verse starting from radiation-dominated f6 and passing through unsta-
ble points f7,14 and f8, f10, toward unstable era f13 and ends at a late
time attractor f12. The green solid line also starts from f6, passing
through q7 and q3, and ends at strongly phantom f7. Note that there are
unstable fixed points at infinity, q3,4, and q7,9

words, we have to check the fixed points lying in the infin-
ity of the dynamical system. As we shall show, such a study
will ensure us that there is nothing special, such as a regu-
lar bounce, at the moment when the expansion rate of the
universe become zero. We know that even if we find some
fixed points in the infinity, it does not mean that a true cosmo-
logical trajectory will realize that points. However, finding
these points and analyzing their stability will provide a better
understanding for the general behavior of the system. This
section is devoted to an exploration of this issue. We show that
there are unstable fixed points in the infinity of this model.

We know that the phase space defined with the dynamical
variables (21) is not closed. In other words, our variables
can take infinite values. In order to check the behavior of the
system at infinity, we introduce new Poincaré coordinates
xr , yr , rr , zr , and mr , as follows:

x = xr√
1 − R2

r

, y = yr√
1 − R2

r

, z = zr√
1 − R2

r

,

r = rr√
1 − R2

r

, m = mr√
1 − R2

r

, (33)

where Rr = √
m2

r + r2
r + x2

r + y2
r + z2

r . Therefore for
points at infinity we have Rr = 1. In the following, after
rewriting the autonomous Eqs. (23)–(27) in the new coordi-
nates and defining a new “time” λ as dx/dλ = (1 − R2

r )x
′,

we have taken the limit Rr → 1. Finally the autonomous
equations at infinity take the following forms:

dyr
dλ

= 1

20
yr (40

√
3mr (yr + zr + rr )(x

2
r + y2

r + z2
r + r2

r − 1)

+m2
r (4(12x2

r + 9y2
r + 4r2

r − 9) − 24(3yr + 2rr )zr − 71z2
r )

+ 40
√

3m3
r (yr + zr + rr )−z2

r (23x2
r +58y2

r + 78r2
r −58)

−24(3yr + 2rr )zr (x
2
r + y2

r + r2
r − 1) + 4(r2

r (13x2
r + y2

r − 1)

+ 3(6x2
r (y2

r −1)+4x4
r +y4

r −2y2
r +1) − 2r4

r )

− 24(3yr + 2rr )z
3
r − 71z4

r ),

1

zr

dzr
dλ

= 1

yr

dyr
dλ

+ 6(3yr +2rr )(m2
r +x2

r +y2
r +r2

r −1)

5zr

+ 3

5
(9m2

r + 8x2
r + 7y2

r +7r2
r −7)+ 6

5
(3yr +2rr )zr + 1

4
17z2

r ,

1

mr

dmr

dλ
= 1

yr

dyr
dλ

+ mr (48x2
r +36y2

r +37z2
r +36r2

r −36)

20mr

− (yr +zr +rr )(−60m3
r +40

√
3(m2

r +x2
r +y2

r +z2
r +r2

r −1))

20mr
,

1

rr

drr
dλ

= 1

yr

dyr
dλ

+ m2
r + x2

r + y2
r + z2

r + r2
r − 1,

1

xr

dxr
dλ

= 1

yr

dyr
dλ

− 3

5

(
x2
r + 2y2

r + 2r2
r − 2

) − 23z2
r

20
.

Setting to zero the right hand side of these equations and
keeping in mind that fixed points at infinity are constrained
as m2

r + r2
r + x2

r + y2
r + z2

r = 1, we find the critical points
(yr , rr ,mr , zr , xr ):

q1 = (1, 0, 0, 0, 0),

q2 = (0, 1, 0, 0, 0),

q3,4 = (0, 0, 0,±1, 0),

q5,6 = (0, 0, 0, 0,±1),

q(7−10) =
(

0, 0,±5

√
2

57
,±

√
7

57
, 0

)
.

(34)

Note that concerning the constraint (22), the only accepted
fixed points are q3,4 for which zr = −1 and q7–q10. In fact
one may rewrite the constraint (22) as

(yr + rr + zr )
√

1 + R2

+(x2
r − m2

r − z2
r /24)(1 + R2) ≤ 1, (35)

where R = √
m2 + r2 + x2 + y2 + z2. In order to check the

existence of points q1-q10 we divide the inequality (35) by
(1 + R2), and take the limit of R → ∞. In this case we have
(
x2
r − m2

r − z2
r

24

)
≤ 0. (36)

Also if xr = mr = zr = 0 (namely for q1 and q2), one may
divide (35) by

√
1 + R2 and take the limit of R → ∞. In
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this case we find

(yr + rr ) ≤ 0. (37)

Therefore our fixed points should satisfy the relevant con-
straint. Now it is straightforward to verify that the only
allowed fixed points at infinity are q3,4 and q7–q10. The cor-
responding eigenvalues of the stability matrix constructed
from Eq. (34) for q3,4 and q7–q10 are ( 1

10 ,− 1
20 ,− 1

20 , 0, 0)

and ( 1207
570 ,− 1207

1140 ,− 1207
1140 , 0, 0), respectively. Note that due

to the symmetry of the equations, the eigenvalues of stability
matrix for q7 to q10 are the same. This means that accepted
fixed points are unstable critical points.

One may provide a simple interpretation for these points.
In fact they are “middle” time, and not an early or late time
point, where the scalar fields G and μ dominate the evolution
and the expansion rate becomes zero for a moment. In other
words if q3,4 or q7–q10 were stable points, then the universe
could enter a static phase and stay there forever. In Fig. 5
we have shown two different trajectories which realize this
point. More specifically the blue dotted curve starts from the
radiation dominated point f5 and after passing the infinity
fixed points q9 and q4, falls into the late time point f7. The
green solid line shows another path which starts from GμRD
point, f6, passes the unstable infinity fixed points q7 and q3,
and eventually reaches the strongly phantom stable point f7.

5 Conclusion

In this paper we have considered the cosmological behavior
and consequences of a scalar-vector-tensor theory of grav-
ity, known as MOG in the literature. Although this theory is
known as an alternative theory for dark matter particles, we
have investigated its viability as a dark energy model using
the so-called dynamical system method. In fact, we checked
the possibility that the extra fields of MOG can play the role
of dark energy. We first derived the autonomous equations
of the relevant dynamical system, i.e. Eqs. (23)–(27), and we
found the corresponding fixed points in two different cases:
� = 0 and � �= 0.

In Sect. 3.1, we showed that in the absence of �, there
is not a standard late time epoch. More specifically, the evo-
lution starts from the unstable radiation-dominated epoch
p5, then reaches the unstable matter-dominated epoch p4

and eventually ends at the stable late time strongly phantom
attractor p7, which is not physically acceptable. It is worth
mentioning that depending on initial conditions, the uni-
verse could enter the stable GMD era (p3). Obviously such
an initial condition leads to a wrong cosmological behav-
ior. Although p5 is a standard radiation-dominated era, the
matter-dominated epoch p4 and the late time attractor p7

are not standard. In fact, in p4 the scale factor grows as

a(t) ∝ t
12
23 , that is, slower than the standard case in which

a(t) ∝ t
2
3 . On the other hand, for the late time attractor p7,

ωeff is − 19
3 , which is not a standard late time solution. It

shows that in the absence of �, one cannot recover standard
cosmological epochs in MOG.

In Sect. 3.2, we investigate the original form of the theory,
i.e. with nonzero �. It is noteworthy that in this theory the
cosmological constant � can be considered as the mass of
scalar field G (or equivalently χ ); see Eq. (1). Also note that
there are two coupling constants ω0 and κ in this theory.
Surprisingly these parameters do not appear in our phase-
space analysis. In other words, our fixed points are numbers
and there is no free parameter to be constrained. In this sense
MOG behaves like the �CDM model where the fixed points
do not include any free parameter.

The first effect of the nonzero cosmological constant
is to change the character of the stable matter-dominated
phase p3 (or equivalently f3). In other words, two matter-
dominated epochs of MOG, namely f3 and f4, are now
unstable as expected. Interestingly, there are also two early
time radiation-dominated f5 and f6 and also two late time
attractors f4 and f7. In fact, depending on the initial con-
ditions, universe could start from standard radiation era f5
or GμRD epoch, f6, which is slightly different from the
standard radiation-dominated era, continues toward matter-
dominated epochs f3 or f4 and end at the strongly phan-
tom, non-physical, attractor f7 or the standard stable de Sit-
ter epoch f4. Also, the phantom crossing behavior in MOG
is clearly seen, as shown in Fig. 4. As we already men-
tioned, a true cosmological path could start from a standard
radiation-dominated epoch f5, continue toward one of the
unstable matter-dominated GMD ( f3) or GμMD ( f4), and
finally reach the stable late time solution f4 as shown in
Fig. 3.

Furthermore, there is a new feature in the cosmology of
MOG that is absent in the standard model. In fact there are
unstable eras p8,9 (or equivalently f8,9) in which the universe
expands uniformly. In these eras the extra fields, on large
scales, behave like an effective repulsive “force” and cancel
out the attractive nature of the gravitation, and consequently
cosmic acceleration vanishes (Figs. 1, 4).

As a final remark, we emphasize that there is no standard
matter dominated phase in the model of MOG studied in
this paper. In fact with or without cosmological constant the
scale factor grows as a(t) ∼ t0.5 instead of the conventional
t2/3. In principle, this may lead to inconsistencies with CMB
and large scale structure formation observations. Therefore,
it seems necessary to investigate this issue with more care-
ful consideration. We leave this issue for future study. It is
important to mention that even if the above mentioned obser-
vations rule out the original form of MOG, one may find
some special models of MOG (with different self-interaction
potentials) which can pass the observations.
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AppendixA: Stability of p10 using centermanifold theory

The stability of a hyperbolic point x0 of the non-linear sys-
tem ẋ = f (x) can be determined by the behavior of the linear
system ẋ = Ax , where A = Df(x0) and D denotes differen-
tiation with respect to x. On the other hand, the stability of
a non-hyperbolic point can be determined by recognizing
the behavior of the center manifold near that point [26]. In
other words, since zero eigenvalues reveal no information as
regards the qualitative and stability behavior of the system,
one should find a way to get information as regards this part
of the system.

Considering the phase space of MOG, we find the non-
hyperbolic fixed point p9. For the sake of simplicity, we
change the coordinate in a way that p9 lies at the origin. More
specifically, the simple change of coordinates as z → z + 3

and m → m +
√

13
8 would transfer p9 to the origin. In this

case the transformed autonomous equations are

y′ = −1

5
12m2y− 6

5

√
26my+ 2r y

5
+ 3y2

5
− yz2

10
+ 4yz

5
,

r ′ = − 1

5
12m2r− 6

5

√
26mr+ 2r2

5
+ 3r y

5
− r z2

10
+ 4r z

5
−r,

z′ = −6m2z

5
− 6m2

5
− 3

5

√
26mz − 3

√
26m

5
+ r z

5

− 9r

5
+ 3yz

10
− 27y

10
− z3

20
+ 17z2

20
+ 9z

10
,

m′ = − 6m3

5
−2

√
3m2− 9

5

√
13

2
m2+mr

5
+ 3my

10
−mz2

20

+ 9mz

10
−√

78m− 39m

10
+2

√
3r+ 1

10

√
13

2
r+2

√
3y

+ 3

20

√
13

2
y− 1

40

√
13

2
z2− z2

4
√

3
+ 3

√
3z

2
+ 9

20

√
13

2
z.

(38)

In order to apply center manifold theory, one also should
build a box diagonal matrix of linear coefficient of the equa-
tions. This means that the system of equations should be
separated into two distinct parts; the equations which have

negative eigenvalues and those with zero eigenvalues in the
stability matrix. Performing this separation for complicated
systems, like the equations we are considering, one has to
apply the Jordan transformation to the system of equations.
For this case, it can be applied using the following transfor-
mation:

z → 80

27

√
2

13
m+

√
72

13
r+ 2

161

√
6
(
239−20

√
78

)
y+

√
104z

3
,

r → 2

√
2

13
r, m → r+y+z, y → 1

9
(−20)

√
2

13
m. (39)

The resulting equations in complete form are too long to be
written here, although the calculations are straightforward.
Nevertheless, let us write some terms:

y′ = (−3 − √
78)y + O(y2 + yr + ··),

r ′ = −r + O(r2 + r y + ··), (40)

z′ = m + O(z2 + zm + ··),
m′ = −

√
26

3
mz − 10

√
2

13
mr + · · · .

Now, the general form of the equations, for zero and negative
eigenvalues, are in matrix form

X ′ = CX + F(X,Y),

Y ′ = PY + K(X,Y).

C , in our case, is a 2 × 2 matrix which contains the linear
coefficients of equations with zero eigenvalues and P has the
same role for equations with negative real parts of eigenval-
ues. F and K are 2 × 1 matrices that denote the rest terms of
equations which does not included in C and P , respectively.
In fact, using the Jordan decomposition, one can separate the
linear and non-linear parts of equations. Here, investigating
the linear part of transformed equations, one can easily see
that y and r have negative eigenvalues, while z and m have
zero eigenvalues in the stability matrix. In order to clarify the
behavior of zero components of the system using the center
manifold theory, we expand the negative components with
respect to zero ones as y = az2 + bmz + cm2 + · · · and
r = dz2 + emz + f m2 + · · · ; see [26] for more details.
Following the relevant theorems, one finds that there exists
a two-dimensional invariant center manifold for which(
y
r

)
=

(
h1

h2

)
,

where functions h1,2 = h1,2(z,m) satisfy the following
equality:

Dh[C( zm) + F] − Ph − K = 0,

or equivalently in the matrix form

D

(
h1

h2

)[(
c1 c2

c3 c4

)(
z
m

)
+

(
f1
f2

)]
=

(
p1 p2

p3 p4

)(
h1

h2

)
+

(
k1

k2

)
.
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Fig. 6 The phase-space plot of center manifold of point p10. Instability
of the center is clearly seen

Note that, in this matrix equation, D denotes differentiating
with respect to z and m (components with zero eigenvalues
in the Jordan form) and so Dh(z,m) is a 2×2 matrix. Noting
Eq. (40), one finds that(
c1 c2

c3 c4

)
=

(
0 1
0 0

) (
p1 p2

p3 p4

)
=

(−3 − √
78 0

0 −1

)
.

Here F = F(z,m, h(z,m)) and K = K (z,m, h(z,m)).
Solving this matrix equation, one finds the expansion coeffi-
cient, a, b, . . . and the behavior of center manifold using the
following equation:

X ′ = CX + F(X, h(X)).

As already mentioned, X stands for the zero components. It
is noteworthy that in the expansion of y and r with respect
to z and m, we look for the first nonzero coefficient, which
will determine the behavior of the center manifold. Using
this method for p10, one finds

m′ ≈ 1.63228m2z2 + 1.17611m2z
+ 0.406759m2 − 5.08273mz2 − 3.39935mz,

z′ ≈ −0.342063m2z2 − 0.357055m2z
+0.138952m2 + 1.49451mz2 + 2.03504mz + m.

Using these equations, in Fig. 6, we have plotted a two-
dimensional phase space in the z–m plane. One may straight-
forwardly conclude that the origin, p10, represents an unsta-
ble critical point.
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