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Abstract

Support Vector Machine which is invented by Vapnik and Cortes in 1995, belongs to the statistical
learning theory. Its application, has been tremendously increased over the years due to its prominent the-
oretical properties. The basic idea behind the support vector machine is to find the optimal hyper plane
for linearly separable data. However the patterns that are not linearly separable can be transformed from
original space into new space by means of the famous kernel function such as linear, polynomial, rbf and
etc.. The presence of outlying observation can adversely affect the performance of support vector machine
and will lead to the subsidence of its accuracy. In this paper, we provide a graphical depiction of data by
using the high breakdown robust measure, namely the Mahalanobis distance based on the re-weighted
minimum covariance determinant estimator. The so called method, “outlier map” is very popular in the
multivariate robust statistics. It can be used to depict the structure of the data with any dimension.
Using data from both simulation and real world studies, illustrated that the outlier map based on the

robust Mahalanobis distance is the ability to recognise the outlying and misclassified samples in the data.

Keywords: Support Vector Machine, Outliers, Robust statistics, Mahalanobis Distance, re-weighted
Minimum Covariance Determinant estimator
Mathematics Subject Classification (2010): MSC[2010] 62H30; 68T05; 62P10.

1 Introduction

In last few years there has been intense interest in Support Vector Machine (SVM), due to its high
generalization capability used in many applications of data mining, engineering, and bioinformatics.
SVM owes its reputation to its high classification accuracy, easiness of geometrically interpretation and
very strong fundamental theory. Although, SVM try to find among different hyperplane candidate by
maximization the margin, but in the presence of misclassified instance, it can not be able to find the
optimal solution. In order to rectify this problem, soft margin that allows instances to fall within the
margin and even on the wrong side of the separating hyperplane, has been invented (Cortes and Vapnik
(1995)). The misclassified instances and the points inside the margin will be penalized through variable
&.

Nevertheless, very few real world practical problems are linearly separable and thus no hyperplane found
to separate the examples of two classes. To solve this issue, one can map the data from original space

to a higher dimensional space namely feature space, and find separating hyperplane in the new space.

*Speaker: Manda.mohammadi@stu.um.ac.ir
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Where the mapping function can be defined as ®(). So, the other prominent property of SVM for the
non-linearity separable data set is its compatibility with kernel function (K(xi,x;) = ¢ (x:)d(x;)).
Thus, the training of an SVM consists of the following minimization problem:

' 1 - n .
min 5 [|w| +C§£a (1)

subject to,
yilwx; —b)>1-& 1<i<n (2)

Where w represents the hyperplane normal vector and b is the bias term. &s are slack variables which
allow for penalized constraint violation. C is the parameter controlling the trade-off between a large
margin and less constrained violation.
However, the training data may polluted by the existence of some atypical observation and affect SVM
models. In many applications, outlier detection as well as outlier removal is a first step in the statistical
analysis process. One conventional way of recognising multivariate outliers in a multivariate normal
dataset is the computation of Mahalanobis distance. The estimates of the location and scatter are
utilized in the calculation of this distance to identify the far observations form the bulk of the data.
Due to extremely sensitivity of the classical estimators to the presence of outliers in the data, the robust
estimators of the multivariate location vector and scatter matrix should be used.
To remedy the aforementioned problem, based the idea of outlier map of Debruyne (2009), we used a
robust version of Mahalanobis distance in the support vector machine problem. The outlier map is one
of the common visual methods for the outliers identification in multivariate robust statistics [Rousseeuw
and Van Zomeren (1990), Hubert and Engelen (2004) and Hubert, Rousseeuw and Vanden Branden
(2005)]. We provide a graphical depiction of data which takes advantage of the robust Mahalanobis
distance based on Minimum Covariance Determinant estimator (MCD). In Section 4, the application of
outlier map on simulated and real data is considered.
The organization of the paper is as follows. Next section, contains description of the MCD and re-
weighted version of this estimator. The algorithmic schemes of robust SVM classifier is described in 3.
Detailed structure of simulated and real data is given in 4. In this Section, we apply our methods to a
simple but illustrative toy-example and real data, then the experiment results are presented. Finally, we
conclude the paper in 5.

2 The Minimum Covariance Determinant estimator

Omne of the first affine equivariant and highly robust estimators of multivariate location and scatter is
the minimum covariance determinant estimator of Rousseeuw (1985). The property of resistivity to the
outlying points, makes the MCD as a very handy tool in the robust statistics community.

Given a dataset with n p-dimensional observations, The MCD’s goal is to find subset of size h (where
5 < h < n) out of n which has the smallest covariance determinant.

Hy = argmin det(cov(x;|i € H)) (3)
H

To illustration propose, the artificial dataset generated by Hawkins, Bradu, and Kass (Hawkins,Bradu and
Kass (1984)) has been considered. The data set consists of 75 observations. The first 14 observations are
outliers, created in two groups: 1-10 and 11-14. The classical methods can only detect the observations
12, 13 and 14, but by using MCD, this observation can be easily unmasked. A scatter plot of the data
is shown in Figure 1, together with the classical and the robust 97.5% tolerance ellipse.

The classical tolerance ellipse is defined as the set of p-dimensional points x whose Mahalanobis distance

MD(2) = \/(xi —%)'S™ (xi = %) = /X2 p.075- (4)
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Figure 1: Bivariate Hawkins, Bradu, and Kass (hbk) data with classical and robust Mahalanaobis distanse

(left panel) and tolerance ellipse (right panel).

The Mahalanobis distance M D(x;) should tell us how far away x; is from the center of the cloud, relative
to the size of the cloud. Here is X the sample mean and S the sample covariance matrix. It can be seen
from Figure 1, this tolerance ellipse tries to cover all observations. As a result, only one observation can
be consider as as mild outliers. On the other hand, the robust tolerance ellipse based on the MCD, is
much smaller and does not include the outlying points. As can be seen from Figure 1, the outlying points
are putting aside and consequently, the standards estimates of location and covariance can be computed
based on the pure subset of observations, h.

The MCD estimator of location Xarep = §+ Y. @i, is the average of the aforementioned subset and MCD
estimator of the scale is the covariance ma;.f'ii:(nof the subset times a factor which is the multiplication
of the consistency and finite sample correction. According to Lopuhaa and Rousseeuw (1991) when
|h = 2#EEL |, the MCD has its highest breakdown point.

The MCD estimator can be computed in a reasonable time using the FAST-MCD algorithm of Rousseeuw
and Driessen (1999); however, they are statistically not efficient. In order to carry robustness and
efficiency, the re-weighted procedure is proposed. This procedure consists of omitting the observations
with Mahalanobis distances which exceed a certain cut off value.

The re-weighted version of MCD estimation of mean vector is

Doiy WiXi

Xpuep = 51—, (5)
i Wi
and covariance matrix
S wi(xi — Xrmen)(Xi — Xrmep)
o wilx; — Xpmep) (X — Xrmep .
SrMeD = Cnp*dyp =l T - (6)
=1 %

where ¢y, , is used to make Srarep consistent under the multivariate normal distribution and d7'} is the
finite sample correction factor (see Croux and Haesbroeck (1999) and Pison, Van Aelst and Willems

(2002) )).
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The weights are defined as indicator function based on the robust Mahalanobis distance as follows

1 RD; < 4y
Wi = (7)
0 Otherwise
where
RD; = Z(x,' - iﬂ'f("n)’si‘(lcptxi — XMneD) (8)
i=1

and g, (n = 0.975 (Rousseeuw and Driessen (1999))) is the quantile of the chi-square distribution with
p degrees of freedom. To ease of readability, the re—weighted version of MCD abbreviated as RMCD.

3 Robust SVM classifier

In this section, the construction of robust SVM through the so—called robust method is presented. As
mentioned in the previous sections, a criteria for outlier recognition is robust Mahalanobis distance based
on the RMCD. The computation of robust SVM is feasible in the kernel space according to Debruyne
(Debruyne (2009)). The so called SVM based on the RMCD, abbreviated as RMCD-SVM and can be
computed as follows. Consider the problem of binary classification, the training data are given as

(X1, 91 ). (X2.92)s .oy (Xn, yn), where x; € R and y; € {—1,+1}, (9)

and let K be a kernel function. In the binary classification problem, the negative label class can be
shown by y = —1 and the positive label class by the y = +1. The observations in the positive class is
presented by ny and negative class by n_.

The observation with large value of robust Mahalanobis distance must be omitted. The clean portion of
the data can be classified by conducting the traditional SVM. The robust SVM algorithm outline for the
RMCD-SVM is described as follows;

Outlier pruning: For the observation of the positive and negative class, compute one of the robust

outlyingness measure. Retain only the 50% of observations with lowest amount of outlyingness.

Training: Once the outliers are pruned,the traditional SVM is used to classify the remained portion
of the data which is illustrated by T = T_ U T,.

Model selection: Optimize the kernel parameter v and SVM penalty parameter C, over the range
{107%,107"'} and {107", 10} respectively, by 10 fold cross validation. Grid search is used for opti-

mization of the parameters.

The scatter plot of the RMCD Mahalanobis distance versus the amount classifying function is plotted.
The vertical line, which crossing from zero, is drawn. Plot the samples of two classes by different symbol
(positive class is specified by the circles and negative class by the cross).

4 Experiment and Analysis

In this section some artificial and numerical data have been used to check the performance of the outlier
map. Due to visualization problem, the case of a two-dimensional input space, i.e. x; € R? is considered.

4.1 Experiment with simulated dataset

To verify the performance of RMCD-SVM, 50 observation is generated from bivariate normal distribution
for each class, with gy = 0, p2 = —3.5 and standard deviation equal to one, where uy and po are the
mean of positive and negative class, respectively. Different simulation scheme has been considered, to

check the performance of outlier map.
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The clean data, in which all of the observation are from the same distribution and there is not any atypical
point in the data. Contaminated data, refer to existence of some outlier in the data, for example, the
distribution of 20% of data are different form the original data. The remaining scheme devoted to the
misclassified and mixture of contaminated and misclassified data. The structure of simulation is given
in the Table 1.

Table 1: Different scenario for simulation study
Class 1 Class IT
Case Tot. No. Obs. Label Mean Total Label Mean Total

I 153 50 - - -

Clean 100 = = 2 II JIT 50
I 1y 45 I Iy 3

Misclassified 100 I7 J75, ] I7 Mrr 47
I [r 45 17 1y 3

Contaminated 100 ¥ 7% 5 L 1y 47
I 173, 42 I i1 3

Misclassified—Contaminated 100 I iy 4 11 53, 42
11 1 4 11 iy 5

The first part of the results devoted to the RMCD-SVM algorithm, using the artificial dataset. Two
dimensional graph of the binary SVM classification is illustrated with the so called RMCD outlier map
in the Figure 2-5.

SVM Binary Classification Outlier map for the clean data
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Figure 2: The plot of SVM binary classification (left panel) and the Mahalanobis distance based on the the
RMCD versus the value of the classifier for the clean (right panel) data. The dotted line is the is the 97.5%
quantile of the chi-square distribution with p degrees of freedom.

As can be seen from Figure 2, the homogeneity of the clean data is shown in right panel of Figure 2,
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which show neither the misclassified nor the outliers. There are two risky data points, which are classified
correctly, but they are very near to the boundary line, as can be seen from RMCD outlier map as well.
The observations which have been placed further form the center of the data, are shown in both of the

graphs.
SVM Binary Classification Qutlier map for the misclassified data
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Figure 3: The plot of SVM binary classification (left panel) and the Mahalanobis distance based on the the

RMCD versus the value of the classifier for the misclassified (right panel) data. The dotted line is the is the

97.5% quantile of the chi-square distribution with p degrees of freedom.

In Figure 3, the misclassified problem is presented. Likewise the previous example, the problematic
observations are tagged in each class. The RMCD outlier map can detect respectively 5 and 3 misclassified
observations form negative and positive class. The number of detected misclassified observations exactly
coincide the number of generated misclassified data. Moreover observations 6 and 18 are detected as
outliers. As is clear from the left panel of Figure 3, the mentioned observations are at the larger distance
from the centre. Three observation are located very near to the the boundary line and observation 38 is
placed on the boundary line, which also can be seen in the outlier map of Figure 3. Figure 4 depict the
presence of outlying points in the data. This observations are clearly far from the bulk of the data, stated
in the down left and up right corner of the left panel of Figure 4. The mentioned points can be detected
by the outlier map. Observation 44 and 3 are very near to the boundary, which is presented by outlier
map as well. The observation 8 from the negative class and 89 and 94 from the second positive class are
further from the center of the data, that is showed by their large amount of robust Mahalanobis distance.
From Figure 5, it appears that, the outlier map using robust Mahalanobis distance, has the ability of
detection of a more sever case, which contained the misclassified and outlying points simultaneously.

4.2 Experiment with Real Dataset

The performance of the suggested techniques is assessed through a real dataset. The famous Iris (two class
only) data has been used. The Iris data set contains 3 classes of 50 instances each (Setosa, Versicolour
and Virginica) , where each class refers to a type of iris plant. In this paper, we only consider two classes
whose labels are Versicolour and Virginica. The data set contains measurements of four variables - sepal

length and width and petal length and width.
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SVM Binary Classification Outlier map for the contaminated data
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Figure 4: The plot of SVM binary classification (left panel) and the Mahalanobis distance based on the the
RMCD versus the value of the classifier for the contaminated (right panel) data. The dotted line is the is
the 97.5% quantile of the chi-square distribution with p degrees of freedom.

SVM Binary Classification Outlier map for the misclassified contaminated data
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Figure 5: The plot of SVM binary classification (left panel) and the Mahalanobis distance based on the the
RMCD versus the value of the classifier for the misclassified-contaminated (right panel) data. The dotted
line is the is the 97.5% quantile of the chi-square distribution with p degrees of freedom.
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The outlier map of Iris data
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Figure 6: The plot of the Mahalanobis distance based on the RMCD versus the value of the classifier for
the two class Iris dataset. The dotted line is the is the 97.5% quantile of the chi-square distribution with p
degrees of freedom.

From the Figure 6, there is one outliers which is the misclassified observation as well in the Versicolour
class and 8 outliers in the Virginica class.

5 Conclusion

The presence of outlier can adversely affect the performance of support vector machine. In order to
rectify this problem robust methods have been utilized. In this paper a new robust SVM algorithm
has been introduced. The high breakdown robust methods namely Mahalanobis distance based on the
re-weighted minimum covariance determinant is used in this paper. The performance of the proposed
robust SVM algorithm has been assessed by artificial and real data set. With respect to the Table 1|
and the outlier map of the simulated data in Figure 2-5, it can be seen that the number of unusual
observations, whether being the outlying point or misclassified observation, exactly coincide with their
generated scenario.
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