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Abstract Multi-gene genetic programming (MGGP) is a

new nonlinear system modeling approach that integrates

the capabilities of standard GP and classical regression.

This paper deals with the prediction of compression index

of fine-grained soils using this robust technique. The pro-

posed model relates the soil compression index to its liquid

limit, plastic limit and void ratio. Several laboratory test

results for fine fine-grained were used to develop the

models. Various criteria were considered to check the

validity of the model. The parametric and sensitivity

analyses were performed and discussed. The MGGP

method was found to be very effective for predicting the

soil compression index. The prediction coefficients of

determination were 0.856 and 0.840 for the training and

testing data, respectively. A comparative study was further

performed to prove the superiority of the MGGP model to

the existing soft computing and traditional empirical

equations.

Keywords Multi-gene genetic programming � Soil
compression index � Soil engineering properties �
Prediction

Introduction

Soil compressibility is the volume reduction under load

due to the drainage of pore water. Precise determination

of this property is important for the analysis of the soil

layer settlements (Tiwari and Ajmera 2012; Singh and

Noor 2012). This issue becomes more challenging for

fine-grained soils due to their low permeability compared

to coarse-grained soils. Compression index (Cc) is one of

the main soil compressibility indicators. This parameter is

usually used for the measurement of the soil layer set-

tlement (Carter and Bentley 1991; Gulhati and Datta

2005; Singh and Noor 2012; Mohammadzadeh et al.

2014). The settlement is typically obtained using the

logarithm of the normal compressive stress (r0) against

soil void ratio (e) curve (Gregory et al. 2006). Cc is

considered as the slope of the virgin region of the com-

pression curve. This curve can be obtained from a stan-

dard consolidation (oedometer) test on an undisturbed

sample (Gregory et al. 2006; Mohammadzadeh et al.

2014). To avoid cumbersome consolidation tests, various

empirical equations have been developed to predict Cc

(Skempton 1944; Nishida 1956; Cozzolino 1961; Terza-

ghi and Peck 1967; Sowers 1970; Azzouz et al. 1976;

Wroth and Wood 1978; Mayne 1980; Park and Lee 2011).

The existing models are mainly developed based on tra-

ditional regression analyses that have notable modeling

drawbacks such as large uncertainties or oversimplifica-

tion of the complicated mechanism of the consolidation

process. Also, the regression method assumes the struc-

ture of the model in advance by merely a limited number

of linear or nonlinear equations (Alavi and Gandomi

2011; Mohammadzadeh et al. 2014). Consequently, more

sophisticated methods are needed for the analysis of the

complex behavior of Cc.
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In this context, soft computing techniques may be con-

sidered as efficient alternatives to traditional methods. These

techniques automatically specify the structure of a prediction

model by learning from data (Salehi and Taghikhany 2012;

Salehi et al. 2014; Alavi et al. 2016a, b). Different well-

known branches of soft computing have been successfully

applied to engineering problems (e.g., Das and Basudhar

2008; Samui 2008a, b; Kayadelen et al. 2009; Günaydın
2009; Kolay et al. 2010; Das et al. 2010, 2011a, b, c; Yilmaz

2010a, b; Akgun and Türk 2010; Kaunda et al. 2010; Aza-

mathulla and Wu 2011; Azamathulla et al. 2012; Mert et al.

2011; Yilmaz et al. 2012; Sattari et al. 2012; Tasdemir et al.

2013; Ocak and Seker 2012, 2013; Isik and Ozden 2013;Wu

et al. 2013; Salehi et al. 2015; Park et al. 2013; Ceryan et al.

2013). As a robust soft computing tool, artificial neural

networks (ANNs) are widely utilized to predict theCc of soil

layers (Desai et al. 2009; Jianping et al. 2010; Farkhonde and

Bolouri 2010; Daryaee et al. 2010; Kumar and Rani 2011;

Park and Lee 2011; Kumar et al. 2012; Rani et al. 2013). A

limitation of the ANNs andmany of the other soft computing

methods is that they do not usually generate prediction

equations (Alavi andGandomi 2011). To dealwith this issue,

genetic programming (GP) was established by Koza (1992).

GP is a soft computing method that works based on the

Darwinian evolution theory for creating computer programs.

The computer programs evolved by GP can be converted to

highly nonlinear prediction equations (Javadi et al. 2006;

Guven 2009; Guven et al. 2009; Gandomi et al. 2010; Gan-

domi andAlavi 2011; Rezania et al. 2011; Azamathulla et al.

2011; Alavi et al. 2011; Mousavi et al. 2012; Azamathulla

2012; Mahmood et al. 2013).

Multi-gene GP (MGGP; Searson et al. 2007, 2010) is a

new subset of GP. While classical GP output is merely a

single program as the optimal solution, the MGGP optimal

solution includes several genes that are each a computer

program (Searson et al. 2010; Gandomi and Alavi 2012a, b).

As opposed to classical GP and other soft computing tech-

niques, application of MGGP in the engineering domain is

new (Gopalakrishnan et al. 2010; Desai and Shaikh 2012;

Gandomi and Alavi 2012a, b; Muduli et al. 2013a, b; Muduli

and Das 2013a, b; Mohammadi et al. 2014). This paper

proposes the MGGP technique to develop a predictive

equation for the compression index of soils. A comprehen-

sive set consolidation test results was established for the

development of the models. The proposed model was veri-

fied through different validation phases.

Multi-gene genetic programming

GP generates computer models by simulating the biologi-

cal evolution of living organisms (Koza 1992). The genetic

operators of genetic algorithm (GA) and GP are almost the

same. GA gives the optimal solution as a string of numbers

while the solutions generated by GP are computer pro-

grams provided in a tree-like form (Koza 1992; Gandomi

and Alavi 2012a, b). In GP, the main goal is to obtain a

program connecting inputs to the corresponding output.

This process is started by creating a population of pro-

grams. The tree-like programs created by GP include

functions and terminals chosen randomly. Figure 1 illus-

trates a typical tree-like program evolved by GP. Further

details about GP are given in Koza (1992), Alavi and

Gandomi (2011) and Gandomi and Alavi (2012a, b).

MGGP (Searson et al. 2007, 2010; Searson 2009) is a

new variant of GP. MGGP evolves a number of genes (sub-

programs) that are each individual tree-like programs

(Searson et al. 2007, 2010; Searson 2009). Then, it assigns

weights to each of these genes to generate the final model

as a linear combination of the sub-programs. Figure 2

shows a typical program evolved by MGGP. The inputs of

the model are x1, x2 and x3 and the functions used for the

evolution process are 9, -, ?, log, and H. The model is

linear in the parameters regarding the coefficients c0, c1 and

c2 despite using nonlinear terms (Searson et al. 2007, 2010;

Gandomi and Alavi 2012a, b). To obtain the linear coef-

ficients, an ordinary least squares analysis is performed on

the training data. It is possible to use a partial least squares

method to this aim (Searson et al. 2007, 2010; Gandomi

and Alavi 2012a, b). The important MGGP parameters that

need notable control are the number of genes and tree

depth. Restricting the tree depth mostly results in gener-

ating more compact models (Searson et al. 2007, 2010;

Gandomi and Alavi 2012a, b).

The initial population generated by MGGP contains GP

trees with different randomly generated genes. MGGP

employs a tree crossover operator as well as the classical

recombination operators (Searson et al. 2007, 2010;

Gandomi and Alavi 2012a, b). As an example, assume

that two parent programs evolved by MGGP contain two

y = f [0] = e (M - N) × 2

×

2M N

exp

-

Fig. 1 Tree representation of a GP model
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genes (G1 G2) and three genes (G3 G4 G5). The genes

subjected to crossover are shown by [] as given herein:

(G1 [G2]) and (G3 [G4 G5]). Thus, during the crossover

operation, the genes are exchanged to create two new

programs: (G1 G4 G5) and (G3 G2). Besides, there are

different types of mutation in MGGP such as sub-tree

mutation and mutation of constants using an additive

Gaussian perturbation. Further details about MGGP and

its operators can be found in Searson et al. (2007, 2010)

and Gandomi and Alavi (2012a, b).

Modeling of Cc of fine-grained soils

Plasticity is one of the major physical properties of fine-

grained soils. It is measured by Atterberg limits, i.e., liquid

limit (LL) and plastic limit (PL). These parameters repre-

sent a threshold of water content at which soil is expected

to have certain behavior types (e.g., viscous flow, plastic-

ity). LL denotes the lower limit of viscous flow, or the

water content, at which the soil behavior changes from

plastic to liquid. On the other hand, PL represents the lower

limit of the plastic state (Kim et al. 2013). The structure of

the existing models (Skempton 1944; Nishida 1956; Coz-

zolino 1961; Terzaghi and Peck 1967; Sowers 1970;

Azzouz et al. 1976; Mayne 1980; Park and Lee 2011;

Mohammadzadeh et al. 2014) clearly indicates that Cc of

fine-grained soils can be considered as a function of per-

centage of LL and PL, as well as initial void ratio (eo). The

same strategy was considered in this study to develop a

simplified prediction model for Cc using merely its basic

physical properties. Determination of LL, PL and eo is

much more easier than performing the consolidation tests

to find Cc. Hence, the adapted strategy would result in a

notable cost savings for geotechnical engineering design.

As it is, all these parameters have a rational relationship

with the natural water content for saturated soils (Bartlett

and Lee 2004; Kim et al. 2013; Mohammadzadeh et al.

2014).

To develop the MGGP-based model, a comprehensive

database containing soil properties (LL, PL and eo) and

corresponding Cc was developed. The database was

divided into three sub-divisions of learning, validation and

testing subsets as will be described in ‘‘MGGP-based for-

mulation of Cc’’ section. The MGGP algorithm was run on

the learning data and checked on the other two subsets. The

optimal model was selected considering its simplicity as

well as its performance on the learning and validation data.

Determination coefficient (R2), root mean squared error

(RMSE) and mean percent error (MAE) were used to assess

the performance of the models (Alavi and Gandomi 2011):

R2 ¼ ð
Pn

i¼1 ðhi � �hiÞðti � �tiÞÞ2
Pn

i¼1 ðhi � �hiÞ2
Pn

i¼1 ðti � �tiÞ2
; ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðhi � tiÞ2

n

s

; ð2Þ

MAE ¼ 1

n

Xn

i¼1

jhi � tij; ð3Þ

where hi is the measured Cc, ti is the predicted Cc, �hi is the

average of the measured Cc, and �ti is the average of the

predicted Cc.

Laboratory test

Several laboratory test results were performed on samples

obtained from different locations in Khorasan Razavi

Province, Iran to develop the database. The soil samples

were picked up from test pits at 0.5–1.0 m depth. The

physical and plastic characteristics of soil were determined

through geotechnical laboratory tests. Conventional

oedometer tests were carried out to determine Cc. The

testing procedure was as described in Abbasi et al. (2012)

and Mohammadzadeh et al. (2014). A conventional

oedometer apparatus having brass ring, 75 mm in diameter

and 20 mm in height was used to perform the tests. The

vertical dead load was applied using a loading device until

there was no change in dial gauge reading for two con-

secutive hours. Other details of the test were performed in

general accordance with ASTM D2435 procedure (2000).

The variation of void ratio versus pressure was plotted for

each specimen on a semilogarithmic scale to obtain the Cc

values (Abbasi et al. 2012). One-dimensional consolidation

and basic geotechnical characterization tests are very well-

known tests. Thus, for brevity, some basic information was

provided herein. Table 1 presents the descriptive statistics

of the parameters (LL, PL, e0, Cs) used in this study. There

were a total of 101 laboratory tests on fine-grained soil

samples. To enrich the database, seven consolidation test

results done by Malih (2006) were added to the available

data. Different soil types used in this study were silty clay

with sand (CL–ML), gravelly lean clay with sand (CL), and

silty, clayey sand (SC–SM).

Fig. 2 A typical program evolved by MGGP
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To avoid overfitting, the data were classified into three

subsets: (1) learning, (2) validation, and (3) test subsets.

The models were trained using the learning data. Then,

their performance was checked on the validation data.

The model with the highest R2 and lowest RMSE and

MAE values on the learning and validation data was

chosen as the optimal model. Eventually, the optimal

model was tested on un-seen testing data to guarantee that

it has generalization capacity. Since both the learning and

validation sets were included in the model selection, they

were grouped together as ‘‘training data’’ (Alavi et al.

2011; Mohammadzadeh et al. 2014). The training, vali-

dation and testing data are commonly taken as 50–70,

15–25 and 15–25 of all data, respectively (Shahin and

Jaksa 2005; Alavi et al. 2011). Herein, about 65 % (71

sets), 15 % (16 sets) and 20 % (21 sets) of the data were

considered for the training, validation and testing pro-

cesses, respectively.

MGGP-based formulation of Cc

To find the optimal model, the MGGP algorithm was run

several times with different combinations of the parame-

ters. This process was based on both an extensive trail

study and referring to the suggested values in previous

studies (Searson et al. 2010; Gopalakrishnan et al. 2010;

Desai and Shaikh 2012; Gandomi and Alavi 2012a, b).

Table 2 presents the parameters considered for different

runs. Large values were taken for the population and

generations to ensure that the best models were derived. As

it is seen in Table 2, there were 7 9 4 9 4 9 4 = 448

parameter arrangement. All these arrangements were tested

with two replications for each. Thus, about 448 9 2 = 896

optimal individual runs were performed. GPTIPS toolbox

(Searson 2009) coded in MATLAB was utilized to run the

algorithm. The RMSE function was adapted for error

minimization during runs.

Table 3 shows the individual genes/model terms for the

best models that were obtained during the conducted runs.

Each gene includes its weighting coefficient. As can be

observed from this table, the derived model is composed of

complicated array of operators, variables, and constants to

estimate Cc. Besides, Fig. 3 shows the expression trees

(ETs) of the MGGP model. In these figures, x1, x2, and x3
represent e0, LL and PL, respectively.

To facilitate the use of the developed model, it was

transformed into a functional form and thereafter simplified

as follows:

Cc ¼ 0:87e0 � 0:00591LL� 0:0186PLþ 7:33� 10�4 sinðLLÞ
� 0:162 tanhðPLÞ þ 7:33� 10�4 tanhðLLÞ3 þ 0:00468e0LL

� ð1:38� 1015LLÞ=ð7:21� 1016e0 þ 7:21� 1016PL

þ7:21� 1016 tanhðtanhðexpðLL� expðe0ÞÞÞÞÞ
�ð4:22� 1014LLþ 4:22� 1014PL

þ4:22� 1014 tanhðe0ÞÞ=ð1:15� 1018e0þ1:15� 1018LL

þ5:76� 1017 expðtanhðe0PLÞÞÞ þ ð0:016PLÞ=e0
�ð0:148PLÞ=LL� 0:176: ð4Þ

Figure 4 shows the experimental against predicted Cc

values. The numbers of population, generations, genes and

tree depth for the model were equal to 1500, 800, 10 and

10, respectively. The performance of the model is good on

Table 1 Descriptive statistics of the variables used for the model

development

Parameters e0 LL (%) PL (%) Cc

Mean 0.745 36.156 22.605 0.171

Standard deviation 0.123 12.786 5.639 0.047

Range 0.516 52.600 29.200 0.176

Minimum 0.514 19.400 14.800 0.077

Maximum 1.030 72.000 44.000 0.253

Table 2 Parameter considered for the implementation of the MGGP

algorithm

Parameters Settings

Population size 200, 400, 800, 1200, 1500, 2000, 3000

Generations 200, 400, 800, 1000

Maximum number of genes 4, 6, 10, 12

Maximum tree depth 4, 6, 10, 12

Tournament size 25

Crossover events 0.85

Mutation events 0.1

Function set ?, -, 9, /, ^2, ^3, tanh, sin, cos, exp

Table 3 Individual genes/model terms for the prediction of Cc

Terms Values

Bias -0.176

Gene 1 -0.0227x2 - 0.0113x3

Gene 2 -(0.162 (x3 ? x2tanh(x3)))/x2

Gene 3 0.016x2 - 0.194x3 ? (0.016x3)/x1

Gene 4 0.00468x1x2

Gene 5 0.87x1

Gene 6 -(0.0191x2)/(x1 ? x3 ? tanh(tanh(exp(x2 - exp(x1)))))

Gene 7 0.187x3

Gene 8 (0.014x3)/x2

Gene 9 7.33 9 10^(-4)x2 ? 7.33 9 10^(-4) sin(x2)

? 7.33 9 10^(-4) tanh(x2)
3 - (4.23 9 10^14x2

? 4.23 9 10^14x3 ? 4.23 9 10^14tanh(x1))/

(1.15 9 10^18x1 ? 1.15 9 10^18x2 ? 5.76

9 10^17exp(tanh(x1x3)))

x1 = e0; x2 = LL; x3 = PL
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both the training and testing data. The importance of each

of the nine genes of the derived model is shown in Fig. 5. It

is seen that the weight of the genes (sub-programs) 5, 7, 2

and the bias terms are higher than the other genes. This

means that they have higher contribution to the prediction

of Cc. Besides, Fig. 6 presents the accuracy against the

complexity of the evolved models. As it is seen, the models

with good performance seem to be much less complex. The

Tree 1
Nodes = 4 

Tree 2
Nodes = 6 

Tree 3
Nodes = 9 

Tree 4
Nodes = 3 

Tree 5
Nodes = 5

Tree 6
Nodes = 12 

Tree 7

Nodes = 1 

Tree 8

Nodes = 3 

Tree 9
Nodes = 25  

Fig. 3 Expression trees of the best models for the prediction of Cc (ET =
P

sub-ETi)

Environ Earth Sci  (2016) 75:262 Page 5 of 11  262 

123



red circle in Fig. 6 designates the best model presented

herein.

Validation verification

Smith (1986) argues that for correlation coefficient

(|R|)[ 0.8, a powerful correlation exists between the

predicted and actual values and, therefore, the model is

suitable. In addition, the error values should be minimum

in all cases (Alavi et al. 2011). Figure 4 indicates that the

MGGP model has high R and low RMSE and MAE

values. Besides, Golbraikh and Tropsha (2002) defined

new statistical parameters of k and k0 to validate the

models on the testing data. Also, Roy and Roy (2008)

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40
Pr

ed
ic

te
d 

C
c

R2 = 0.856
RMSE = 0.018
MAE = 0.016

Experimental 

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40

Pr
ed

ic
te

d 
C

c

R2 = 0.840
RMSE = 0.018
MAE = 0.014

Experimental 

(a) (b)Fig. 4 Performance of the

MGGP model on: a training

data, and b testing data

Fig. 5 Weights of the genes (sub-programs) of the MGGP model

Fig. 6 Complexity against accuracy of the models evolved by MGGP
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proposed a predictability indicator parameter called Rm,

as well as two other related parameters (R2
O and R02

O). k, k
0,

Rm, R2
O; and R02

O are defined based on actual (hi) and

predicted (ti) outputs. It is suggested that at least one

slope of regression lines (k or k0) through the origin

should be close to 1. k is the slope of the regression line

in plot of hi against ti values. k0 is the slope of the

regression line in plot of ti against hi values (Golbraikh

and Tropsha 2002). Either the squared correlation coef-

ficient (through the origin) between predicted and exper-

imental values (R2
O), or the coefficient between

experimental and predicted values (R02
O) should be close to

1. R2 and R2
O are used for calculating Rm. For Rm[0.5, a

prediction model can be considered valid. The above

criteria were checked for the developed model and given

in Table 4. This table indicates that the derived model

meets the mentioned criteria and, therefore, is credible.

Furthermore, the MGGP model was compared with two

other powerful soft computing methods, called multi-

expression programming (MEP) and ANN (Moham-

madzadeh et al. 2014) and several other well-known

empirical models by other researchers (Skempton 1944;

Nishida 1956; Cozzolino 1961; Terzaghi and Peck 1967;

Sowers 1970; Azzouz et al. 1976; Mayne 1980; Park and

Lee 2011). The MEP and ANN models were established

upon the same data used for the development of the

MGGP-based model. The comparison study was conducted

on the testing data and presented in Table 5. According to

this table, the proposed model has a comparable perfor-

mance with ANN. The MGGP formula outperforms the

MEP model and has a notable better performance than the

existing regression-based models. In particular, the pre-

diction error values (RMSE and MAE) for the existing

empirical models are much higher than those for the

MGGP model. It is notable that the regression analysis

used for developing the Cc empirical models assumes the

structure of the model by a limited number of linear or

nonlinear equations. Hence, such models cannot consider

the highly nonlinear interactions between the soil param-

eters and Cc (Alavi et al. 2011). Conversely from the

empirical and analytical methods, MGGP models the

mechanical behavior directly from the experimental data

with no prior assumptions. The best MGGP-based equation

is chosen among numerous linear and nonlinear prelimi-

nary models (Alavi et al. 2011; Alavi and Gandomi 2011).

Parametric and sensitivity analyses

To ensure the validity of MGGP-based model, a compar-

ative parametric analysis was performed. Figure 7 shows

the results of the parametric analysis. As it is seen, Cc

increases with increasing LL up to about 32 % and then it

decreases for higher LL values. Figure 7b indicates that Cc

Table 4 Verifying the validity

of the MGGP model on the

testing data

Items Formulas Conditions MGGP

1
Pn

i¼1
ðhi��hiÞðti��tiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðhi��hiÞ2

Pn

i¼1
ðti��tiÞ2

p
0.8\R 0.916

2
k ¼

Pn

i¼1
ðhi�tiÞ
h2
i

0.85\ k\ 1.15 1.001

3
k0 ¼

Pn

i¼1
ðhi�tiÞ
t2
i

0.85\ k0 \ 1.15 0.989

4 Rm ¼ R2 � ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2 � R2

O

p
jÞ 0.5\Rm 0.503

Where
R2
O ¼ 1�

Pn

i¼1
ðti�hoi Þ

2

Pn

i¼1
ðti��tiÞ2

; hoi ¼ k � ti
Should be close to 1 1.000

R02
O ¼ 1�

Pn

i¼1
ðhi�toi Þ

2

Pn

i¼1
ðhi��hiÞ2

; toi ¼ k0 � hi
Should be close to 1 0.998

hi Actual output, ti predicted output

Table 5 Comparison of the predictions provided by different models

References R2 RMSE MAE

Skempton (1944) 0.367 0.072 0.056

Nishida (1956) 0.752 0.301 0.285

Cozzolino (1961) 0.752 0.105 0.103

Terzaghi and Peck (1967) 0.367 0.110 0.077

Sowers (1970) 0.752 0.055 0.042

Azzouz et al. (1976) 0.752 0.036 0.032

Mayne (1980) 0.367 0.102 0.073

Park and Lee (2011) 0.752 0.089 0.085

MEP (Mohammadzadeh et al. 2014) 0.811 0.019 0.016

ANN (Mohammadzadeh et al. 2014) 0.859 0.017 0.014

MGGP (this study) 0.840 0.018 0.014
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is positively correlated with PL up to 22 % and for higher

PL values Cc decreases. Referring to Fig. 7c, Cc decreases

with increasing e0 up to about 0.6 and thereafter it starts

increasing.

As discussed before, the effect of all the considered

parameters (i.e., LL, PL and e0) on Cc is well understood.

Excluding any of these three parameters from the modeling

process decreased the accuracy of the derived models.

Herein, a sensitivity analysis was conducted to provide a

better understanding of the contribution of these important

parameters to the prediction of Cc. A common approach for

the sensitivity analysis in the GP-based modeling is to

obtain the frequency values of the input parameters

(Francone 1998–2004; Alavi et al. 2011; Gandomi et al.

2011a, b; Mohammadzadeh et al. 2014). A parameter with

a frequency equal to 100 % has been included in 100 % of

the best 30 programs generated by MGGP. The sensitivity

analysis results are shown in Fig. 8. As it is seen, the fre-

quency of e0, LL and PL is equal to 100, 100, and 85 %,

respectively. Thus, the MGGP-based model is more sen-

sitive to e0 and LL compared to PL. This is in agreement

with the results reported by other researchers (Moham-

madzadeh et al. 2014; Daryaee et al. 2010).

Besides, Fig. 9 shows the ratios of the experimental Cc

values to those predicted by the MGGP model with respect

to LL, PL and e0. As the scattering increases in these fig-

ures, the model accuracy consequently decreases. It can be

observed from these figures that the predictions obtained

by the proposed model have a very good accuracy with no

significant trend with respect to the design parameters. In

the case of LL and e0, the scattering slightly decreases with

increasing these parameters.
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e0 LL PL
100 90 75

0

20

40

60

80

100

120

Fr
eq

ue
nc

y 
(%

)

Fig. 8 Contributions of the predictor variables

 262 Page 8 of 11 Environ Earth Sci  (2016) 75:262 

123



Conclusion

This paper presented the MGGP method for the prediction

of Cc of fine-grained soils. Cc was formulated in terms of

basic properties of soil, i.e., LL, PL and e0. The model was

established upon a comprehensive experimental database.

Extensive simulations were carried out to find the optimal

model. To verify the validity of the model, various criteria

were adapted. The proposed model has a good performance

and outperforms the existing soft computing and empirical

models. Contrary to the classical models for Cc, the MGGP

model is highly nonlinear and includes complex combi-

nation of the predictor variables. For further evaluation of

the behavior of the model, parametric and sensitivity

analyses were performed. It was found that Cc increases

with increasing LL and PL up to 32 and 22 %, respectively.

In general, Cc was positively correlated with e0. More, LL

and e0 seem to be more influencing on Cc than PL. Within

its calibrated range, the proposed model can be considered

as an efficient alternative to cumbersome testing proce-

dures for the determination of Cc.
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