Synthesis, Spectroscopic Study and Crystal Structure of a New Amidophosphonate, $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathbf{P}(\mathbf{O})\left(\mathrm{NHCH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\right)$

Farahnaz Hamzehee,* Mehrdad Pourayoubi, ${ }^{* \dagger}$ and Duane Choquesillo-Lazarte ${ }^{* *}$
*Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
**Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avda. de las Palmeras 4, 18100, Armilla, Granada, Spain

Abstract

The crystal structure of diphenyl (2-butylamido) phosphonate has been determined. This crystal belongs to the space group $P 2_{1} / c$, and the asymmetric unit of the structure is composed of one complete molecule. The P atom has a distorted tetrahedral configuration with the O-P-O angle as the minimum bond angle at the P atom $\left(97.74(18)^{\circ}\right)$ and one of the $\mathrm{O}=\mathrm{P}-\mathrm{O}$ angles as the maximum angle (115.2(2) ${ }^{\circ}$. The oxygen atom of the $\mathrm{P}-\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{5}$ moiety may be ascribed with the $s p^{2}$ character, reflected in the P-O-C angles (120.8(3) ${ }^{\circ}$ and $\left.125.4(3)^{\circ}\right)$. In the crystal structure, the molecules are aggregated through the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{P}$ hydrogen bond $(\mathrm{N} 1 \cdots \mathrm{O} 1=2.971(5) \AA$) in a one-dimensional chain along the b axis.

(Received June 30, 2016; Accepted August 3, 2016; Published on web October 10, 2016)

Phosphorus-containing compounds play a vital role in different domains of chemistry, ${ }^{1}$ because of their applications in medicine and pharmacology, ${ }^{2,3}$ coordination chemistry ${ }^{4,5}$ and biochemistry. ${ }^{6}$ Recently, crystal structures of some phosphoramides have been reported. ${ }^{7,8}$
Here, we report on the synthesis and single-crystal X-ray determination of diphenyl (2-butylamido) phosphonate (I), with the chemical structure as shown in Fig. 1. For the synthesis of (I), a solution of 2-butylamine ($0.37 \mathrm{~g}, 5 \mathrm{mmol}$) in dry acetonitrile (10 ml) was added to a solution of diphenyl phosphoryl chloride ($0.67 \mathrm{~g}, 2.5 \mathrm{mmol}$) in the same solvent $(20 \mathrm{ml})$ at 273 K . After stirring for 3 h , the solvent was removed in vacuo and the solid obtained was washed with distilled water. Single crystals of (I) were obtained from a solution of the product in methanol-heptane ($4: 1 \mathrm{v} / \mathrm{v}$) after slow evaporation at room temperature. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3242, 2972, 2928, 1742, 1592, 1490, 1375, 1250, 1203, 1151, 1071, 1025, 930, 767, 688. MS (70 eV): 305 (12) [M] ${ }^{+}, 304$ (35) $[\mathrm{M}-1]^{+}$, 289 (32) $\left[\mathrm{M}-\mathrm{CH}_{4}\right]^{+}, 275$ (100) $\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{6}\right]^{+}, 182$ (15) $\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{6}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right]^{+}$, 95 (44) $\left[\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}\right]^{+}, 30$ (90) $\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]^{+} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (DMSO- $d_{6}, 121.78 \mathrm{MHz}, \delta_{\text {ppm }}$): $0.05(\mathrm{~s}) .{ }^{1} \mathrm{H}-\mathrm{NMR}:\left(\mathrm{DMSO}-d_{6}\right.$, $300.85 \mathrm{MHz}, \delta_{\mathrm{ppm}}$): 0.76 ($\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.01(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 5.70 (m, 1H, NH), 7.22 (m, 6H, Ar-H), 7.40 (m, 4H, Ar-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- $d_{6}, 75.66 \mathrm{MHz}, \delta_{\mathrm{ppm}}$): 10.77 (s), 22.73 $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=4.5 \mathrm{~Hz}\right), 31.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 49.68(\mathrm{~s}), 120.56$

Fig. 1 Chemical structure of the title amidophosphonate.
${ }^{\dagger}$ To whom correspondence should be addressed. E-mail: pourayoubi@um.ac.ir
$\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}}=5.3 \mathrm{~Hz}\right), 120.58\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=4.5 \mathrm{~Hz}\right), 125.05(\mathrm{~s}), 130.15$ (s), $151.32\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.1 \mathrm{~Hz}\right), 151.34\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right)$. The ${ }^{13} \mathrm{C}$ NMR spectrum is discussed in Supporting Information.
The crystallographic data and details of the X-ray analysis are presented in Table 1. Selected bond lengths and angles are given in Table 2. The asymmetric unit of structure (I) contains one complete molecule (Fig. 2). The $\mathrm{P}=\mathrm{O}$ bond length $(1.465(3) \AA)$ is slightly longer than the $\mathrm{P}=\mathrm{O}$ double bond length $(1.45 \AA)^{1}$ and the $\mathrm{P}-\mathrm{N}$ bond length $(1.595(4) \AA$) is shorter than the standard P-N single bond length ($1.77 \AA$) $).{ }^{1}$ The phosphorus

Table 1 Crystal and experimental data

[^0]Table 2 Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$

P1-O2	$1.596(3)$	O2-C5	$1.397(6)$
P1-O1	$1.465(3)$	N1-C1	$1.484(6)$
P1-N1	$1.595(4)$	O3-C11	$1.406(5)$
P1-O3	$1.582(4)$	C1-C2	$1.651(8)$
O1-P1-O2	$115.2(2)$	C1-N1-P1	$127.8(3)$
O1-P1-N1	$115.0(2)$	C11-O3-P1	$125.4(3)$
O1-P1-O3	$114.6(2)$	C10-C5-O2	$119.1(4)$
N1-P1-O2	$106.7(2)$	C6-C5-O2	$119.1(4)$
O3-P1-O2	$97.74(18)$	C16-C11-O3	$122.6(4)$
O3-P1-N1	$105.8(2)$	N1-C1-C2	$107.4(5)$
C5-O2-P1	$120.8(3)$	C3-C1-N1	$112.4(5)$

Fig. 2 Displacement ellipsoid plot (50\% probability level) and the atom numbering scheme. H atoms are drawn as spheres of arbitrary radii.
atom has a distorted tetrahedral configuration. The bond angles around the phosphorus atom are in the range of $97.74(18)^{\circ}$ ($\angle \mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$) to $115.2(2)^{\circ}$ ($\angle \mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$). The oxygen atom of the P-O- $\mathrm{C}_{6} \mathrm{H}_{5}$ moiety may be ascribed with the $s p^{2}$ character, which is reflected to the C-O-P bond angles close to the $s p^{2}$ value of 120° ($\angle \mathrm{C} 5-\mathrm{O} 2-\mathrm{P} 1: 120.8(3)^{\circ}$ and $\angle \mathrm{C} 11-\mathrm{O} 3-\mathrm{P} 1$: $\left.125.4(3)^{\circ}\right)$. The P-O bond lengths of the C-O-P fragments (1.582(4) \AA and $1.596(3) \AA$) are shorter than the standard value well-known for the P-O single bond $(1.64 \AA) .{ }^{1}$ The dihedral angle between two phenyl rings is 54.20°.
The C1-N1-P1 angle of $127.8(3)^{\circ}$ is similar to the values reported for analogous structures with the $(\mathrm{O})_{2} \mathrm{P}(\mathrm{O})(\mathrm{NHC})$ skeleton. ${ }^{8}$ The NH group adopts a gauche orientation relative to the phosphoryl group (dihedral angle between H1N1P1 plane and O1P1N1 plane is 63.80°). The molecules are aggregated through the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1-\mathrm{P} 1$ hydrogen bond (with $d(\mathrm{~N} 1 \cdots \mathrm{O} 1)=$ $2.971(5) \AA$) in a one-dimensional chain along the b axis. The unit-cell packing is shown in Fig. 3 and hydrogen bonding data of the structure are presented in Table 3.

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Fig. 3 Partial view of the crystal packing of (I), showing the linear arrangement built from the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{P}$ hydrogen bonds (symmetry operation (i) $x, y-1, z$). The hydrogen bonds are shown as dotted lines. Only the H atoms involved in hydrogen bonding are shown.

Table 3 Hydrogen-bonding geometry (e.s.d. is given in parentheses)

D-H...A	D-H (\AA)	H...A (\AA)	D...A (\AA)	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.37	$2.971(5)$	126.2

Symmetry operation (i) $x, y-1, z$.

Supporting Information

This material is available free of charge on the Web at http:// www.jsac.or.jp/xraystruct/.

References

1. D. E. C. Corbridge, "Phosphorus, an Outline of Its Chemistry, Biochemistry and Technology", 5th ed., 1995, Elsevier, the Netherlands.
2. Y. Ashani, A. K. Bhattacharjee, H. Leader, A. Saxena, and B. P. Doctor, Biochem. Pharmacol., 2003, 66, 191.
3. A. Paci, T. Martens, and J. Royer, Bioorg. Med. Chem. Lett., 2001, 11, 1347.
4. T. Chivers, M. Krahn, G. Schatte, and M. Parvez, Inorg. Chem., 2003, 42, 3994.
5. K. Gholivand, Z. Shariatinia, and M. Pourayoubi, Polyhedron, 2006, 25, 711.
6. A. Baldwin, Z. Huang, Y. Jounaidi, and D. J. Waxman, Arch. Biochem. Biophys., 2003, 409, 197.
7. M. Pourayoubi and P. Zargaran, Acta Cryst., 2010, E66, 03273.
8. M. Pourayoubi, P. Zargaran, S. Ghammamy, and H. Eshtiagh-Hosseini, Acta Cryst., 2010, E66, o3357.
9. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

[^0]: Empirical formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{P}$
 Formula weight $=305.30$
 Temperature $=100(2) \mathrm{K}$
 Crystal system: Monoclinic Space group: $P 2_{1} / c$
 $a=13.277(2) \AA \quad \alpha=90^{\circ}$
 $b=5.2887(7) \AA \quad \beta=99.542(6)^{\circ}$
 $c=21.962(5) \AA \quad \gamma=90^{\circ}$
 $V=1520.8(5) \AA^{3} \quad Z=4$
 $D_{\mathrm{x}}=1.333 \mathrm{~g} / \mathrm{cm}^{3}$
 Radiation: Mo $K_{\alpha}(\lambda=0.71073 \AA)$
 $\mu\left(\right.$ Мо $\left.K_{\alpha}\right)=0.190 \mathrm{~mm}^{-1} \quad F(000)=648$
 Crystal size $=0.1 \times 0.08 \times 0.08 \mathrm{~mm}^{3}$
 No. of reflections collected $=2661$
 No. of independent reflections $=2661$
 θ range for data collection: 2.233 to 25.045°
 Data/restraints/parameters $=2661 / 15 / 193$
 Goodness-of-fit on $F^{2}=1.074$
 R indices $I>2 \sigma(I): R_{1}=0.0725, w R_{2}=0.1485$
 R indices (all data): $R_{1}=0.1093, w R_{2}=0.1651$
 $(\Delta / \sigma)_{\max }<0.001$
 $(\Delta \rho)_{\max }=1.240 \mathrm{e}^{-3} \quad(\Delta \rho)_{\min }=-0.577 \mathrm{e}^{-3} \AA^{-3}$
 Measurement: Bruker D8 Venture
 Program system: SHELXTL
 Structure determination: SHELXS ${ }^{9}$
 CCDC deposition number: 1485675

