Synthesis, Spectroscopic Study and Crystal Structure of a New Amidophosphonate, (C₆H₅O)₂P(O)(NHCH(CH₃)(C₂H₅))

Farahnaz HAMZEHEE,* Mehrdad POURAYOUBI,*† and Duane CHOQUESILLO-LAZARTE**

*Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran **Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avda. de las Palmeras 4, 18100, Armilla, Granada, Spain

The crystal structure of diphenyl (2-butylamido) phosphonate has been determined. This crystal belongs to the space group $P_{2_1/c}$, and the asymmetric unit of the structure is composed of one complete molecule. The P atom has a distorted tetrahedral configuration with the O-P-O angle as the minimum bond angle at the P atom (97.74(18)°) and one of the O=P-O angles as the maximum angle (115.2(2)°). The oxygen atom of the P-O-C₆H₅ moiety may be ascribed with the sp^2 character, reflected in the P-O-C angles (120.8(3)° and 125.4(3)°). In the crystal structure, the molecules are aggregated through the N-H--O=P hydrogen bond (N1--O1 = 2.971(5)Å) in a one-dimensional chain along the *b* axis.

(Received June 30, 2016; Accepted August 3, 2016; Published on web October 10, 2016)

Phosphorus-containing compounds play a vital role in different domains of chemistry,¹ because of their applications in medicine and pharmacology,^{2,3} coordination chemistry^{4,5} and biochemistry.⁶ Recently, crystal structures of some phosphoramides have been reported.^{7,8}

Here, we report on the synthesis and single-crystal X-ray determination of diphenyl (2-butylamido) phosphonate (I), with the chemical structure as shown in Fig. 1. For the synthesis of (I), a solution of 2-butylamine (0.37 g, 5 mmol) in dry acetonitrile (10 ml) was added to a solution of diphenyl phosphoryl chloride (0.67 g, 2.5 mmol) in the same solvent (20 ml) at 273 K. After stirring for 3 h, the solvent was removed in vacuo and the solid obtained was washed with distilled water. Single crystals of (I) were obtained from a solution of the product in methanol-heptane (4:1 v/v) after slow evaporation at room temperature. IR (KBr, cm⁻¹): 3242, 2972, 2928, 1742, 1592, 1490, 1375, 1250, 1203, 1151, 1071, 1025, 930, 767, 688. MS (70 eV): 305 (12) [M]⁺, 304 (35) [M-1]⁺, 289 (32) [M-CH₄]⁺, 275 (100) [M-C₂H₆]⁺, 182 (15) [M-C₂H₆- C_6H_5O]⁺, 95 (44) [C_6H_7O]⁺, 30 (90) [C_2H_6]⁺. ³¹P{¹H}-NMR (DMSO-*d*₆, 121.78 MHz, δ_{ppm}): 0.05 (s). ¹H-NMR: (DMSO-*d*₆, 300.85 MHz, δ_{ppm}): 0.76 (t, ${}^{3}J_{\text{HH}}$ = 7.2 Hz, 3H, CH₃), 1.01 (d, ${}^{3}J_{\text{HH}} = 6.6 \text{ Hz}, 3\text{H}, \text{CH}_{3}$, 1.34 (m, 2H, CH₂), 3.14 (m, 1H, CH), 5.70 (m, 1H, NH), 7.22 (m, 6H, Ar-H), 7.40 (m, 4H, Ar-H). ¹³C-NMR (DMSO- d_6 , 75.66 MHz, δ_{ppm}): 10.77 (s), 22.73 (d, ${}^{3}J_{PC} = 4.5 \text{ Hz}$), 31.24 (d, ${}^{3}J_{PC} = 6.8 \text{ Hz}$), 49.68 (s), 120.56

[†] To whom correspondence should be addressed. E-mail: pourayoubi@um.ac.ir

(d, ${}^{3}J_{PC} = 5.3$ Hz), 120.58 (d, ${}^{3}J_{PC} = 4.5$ Hz), 125.05 (s), 130.15 (s), 151.32 (d, ${}^{2}J_{PC} = 6.1$ Hz), 151.34 (d, ${}^{2}J_{PC} = 6.8$ Hz). The ${}^{13}C$ NMR spectrum is discussed in Supporting Information.

The crystallographic data and details of the X-ray analysis are presented in Table 1. Selected bond lengths and angles are given in Table 2. The asymmetric unit of structure (I) contains one complete molecule (Fig. 2). The P=O bond length $(1.465(3)\text{\AA})$ is slightly longer than the P=O double bond length $(1.45 \text{\AA})^1$ and the P-N bond length $(1.595(4)\text{\AA})$ is shorter than the standard P-N single bond length (1.77\AA) .¹ The phosphorus

Table 1 Crystal and experimental data

Empirical formula: C ₁₆ H ₂₀ NO ₃	Р			
Formula weight = 305.30				
Temperature = $100(2)$ K				
Crystal system: Monoclinic	Space group: $P2_1/c$			
a = 13.277(2)Å	$\alpha = 90^{\circ}$			
b = 5.2887(7)Å	$\beta = 99.542(6)^{\circ}$			
c = 21.962(5)Å	$\gamma = 90^{\circ}$			
V = 1520.8(5)Å ³	Z = 4			
$D_{\rm x} = 1.333 \ {\rm g/cm^3}$				
Radiation: Mo K_{α} ($\lambda = 0.71073$ Å)				
μ (Mo K_{α}) = 0.190 mm ⁻¹	$F(0\ 0\ 0) = 648$			
Crystal size = $0.1 \times 0.08 \times 0.0$	8 mm ³			
No. of reflections collected = 2661				
No. of independent reflections = 2661				
θ range for data collection: 2.2	33 to 25.045°			
Data/restraints/parameters = $2661/15/193$				
Goodness-of-fit on $F^2 = 1.074$				
<i>R</i> indices $I > 2\sigma(I)$: $R_1 = 0.0725$, $wR_2 = 0.1485$				
<i>R</i> indices (all data): $R_1 = 0.1093$, $wR_2 = 0.1651$				
$(\Delta/\sigma)_{\rm max} < 0.001$				
$(\Delta \rho)_{\rm max} = 1.240 \ {\rm e}{\rm \AA}^{-3}$	$(\Delta \rho)_{\rm min} = -0.577 \ {\rm e}{\rm \AA}^{-3}$			
Measurement: Bruker D8 Vent	ure			
Program system: SHELXTL				
Structure determination: SHELXS ⁹				
CCDC deposition number: 1485675				

Table 2Selected bond lengths [Å] and angles [°]				
P1-O2	1.596(3)	O2-C5	1.397(6)	
P1-O1	1.465(3)	N1-C1	1.484(6)	
P1-N1	1.595(4)	O3-C11	1.406(5)	
P1-O3	1.582(4)	C1-C2	1.651(8)	
O1-P1-O2	115.2(2)	C1-N1-P1	127.8(3)	
O1-P1-N1	115.0(2)	C11-O3-P1	125.4(3)	
O1-P1-O3	114.6(2)	C10-C5-O2	119.1(4)	
N1-P1-O2	106.7(2)	C6-C5-O2	119.1(4)	
O3-P1-O2	97.74(18)	C16-C11-O3	122.6(4)	

N1-C1-C2

C3-C1-N1

105.8(2)

120.8(3)

107.4(5)

112.4(5)

Fig. 2 Displacement ellipsoid plot (50% probability level) and the atom numbering scheme. H atoms are drawn as spheres of arbitrary radii.

atom has a distorted tetrahedral configuration. The bond angles around the phosphorus atom are in the range of 97.74(18)° $(\angle O3-P1-O2)$ to $115.2(2)^{\circ}$ ($\angle O1-P1-O2$). The oxygen atom of the P-O-C₆H₅ moiety may be ascribed with the sp^2 character, which is reflected to the C-O-P bond angles close to the sp² value of 120° (\angle C5-O2-P1: $120.8(3)^{\circ}$ and \angle C11-O3-P1: 125.4(3)°). The P-O bond lengths of the C-O-P fragments (1.582(4)Å and 1.596(3)Å) are shorter than the standard value well-known for the P-O single bond (1.64 Å).1 The dihedral angle between two phenyl rings is 54.20°.

The C1-N1-P1 angle of $127.8(3)^{\circ}$ is similar to the values reported for analogous structures with the (O)₂P(O)(NHC) skeleton.8 The NH group adopts a gauche orientation relative to the phosphoryl group (dihedral angle between H1N1P1 plane and O1P1N1 plane is 63.80°). The molecules are aggregated through the N1-H1-O1-P1 hydrogen bond (with d(N1-O1) =2.971(5)Å) in a one-dimensional chain along the *b* axis. The unit-cell packing is shown in Fig. 3 and hydrogen bonding data of the structure are presented in Table 3.

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Fig. 3 Partial view of the crystal packing of (I), showing the linear arrangement built from the N-H-O=P hydrogen bonds (symmetry operation (i) x, y-1, z). The hydrogen bonds are shown as dotted lines. Only the H atoms involved in hydrogen bonding are shown.

Table 3	Hydrogen-bonding	geometry	(e.s.d.	is	given	in
parenthes	ses)					

D-H-A	D-H (Å)	H…A (Å)	D…A (Å)	$\angle D$ -H···A (°)
N1-H1-O1i	0.88	2.37	2.971(5)	126.2

Symmetry operation (i) x, y–1, z.

Supporting Information

This material is available free of charge on the Web at http:// www.jsac.or.jp/xraystruct/.

References

- 1. D. E. C. Corbridge, "Phosphorus, an Outline of Its Chemistry, Biochemistry and Technology", 5th ed., 1995, Elsevier, the Netherlands.
- 2. Y. Ashani, A. K. Bhattacharjee, H. Leader, A. Saxena, and B. P. Doctor, Biochem. Pharmacol., 2003, 66, 191.
- 3. A. Paci, T. Martens, and J. Royer, Bioorg. Med. Chem. Lett., 2001, 11, 1347.
- 4. T. Chivers, M. Krahn, G. Schatte, and M. Parvez, Inorg. Chem., 2003, 42, 3994.
- 5. K. Gholivand, Z. Shariatinia, and M. Pourayoubi, Polyhedron, 2006, 25, 711.
- 6. A. Baldwin, Z. Huang, Y. Jounaidi, and D. J. Waxman, Arch. Biochem. Biophys., 2003, 409, 197.
- 7. M. Pourayoubi and P. Zargaran, Acta Cryst., 2010, E66, o3273.
- 8. M. Pourayoubi, P. Zargaran, S. Ghammamy, and H. Eshtiagh-Hosseini, Acta Cryst., 2010, E66, o3357.
- 9. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

O3-P1-N1

C5-O2-P1