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Abstract In this paper, we introduce a new goodness-of-fit test for Rayleigh distribu-
tion based on Hellinger distance. In addition, some properties about the proposed test
is presented. Then, new proposed test is compared with other goodness-of-fit tests for
Rayleigh distribution in the literature in terms of power. Finally, we conclude that the
entropy based tests demonstrate a good performance in terms of power and we can
choose the Hellinger test as more powerful than the other competitor tests.

Keywords Entropy · Goodness-of-fit · Hellinger distance · Power ·
Rayleigh distribution

1 Introduction

The goodness-of-fit (GOF) tests for exponentiality have a large literature, but GOF
tests for Rayleigh distribution (testing Rayleighity) have recently been considered.
The GOF tests for the Rayleigh distribution were proposed in [2,3,5,12–14,17].

The Rayleigh distribution has been used in many areas of research, such as reliabil-
ity, life testing and survival analysis. Modeling the lifetime of random phenomena has
been another area of study for which the Rayleigh distribution has been significantly
used. Being first introduced by Rayleigh [16], this statistical model was originally
derived in connection with a problem in acoustics. It has been also used as the dis-
tance distribution between individuals in a spatial Poisson process and is useful in
life-testing experiments, for its failure rate is a linear function of time. Dyer and
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Whisenand [7] established its importance in communication engineering and Polovko
[15] stated that it is important in electro-vacuum devices. More details on the Rayleigh
distribution can be found in [10].

The Rayleigh distribution has the following probability density function (pdf) and
cumulative distribution function (cdf) respectively

f (x) = x

θ2
exp

(
− x2

2θ2

)
, x > 0, θ > 0,

F(x) = 1 − exp

(
− x2

2θ2

)
, x > 0, θ > 0.

It is easy to show that the maximum likelihood (ML) estimator of θ is

θ̂ =
√√√√ n∑

i=1

x2i /2n.

It is important that θ̂2 =∑ x2i /2n is an unbiased ML estimate of θ2, but θ̂ is a biased
estimator of θ .

This article is organized as follows. In Sect. 2, a new test based on the Hellinger
distance is developed and some theorems about its properties is presented. In Sect. 3,
we compare the powers of the proposed test against competitors tests for each category
of alternative distributions. In Sect. 4, the performance of the considered tests for two
real data are evaluated. In Sect. 5, we appraise the ability of considered tests and we
choose a better one.

2 New Proposed Test

In mathematics, metric functions are very important. Some measures proposed for
determining theGOF do not possess all properties of ametric function. Therefore, they
are rather called as divergence measures. For example, KL divergence is nonnegative
and asymmetric. Also, it is easy to see that it does not satisfy the triangular inequality.
Therefore it is not a metric function. Hence it must be interpreted as a pseudo-metric
measure only.

Since we want to propose a new GOF test for Rayleigh distribution, we suggest
using Hellinger distance which possesses all conditions of a metric function [9]. We
guess using this measure leads to better performance in terms of power against other
proposed tests in the statistical literature.

2.1 Hellinger Test

In this subsection, for constructing a new test based on Hellinger distance, we use the
Vasicek’s (1976) method to estimate the Shannon entropy. In this regard, proposed
test will be belong to entropy based tests.
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Let X1, ..., Xn be nonnegative; independent and identically distributed (iid) random
variables from a continuous distribution function F with order statistics, X(1) ≤ ... ≤
X(n). Let f0(x, θ) denote a Rayleigh distribution, where θ is the unknown parameter.
The hypotheses are as follow

H0 : f (x) = f0(x, θ), H1 : f (x) �= f0(x, θ).

Compared with the KL divergence, Hellinger distance avoids stability problems when
the denominator probability density function is zero. The Hellinger distance for dis-
criminating between two hypotheses H0 and H1 for two density functions f (x) and
f0(x) is introduced by [9] as

DH ( f, f0) = 1

2

∫ ∞

0

(√
f (x) −√ f0(x)

)2
dx, (1)

It’s very important that the Hellinger distance is symmetric and has all properties
of a metric function. Since DH ( f, f0) ≥ 0 and the equality holds if and only if
f (x) = f0(x), it motivates us to use Hellinger distance as a test statistic for checking
Rayleigh distribution.

The Hellinger statistic for testing Rayleighity can be defined as below

DHmn = 1

2n

n∑
i=1

{√( n
2m (X(i+m) − X(i−m))

)−1 −
√
X(i)e

−X2
(i)/2θ̂

2
/θ̂2
}2

{ n
2m

(
X(i+m) − X(i−m)

)}−1 ,

where X(i) = X(1) for i < 1 and X(i) = X(n) for i > n.
By replacing f0 in (1) we have

DH ( f, f0) = 1

2

∫ ∞

0

(√
f (x) −

√(
x/θ2

)
e−x2/2θ2

)2

dx .

Under the null hypothesis DH ( f, f0) = 0 and we expect large values of DH ( f, f0)
under H1. Based on the Vasicek’s method [18] and supposing F(x) = p we have

DH ( f, f0) = 1

2

∫ 1

0

⎛
⎝
√(

d

dp
F−1(p)

)−1

−
√

F−1(p)

θ2
e−(F−1(p))

2
/2θ2

⎞
⎠

2

×
(

d

dp
F−1(p)

)
dp.
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Now, the proposed statistic easily will be derived by using following relation

f (x) =
(

d

dp
F−1(p)

)−1

,

�
( n

2m
(X(i+m) − X(i−m))

)−1
.

As θ is a scale parameter ofRayleigh distributionwe consider a scale transformation
group as G = {gc : gc(X) = cX, c > 0}. Since

DHmn(g(X)) = DHmn(X) ∀X, ∀g ∈ G,

Therefore, DHmn is a scale-free statistic or invariant under G.
In addition, since the test statistic DHmn is invariant under the scale transformations

and the parameter space is transitive, the distribution of the proposed test statistic
DHmn is free of θ .

The least favorable conditions for an estimator is consistency the following theorem
proves the consistency property of DHmn .

Theorem 1 Let F be an unknown continuous distribution on [0,∞) and F0 be the
Rayleigh distribution with unspecified parameter θ . Then under H1, the test based on
DHmn is consistent.

Proof We use [1] technique to prove consistency of DHmn . As n,m → ∞ and
m/n → 0, we have

2m

n
= Fn

(
X(i+m)

)− Fn
(
X(i−m)

) � F
(
X(i+m)

)− F
(
X(i−m)

)

� f (X(i+m)) + f (X(i−m))

2

(
X(i+m) − X(i−m)

)
� f (X(i))

(
X(i+m) − X(i−m)

)
,

where Fn is the empirical distribution function. Since θ̂ is a consistent estimator of θ

as n → ∞ and based upon strong law of large numbers we have

DHmn = 1

2n

n∑
i=1

{√( n
2m (X(i+m) − X(i−m))

)−1 −
√
X(i)e

−X2
(i)/2θ̂

2
/θ̂2
}2

{ n
2m

(
X(i+m) − X(i−m)

)}−1

� 1

2n

n∑
i=1

{√
f (X(i)) −

√
X(i)e

−X2
(i)/2θ

2
/θ2
}2

f (X(i))

= 1

2n

n∑
i=1

{√
f (X(i)) −√ f0(X(i))

}2
f (X(i))

a.s.→ 1

2
E

{{√
f (X) − √

f0(X)
}2

f (X)

}
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Table 1 Optimal values of m for various values of n

n 5–12 13–27 28–50 51–57 58–71 72–100 101–120 121–150 >150

m 2 3 4 5 6 7 8 9 10

= 1

2

∫ {√
f (x) −√ f0(x)

}2
dx

= DH ( f, f0).

Thus, DHmn is a consistent test under H1. �

According to proved Theorem 1 and mentioned properties, the DHmn test is a
reasonable test for the Rayleigh distribution which has some good properties such as
to be scale-free, invariancy and consistency.

2.2 Determining Optimum Values of m

TheGOF test based on entropy involves choosing the best integer parameterm. Unfor-
tunately, there is no choice criterion of m and in general it depends on n. Ebrahimi et
al. [8] tabulated the values of m, which maximize the power of the test.

In fact, the optimum value of m is a value of n which leads to the smallest value of
bias and mean square error (MSE). Therefore, we determined the optimum values of
m based on 10,000 iterations whose results are presented in Table 1.

To determine optimum value of m for any value of n, we computed bias and MSE
of Hmn for different values of m, 1 to n/2, by

Bias = 1

k

k∑
i=1

H (i)
mn−H(X), MSE = 1

k

k∑
i=1

{
H (i)
mn − H(X)

}2
,

where H(X) = 1 + ln(θ/
√
2) + γ /2 is the entropy of Rayleigh distribution, γ is the

Euler-Mascheroni constant which is already 0.57721 and k is number of iterations.

3 Power Study

In this section, we are going to compare performance of the proposed test against
several alternative tests in terms of power. Moreover, considered tests are divided in
entropy and non-entropy groups.

The GOF tests of Rayleighity in the statistical literature are as follows.

• Alizadeh et al. [2] proposed the GOF test based on Kullback-Leibler (KL) diver-
gence for checking Rayleighity. Their proposed statistic is

K Lmn = −Hmn + 2 log(θ̂) − 1

n

n∑
i=1

log(Xi ) + 1,
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where θ̂ is the ML estimate of θ and Hmn is the Vasicek’s estimator of entropy

which is given by Hmn = 1
n

n∑
i=1

log
{ n
2m

(
X(i+m) − X(i−m)

)}
where the window

size m is a positive integer smaller than n/2, X(i) = X(1) if i < 1, X(i) = X(n) if
i > n and X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics based on a random
sample of size n.

• Baratpour and Khodadadi [3] based on cumulative KL, defined another GOF test
for Rayleighity which is

CKn =

n∑
i=1

(
1 − i

n

)
ln
(
1 − i

n

) (
X(i+1) − X(i)

)+
√

π
2

√
n∑

i=1
X3
i

/
3

n∑
i=1

Xi

X̄
,

• Meintanis and Iliopoulos [12] proposed the GOF test of Rayleighity based on the
empirical Laplace transform which was defined as

L = n

a
+

√
2

n

n∑
j=1

n∑
k=1

⎧⎪⎨
⎪⎩

1

Ŷ j + Ŷk + a
+ Ŷ j + Ŷk(

Ŷ j + Ŷk + a
)2 +

2
(
Ŷ j Ŷk + 2

)
(
Ŷ j + Ŷk + a

)3

+
6
(
Ŷ j + Ŷk

)
(
Ŷ j + Ŷk + a

)4 + 24(
Ŷ j + Ŷk + a

)5
⎫⎪⎬
⎪⎭

−2
√
2

n∑
j=1

⎧⎪⎨
⎪⎩

1(
Ŷ j + a

) + Ŷ j(
Ŷ j + a

)2 + 2(
Ŷ j + a

)3
⎫⎪⎬
⎪⎭,

where a = 2
√
2, Ŷ j = X j/θ̂ and θ̂ denotes the consistent estimator of θ .

• Safavinejad et al. [17], based on the empirical likelihood ratio methodology, pro-
posed the following statistic

Rn =
min

1≤m<nδ

n∏
j=1

{ 2m
n

(
X( j+m) − X( j−m)

)}
(

n∏
i=1

Xi/θ̂2n
)
exp

{
−∑n

i=1 X
2
i /2θ̂

2
} ,

where θ̂ is the ML estimator of θ and 0 < δ < 1.
• Empirical distribution is a very important estimator in statistics andmany statistical
procedures depend on its performance. Some well known GOF tests belong to this
family are considered as
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Table 2 Comparing powers of considered tests for n = 10 and α = 0.05 based on non-entropy and entropy
tests separately

Test type Tests Dec. hazard Inc. hazard Non-mon. hazard

Chisq(1) Wei(0.5, 1) Chisq(3) Beta(3,1) Beta(1, 0.5) Exp(2)

Non-entropy L 0.998 0.996 0.420 0.252 0.140 0.412

D 0.890 0.971 0.330 0.281 0.224 0.221

V 0.820 0.956 0.220 0.351 0.348 0.402

W 2 0.903 0.973 0.345 0.362 0.290 0.231

U2 0.833 0.956 0.259 0.340 0.345 0.426

A2 0.977 0.995 0.464 0.417 0.354 0.381

S∗ 0.894 0.970 0.350 0.357 0.341 0.236

Entropy K Lmn 0.915 0.979 0.176 0.451 0.566 0.205

CKn 0.918 0.979 0.405 0.389 0.441 0.449

Rn 0.718 0.911 0.468 0.477 0.557 0.540

DHmn 0.964 0.992 0.471 0.476 0.573 0.711

The greatest powers are in bold

D = max(D+
n , D−

n ), V = D+
n + D−

n ,

W 2 =
n∑

i=1

{
Z(i) − 2i − 1

2n

}2
+ 1

12n
, U 2 = W 2 − n

(
Z̄ − 0.5

)2
,

A2 = −n −
n∑

i=1

2i − 1

n

{
log(Z(i)) + log(1 − Z(n−i+1))

}
,

S∗ =
n∑

i=1

max

{∣∣∣∣Z(i) − i

n

∣∣∣∣ ,
∣∣∣∣Z(i) − i − 1

n

∣∣∣∣
}
.

where D+
n = max

i

{
i/n − Z(i)

}
, D−

n = max
i

{
Z(i) − (i − 1)/n

}
and Z(i) =

F(x(i); θ̂ ); where F(·) is the true distribution of X . Meanwhile θ̂ is ML estimator
of θ and considered empirical distribution base tests are Kolmogorov-Smirnov
(D), Kuiper (V ), Cramer-von Mises (W 2), Watson (U 2), Anderson-Darling (A2)
and Finkelstein-Schafers (S∗).

To compute power for each alternative, 10,000 samples of size n were generated.
Then, the powerwas calculated by proportion of rejecting null hypothesis for simulated
data from alternative distribution in some iterations.

The continuous alternative distributions are, therefore, classified in the following
three classes :

• Monotonic decreasing hazard (Dec. Hazard) rate: Chisquare(1), Weibull(0.5,1),
• Monotonic increasing hazard (Inc. Hazard) rate: Chisquare(3), Beta(3,1),
• Non-Monotonic hazard (Non-Mon. Hazard) rate: Beta(1,0.5), Exponential(2).
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Table 3 Comparing powers of considered tests for n = 20 and α = 0.05 based on non-entropy and entropy
tests separately

Test type Tests Dec. hazard Inc. hazard Non-mon. hazard

Chisq(1) Wei(0.5, 1) Chisq(3) Beta(3,1) Beta(1, 0.5) Exp(2)

Non-entropy L 0.999 0.999 0.623 0.469 0.160 0.413

D 0.998 0.999 0.587 0.514 0.417 0.237

V 0.979 0.999 0.490 0.658 0.668 0.701

W 2 0.997 0.999 0.646 0.668 0.563 0.240

U2 0.999 0.999 0.632 0.609 0.649 0.716

A2 0.997 0.999 0.707 0.612 0.615 0.631

S∗ 0.993 0.999 0.631 0.708 0.615 0.250

Entropy K Lmn 0.999 0.999 0.450 0.850 0.902 0.877

CKn 0.999 0.999 0.653 0.341 0.867 0.873

Rn 0.880 0.987 0.709 0.831 0.902 0.877

DHmn 0.999 0.999 0.717 0.851 0.932 0.940

The greatest powers are in bold

Table 4 Comparing type I error
of considered tests for α = 0.05

Tests n = 10 n = 20 n = 30 n = 50

L 0.046 0.042 0.046 0.049

D 0.048 0.062 0.041 0.066

V 0.049 0.052 0.064 0.040

W 2 0.056 0.056 0.045 0.046

U2 0.050 0.066 0.054 0.049

A2 0.045 0.051 0.056 0.044

S∗ 0.049 0.046 0.048 0.040

K Lmn 0.040 0.046 0.055 0.054

CKn 0.046 0.044 0.049 0.045

Rn 0.047 0.048 0.046 0.052

DHmn 0.045 0.058 0.050 0.052

The power of the considered tests are compared to that of some other tests for
Rayleighity against the same alternative which are tabulated in Tables 2 and 3.

Another important property of a test is type I error rate which is calculated as
proportion of rejected null hypothesis for Rayleigh distribution. In order to, examine
the type I error of considered tests we have conducted a Monte Carlo simulation
and compared the results. In the simulation for each sample size, 10,000 replications
were done and performance of all considered tests were evaluated at 5 percent level.
Indeed, the values in the Table 4 are type I error rates of considered tests in assessing
Rayleighity andweconclude type I error rates of all considered tests are about supposed
significance level. So, they have acceptable performance in this field.
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In order to have a more detailed analysis, the results are presented in Tables 2
and 3 under two groups as entropy and Non-entropy. According to these Tables we
concluded that in decreasing hazard rate distributions between entropy type tests the
most powerful tests in priority of order are DHmn,CKn, K Lmn and in the middle
of Non-entropy tests the most powerful tests in order of preference are L , A2,W 2.
In addition, it is evident that the three most powerful tests in overall are respectively
L , A2, DHmn .

We also concluded among increasing hazard rate distributions choosing the best
test is difficult. It should be noticed that among entropy type tests the most powerful
tests in order of preference are DHmn, Rn,CKn . Between Non-entropy type tests the
most powerful tests in order of preference are A2, S∗, L . Meanwhile, we can choose
three most powerful tests in overall as DHmn, Rn, A2.

In addition to that between non-monotone hazard rate distributions although choos-
ing the best test is difficult but among entropy type tests the most powerful tests in
priority of order are DHmn, Rn, K Lmn . In the middle of Non-entropy type tests the
most powerful tests in order of preference are A2,U 2, V . Moreover, it is interesting
that three most powerful tests in overall are respectively DHmn, Rn, K Lmn too.

Finally, we observed that among all considered tests the proposed DHmn test which
is based on a metric measure performed better than other all tests in three classes
overall.

4 Application to Real Data

In this section, we analyze two data set to assess ability of considered tests.

Example 1 In this example we analyze the ball bearing data, which was given by [6]
and represents the failure times of 25 ball bearings in endurance test. The observed
failure times are 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12,
55.56, 67.80, 67.80, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84,
127.92, 128.04, 173.40.

For this data set, Lee [11] and Baratpour and Khodadadi [3] indicated that the
one-parameter Rayleigh distribution provides a satisfactory fit.

Example 2 In this example we consider one averagewind speed data analysis reported
in [5]. This data represent 30 average daily wind speeds (in km/h) for the month
of November 2007 recorded at Elanora Heights, a northeastern suburb of Sydney,
Australia. The calculated data are 2.7, 3.2, 2.1, 4.8, 7.6, 4.7, 4.2, 4.0, 2.9, 2.9, 4.6, 4.8,
4.3, 4.6, 3.7, 2.4, 4.9, 4.0, 7.7, 10.0, 5.2, 2.6, 4.2, 3.6, 2.5, 3.3, 3.1, 3.7, 2.8, 4.0.

For this data set, Best et al. [5] andAlizadeh et al. [2] fitted the Rayleigh distribution
successfully.

The probability values for some of more powerful tests in this paper of testing
Rayleighity for considered tests are presented in Table 5. Considering the fact that
the probability values of all tests are greater than 0.05 they are not significant at 5
percent significance level. Thus, we cannot reject the null hypothesis of Rayleighity.
It means the ball bearing data and the average wind speed data truly follow Rayleigh
distribution.
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Table 5 The p-value of the
most powerful tests in evaluating
Rayleighity

Tests K Lmn CKn DHmn Rn A2

Example 1 0.881 0.889 0.884 0.910 0.781

Example 2 0.276 0.298 0.342 0.312 0.304

5 Conclusion

The aim of this paper is to evaluate the performance of the proposed test. So, we
considered and compared eleven different GOF tests for evaluating Rayleighity. In
order to evaluate the ability of mentioned tests in identifying Rayleigh distribution by
a simulation study, the powers and type I error of the proposed test were computed
under several alternatives and different sample sizes in three different classes of hazard
rates. The results were tabulated in Tables 2 and 3 which are the powers of considered
tests at significance level 0.05.

Finally, we concluded that DHmn test which is a metric measure performed better
than the other tests. Therefore, the results obtained from this study encourage us to
use DHmn test in all three classes for real data that we do not know type of hazard
rate distribution.
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