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Abstract: This study deals with the design of a load sensorless multi-loop control system for the stand-alone inverter. In
the proposed strategy, only the inverter current is measured, which is practically required for both control and protection
purposes, then the load voltage and current are both estimated using the linear Kalman filter algorithm, and the gradient
descent adaptive control method, respectively. The estimated quantities are used as feedback signals of an inner-outer
double-loop controller, which uses a proportional-resonant outer-controller to regulate the output voltage with
minimum steady-state error and a simple proportional inner-controller to provide active damping and improve the
transient performance. The controller parameters are designed in the frequency domain based on the required
bandwidth and stability margin. Furthermore, the controllability and observability, as well as the stability of overall
digital control system, including the dynamics of estimators, are analytically investigated. Simulation and experimental
results, with a 600 VA prototype, confirm the theoretical achievements and illustrate the excellent performance of the
proposed estimation and control scheme.
1 Introduction

Distributed generation (DG) systems have attracted a lot of attentions
these days. Usually, a power electronic converter is utilised to
regulate the generated energy from DGs. In grid-connected
inverters, the DG unit acts as a controlled current source, while in
an islanded or stand-alone operation mode, the DG unit is the
source of power for local loads, and acts as a controlled voltage
source [1, 2]. Thus, in islanded operation mode, the inverter
should be able to support the local network with the appropriate
voltage and frequency. Various control methods for stand-alone
inverters are available in the literature, which can be classified
into: repetitive control [3, 4], dead-beat [5, 6] and model
predictive control (MPC) [7, 8], robust control, such as H-infinity
[9] and μ synthesis control [10], non-linear control, such as sliding
mode [11] and neural network control [12], and model based
instantaneous feedback control [13–16].

Repetitive control is specifically interesting in dealing with
periodic signals and can successfully reduce the periodic harmonic
distortions, while a large memory requirement, and poor
performance to non-periodic disturbances are attributed as its
major shortcomings [1, 3]. MPC has a relatively simple concept,
but as the name implies, requires an accurate model of the
converter system. This method is flexible and provides a fast
dynamic response [7–9]. The approaches based on robust control
theory can systematically handle the possible uncertainties in the
system and provide good trade-offs between performance and
stability margin. However, they are rather difficult to be
implemented on digital processors and design specifications of
them are complex [9]. Non-linear controllers present an excellent
dynamic performance, and prevent overshoot and ringing in the
output waveforms, but these techniques have some major
drawbacks, such as complexity, sensitivity to parameter variations,
and steady-state errors [2, 16].

In practice, the model based instantaneous feedback control is
widely accepted in industrial solutions, which can be realised either
single-loop or multi-loop. The single-loop controller employs a
voltage regulator with an additional resistor in the filter circuit,
which is intended to prevent possible resonances of the LC filter
with harmonic components generated by the inverter switching.
While being simple, the single-loop control with passive damping
suffers from additional losses of the damping resistor.

On the other hand, the active damping method uses a multi-loop
control, in which the additional control loop plays the role of the
virtual resistance for damping the resonance oscillations, and at the
same time, improving the system stability and dynamic
performance [17].

A major drawback associated to multi-loop control schemes is the
need for several sensor circuits necessary for measuring all
controlled quantities in the nested control loops [15, 16].

Several estimation schemes have been already proposed in
literature to replace some measurement circuits with software
algorithms [13, 14, 16]. A work by Ahmed et al., showed
promising results in this direction of research [13], where only the
load current is measured and the load voltage, and the capacitor
current, as the inner loop feedback signal, are successfully
estimated. However, their work suffers from two major drawbacks:
first, an LCL filter, instead of a commonly used LC filter, is
employed at the output of the inverter. With an LCL filter, the
output inductor increases the converter output impedance, and
consequently the harmonic voltage, when the load is distorted.
Second, the load current is measured in their work, however in
view of the inverter overcurrent protection, measurement of the
inverter current is necessary in practice, even if it is not directly
included in the control loops. Recently, a simple double-loop
control algorithm with proportional controllers in both voltage and
current loops is proposed, which replaces the load voltage sensor
with an estimation algorithm based on the Kalman filter, while
both inverter and load currents are measured directly [16].

In this paper, a modified multi-loop control method with the
minimal sensors is proposed for the single phase stand-alone
inverter. The multi-loop control scheme uses two estimated
variables as feedback signals for the control loops. The outer loop
regulates the output voltage via a proportional-resonant (PR)
controller, which ensures zero steady-state error tracking
performance of the 50 Hz reference signal. The inner loop actively
damps the possible resonances due to the LC filter, and
compensates the load disturbances through regulating the capacitor
current. For this purpose, only the inverter current is measured,
which is required for both control and protection purposes, then
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Table 1 System parameters

Parameter Description Value

C filter capacitance 25 µF
L filter inductance 3.7 mH
rL filter resistance 0.2 Ω
Vdc DC link voltage 250 V
Vo output voltage, rms 110 V
fs sampling/switching frequency 20 kHz
f fundamental frequency 50 Hz
S nominal power 600 VA
the load voltage, and the load current are estimated by the Kalman
filter, and the gradient descent adaptive control, respectively.
Consequently, the filter capacitor current, which is the inner loop
feedback variable, is calculated by the Kirchhoff’s current law.
Therefore, in principle, the proposed control scheme requires only
one current sensor to measure the inverter current for both control
and protection purposes. In Sections 4, and 5, the use of the
Kalman filter, and the gradient descent adaptive control for
operation of the multi-loop stand-alone inverter with only one
sensor in the circuit is suggested.
2 System modelling

The schematic diagram of the power circuit of the single phase
stand-alone inverter with output LC filter is shown in Fig. 1a.

The parameters of the converter circuit are summarised in Table 1.
Based on Fig. 1a, a mathematical model, describing the dynamics of
the stand-alone inverter can be derived as

v = rLiL + L
diL
dt

+ vO (1)

iL = iO + C
dvO
dt

(2)

where v, and vO are the output voltage of the inverter, and the load
voltage, respectively, and iL, and iO are the filter (inverter), and
load currents, respectively. Based on (1), and (2), and considering
that the switching frequency is much higher than the fundamental
frequency, the averaged switching model (ASM) of the inverter
can be obtained as Fig. 2a [16].

Equations (1), and (2) are rewritten as a state space system as
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A discrete-time model of the system is readily obtained from (3) by
assuming a sampling time Ts [13], as
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[ ]
(4)
Fig. 1 Schematic diagram of the

a Power stage of the single phase stand-alone inverter
b Proposed control system in presence of load voltage and current estimators
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3 Control of stand-alone inverter

3.1 Suggested control structure

Fig. 2b shows the suggested dual-loop control scheme. An outer loop
with the PR controller regulates the output voltage, while the
capacitor current is selected as the feedback signal in the inner
control loop. It is demonstrated that the capacitor current feedback
brings better disturbance rejection capability than the inductor or
load current feedback [1, 18–20]. However, the filter capacitor
current feedback scheme cannot incorporate inverter overcurrent
protection. To tackle this problem, instead of the capacitor
current, the inductor current is measured directly for both feedback
control, and overcurrent protection. It will be shown in the next
sections that the extra sensor for the capacitor current can be
replaced by an estimation algorithm. Moreover, the output voltage
sensor can be eliminated by using an appropriate voltage
estimator. Besides, in the suggested scheme a voltage feedforward
path is added to reduce the control effort, and improve the system
robustness [16].
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Fig. 2 Block diagram of the

a ASM of stand-alone inverter
b Multi-loop control system for stand-alone inverter
c Inner current control loop
d Simplified proposed control system
3.2 Controller parameters design

The model of the inverter with the inner current control loop is
shown in Fig. 2c, where Z is the load impedance [16]. By using a
simple proportional controller, the system analysis, and the
controller design are significantly simplified, and at the same time,
the problem of phase delay at the fundamental frequency,
associated to the PI controllers, is avoided.

The closed loop transfer function is obtained as

Gi(s) =
iC

iC,ref
= ZCKs

ZCLs2 + (ZC(rL + K)+ L)s+ rL
(5)

The current controller bandwidth is chosen to be one-tenth of the
switching frequency ( fs), i.e.

vbi = 2p (0.1× fs) = 2p (0.1× 20 kHz) ≃ 12.5 krad/s (6)

Consequently, K is determined from (5), by solving |Gi( jωbi)|
2 = 1/2,

to be about 65.
The next step is to tune the parameters of the voltage feedback

loop. Fig. 2d shows the simplified block diagram of the proposed
control system, in which the inner current control loop is replaced
by Gi(s) from (5).

The transfer function of a gain-limited PR controller is [21]

GPR(s) = Kp +
2Kivcs

s2 + 2vcs+ (2pf )2
(7)

where Kp, and Ki are the proportional and integral (resonator) gains,
respectively, and ωc is the frequency bandwidth around the
resonance frequency, which is commonly selected in the range of
5 to 10 rad/s [21, 22], and in our application is chosen to be 5 rad/s
that showed the best results for our application.

According to Monfared et al. [1], under light loads, the phase
margin (PM) and the closed loop stability are slightly reduced,
therefore the voltage loop PR controller is tuned under light load
conditions (Z tends to ∞). This assumption not only simplifies the
analysis, but also is conservative and ensures stability for all
operating conditions. Moreover, it is shown that the PR controller
is mathematically equivalent to a synchronous reference frame PI
(SRF-PI) controller [23]. Hence, the parameters of the PR
controller are designed according to the recommendations of
Monfared et al. [1], which proposes a frequency domain design
approach for the SRF-PI controller.
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The following analysis to determine Kp is based on the assumption
that the integral gain has almost no effect on the voltage regulation
dynamics. However, when attending the system stability, the effect
of Ki and Kp will be considered simultaneously. Using the
aforementioned assumption, the transfer function of the closed
loop system under light loads can be written as

G(s) = vo
vo,ref

= KKp

LCs2 + C(rL + K)s+ KKp
(8)

The choice of system bandwidth is a compromise between the
transient response, and the disturbance rejection requirement. In
practice, a value in the range of 10 times the fundamental
frequency, and one-tenth the switching frequency may be chosen
to get both fast dynamics, and switching noise immunity. For the
inverter under study, a value of 1.25 kHz is decided for the control
bandwidth which is in the middle of the desired range. Evaluating
(8) at ωbv = 2π × 1.25 kHz≃ 7.85 krad/s, by solving |G( jωbv)|

2 = 1/
2, yields Kp = 0.145.

Deciding the proportional gain, now the integral gain is
determined from the closed loop stability analysis. The system
characteristic equation, with considering the effect of Ki and Kp

simultaneously, is obtained as

s4 + C(rL + K)+ 2vcLC

LC
s3 + 2vcC(rL + K)+ KKp + LC(2pf )2

LC
s2

+ (rL + K)C(2pf )2 + 2Kvc(Kp + Ki)

LC
s+ KKp(2pf )

2

LC
= 0.

(9)

Applying the Routh–Hurwitz stability criterion to the system
characteristic polynomial of (9), gives the stability limit as

Ki ≤ Kp
K

2Lvc

− 1

[ ]
(10)

This establishes an upper limit for Ki in terms of L, K, ωc, and Kp,
which in our case is Kp × [K/2Lωc− 1]≃ 250. Sufficiently far from
the limit, Ki is chosen to be 25 in our work.

The open-loop bode plot is shown in Fig. 3, in which the resonant
term is set to zero due to its negligible effect on the bandwidth. This
figure indicates that the PM is more than 72°, which is quite enough
for most power electronic applications. However, this value for PM
cannot be achieved in practice, due to some practical effects, such as
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Fig. 3 Open-loop bode plot of the voltage control loop (Ki = 0)
control and pulse-width modulation (PWM) delays, and dynamics of
estimators. Indeed, digital control systems impose an additional time
delay in the control loop. This delay corresponds to the digital
sampling, program computation time, and PWM register update
and results in one and half PWM period delay in digital execution
of the control algorithm [1]. Besides, the delay of estimators must
be considered. Assuming a one sampling period delay for
estimators, the overall effect of digital implementation and
estimation dynamics can be simplified as a two and half sampling
period delay. In this work, the gain crossover frequency of the
open loop system (ωc) is about 5 krad/s, therefore each sampling
period delay decreases the PM by about 14°. Indeed, the digital
system delay does not affect the magnitude of the system transfer
functions; however the PM is reduced as ΔPM =−ωcTd, when a
time delay of Td contributes to the control loop [1]. Therefore, the
new PM is about 37° and still adequate to ensure the system stability.
4 Output voltage estimation with Kalman filter

The Kalman filter is a set of mathematical equations that provides an
efficient computational means to estimate the states of a process (x),
in a way that minimises the mean of the squared error [24]. In this
work, the Kalman filter is used for estimation of the output
voltage. For this purpose, by measurement of the filter inductor
current, estimates of state variables are obtained.

Assuming that xk = [iL(k) vO(k)]
T, and uk = [v(k) iO(k)]

T, the
stochastic difference equations of the studied system in (4), with
the measurement z, are expressed as

iL(k + 1)

vO(k + 1)

[ ]
︸������︷︷������︸
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= Ad

iL(k)

vO(k)

[ ]
︸���︷︷���︸

xk

+ Bd

v(k)

iO(k)

[ ]
︸���︷︷���︸

uk

+wk

zk = Hxk + vk .

(11)

The random variables wk, and vk represent the process, and
measurement noise, respectively.

The Kalman filter has two set of equations: the time update, and
the measurement update. The time update equations predict the
states and error covariance matrix (P) one sample in advance to
obtain the a priori estimate for the next time step. The
measurement update equations correct the predicted states and
error covariance matrix through a feedback correction scheme
from actual measurement (z), resulting in an improved a posteriori
estimate. For the system described by (11), the time update
equations are

x̂−k = Adx̂k−1 + Bduk−1 (12)

P−
k = AdPk−1A

T
d + Q (13)
4

and measurement update equations are

Kk = P−
k H

T(HP−
k H

T + R)−1 (14)

x̂k = x̂−k + Kk(zk − Hx̂−k ) (15)

Pk = (I − KkH)P−
k (16)

where H = [1 0], Kk is the Kalman gain, and P−
k , Pk, Q, and R are the

covariances matrices of a priori estimate error, a posteriori estimate
error, process noise, and measurement noise, respectively, defined as

P−
k = E[(xk − x̂−k )(xk − x̂−k )

T], Q = E[wkw
T
k ]

Pk = E[(xk − x̂k )(xk − x̂k )
T], R = E[vkv

T
k ].

(17)

It should be noted that we need the initial values for states (x̂0) and
error covariance matrix (P0), which are usually set to zero. Moreover,
it is a common practice to assume the noise covariance matrices as
unity matrices [25]. Therefore, Q and R are assumed to be

Q = 1 0
0 1

[ ]
(18)

R = 1 (19)

After each time and measurement update pair, the process is repeated
with the previous a posteriori estimate used to predict the new a
priori estimate [26].

Finally, as already shown in Fig. 1b, the Kalman algorithm receives
the measured state variable iL and the input variables v and îO to
estimate the other state variable (v̂O). Moreover, it calculates the
estimated/filtered version of the measured inverter current (îL), from
the developed converter model, which will be used to estimate the
load current through the gradient descent algorithm.

It should be noted that the input vector of u consists of the inverter
output voltage, and the load current. Evidently, the inverter output
voltage can be replaced by its reference, and therefore, no extra
measurement is needed. Moreover, the load current is estimated by
the gradient descent adaptive controller, which will be described in
the next section.
5 Output current estimation with gradient
descent

This is not possible to use the Kalman filter to estimate the output
current too; because the added equation for this variable will change
the observability of the system. Therefore, the gradient descent
adaptive control is adopted in conjunction with the estimate
provided by the Kalman filter as a means to estimate the output
current, which is then used by the Kalman algorithm. The gradient
descent, also known as the steepest descent, is a first-order
optimisation algorithm, which searches for the minimum of a
function of many variables [27]. In our problem, the difference
between the actual and estimated filter inductor current is used for
the estimation of the output current. For this purpose, the cost
function, and equations of estimation are proposed as [13, 19]

eo(k) = iL(k)− îL(k) (20)

f (k) = 1

2
(iL(k)− îL(k))

2 = 1

2
e2o(k) (21)

îO(k + 1) = îO(k)− l∇f (k) = îO(k)− leo(k) (22)

where f(k) is the quadratic cost function, l is a positive gain, which
controls the speed of convergence and stability of the controller, and
∇f(k) is the gradient of the cost function with respect to the filter
inductor current, and as previous, the quantities with a ^ are the
estimated ones.
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Table 2 Comparative results for the converter operation with and without the estimators

Loading condition vo,
rms

io with estimators without estimators

rms CF THD,
%

THDv,
%

Voltage
amplitude error,

%

Voltage phase
error, degree

THDv,
%

Voltage
amplitude error,

%

Voltage phase
error, degree

nominal
resistive load

Sim.
(Fig. 4)

110.2 5.5 1.41 0.04 0.04 2.50 <1 0.03 1.54 <0.5

Exp.
(Fig. 7)

111.4 5.3 1.45 1.9 2.3 3.85 <1 1.9 2.56 <0.5

no load Sim.
(Fig. 4)

110.2 0 – – 0.06 2.66 <1 0.03 1.54 <0.5

Exp.
(Fig. 8)

111.2 0 – – 1.6 3.85 <1 1.4 2.56 <0.5

highly
non-linear load

Sim.
(Fig. 4)

110.2 4.4 3.12 88.5 1.77 4.42 <1 1.72 3.22 <0.5

Exp.
(Fig. 7)

110.8 4.7 3.51 75 4.6 6.41 <1 4.4 4.50 <0.5
The selection of the gain l is conducted according to the
Lyapunov theory. The proposed Lyapunov function can be e2o(k),
which must satisfy the criteria of the Lyapunov theory:

(i) e2o(k) > 0, that the square function satisfies this condition.
(ii) De2o(k) < 0, that to satisfy requirement of this criterion, the
inequality of (23) must hold.

e2o(k + 1)− e2o(k) , 0 ⇒ f (k + 1) , f (k) (23)

As shown in [28], if l < (1/L(∇f )), the inequality of (23) will be
established, where L(∇f ) is known as the Lipschitz constant of
Fig. 4 Measured and estimated output voltage and current

a Under the nominal linear load
b Transient from no load to full load
c Transient on zero power command startup
d Under a highly non-linear load
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∇f (k), and has the maximum of the derivatives at all points. In this
paper, ∇f (k) is eo(k), and therefore L(∇f ) = 1, which sets l < 1. In
our work, l is chosen to be 0.5.

Compared with the procedure already reported in [19], in this
paper, a modification to (23) is proposed, which is realised by
substituting îO(k) with the average of i∗o(k) and îO(k), where i∗o(k)
is obtained by the KCL in the output node, as

i∗O(k) = iL(k)− C
v̂O(k)− v̂O(k − 1)

Ts
(24)

This modification increases the convergence speed, the accuracy of
estimation, and especially the stability of the system. However, at
5



the end of Section 3, the stability margin was examined with the
simplified assumption that the estimators can be simply modelled
as a unit delay, the stability of overall system, including the
dynamics of estimators, is discussed in details in Appendix
1. Moreover, the controllability and observability of overall system
is investigated in Appendix 2.
Fig. 6 Effect of L and C mismatches on

a Error of estimated voltage
b Error of estimated current
c THD of output voltage

Fig. 5 Effect of L and C mismatches (in per cent) on

a PM
b Closed-loop control bandwidth
6 Performance evaluation

6.1 Simulation experiments

To confirm the performance of the proposed multi-loop load
parameter sensorless control algorithm, the single-phase inverter
system of Fig. 1b has been extensively investigated using
MATLAB/SIMULINK simulations. The simulation parameters are
listed in Table 1. Moreover, the steady-state performance of the
double-loop control scheme of Fig. 1b without the estimators (with
direct measurement of load voltage and current) is compared with
the load sensorless operation with numerical results in Table 2.

Fig. 4a shows the steady-state measured and estimated output
voltage and current for the nominal linear load. No steady-state
phase and amplitude error can be recognised, and the estimated
load voltage and current track the actual ones accurately. The total
harmonic distortion (THD) of output voltage is 0.04%.

Figs. 4b and c present the transient performance of the system
under no load to full load, and zero power command startup
transitions. It can be seen that the transient dies out rapidly, and
the estimation error remains almost unchanged during the load
change or startup. This excellent transient performance is achieved
because the capacitor current changes instantaneously with the
load current change, irrespective of the inductor current.

The performance of the proposed control scheme was evaluated
under a highly non-linear load, and the results are shown in Fig. 4d.
The non-linear load, designed according to IEC 62040-3 standard
(Annex E), consists of a 2 Ω resistor in series with a diode rectifier
bridge feeding a 3400 µF capacitor in parallel with a 45 Ω resistor.
One can see in Fig. 4d that while the load current is highly
distorted, with a THD of about 90%, the voltage waveform remains
sinusoidal (THD= 1.7%). It is worth mentioning that the standard
limit for the voltage THD under this condition is 8% [29].
Moreover, the estimated waveforms track the actual ones perfectly.

In practice, the parameters of the LC filter may not be exactly
known or may vary as a consequence of varying operating
conditions and aging. The performance of the control system
without the estimators, in terms of the PM and the control
bandwidth, considering mismatches in the L and C values, is
investigated, and the results are depicted in Fig. 5. Fig. 5a shows
that L and C uncertainties lead to PM variations; however for a
wide range of mismatches the PM remains satisfactory. Moreover,
Fig. 5b shows that the ωbv mainly remains unchanged with
inductance mismatches, however the capacitance uncertainties lead to
large bandwidth variations, especially if the capacitor value is
underestimated, then a remarkable increase in the voltage loop
bandwidth is expected. This may cause the system response to be
highly oscillatory and even unstable. The performance of
the estimators in presence of mismatches is also investigated, and the
results are depicted in Fig. 6. This figure shows that mismatches in
the L and C values, have almost no effect on the THD of output
voltage and the operation of the current estimator. Moreover, Fig. 6a
shows that while the voltage estimator acts properly in presence of
considerable inductance mismatches, but the capacitance uncertainties
have a high impact on the operation of the voltage estimator.

This is caused by the significant role of the capacitor value
compared with the inductor value in the state-space equations of
the Kalman filter algorithm. As seen in (27), L and C appear as
Ts/L and Ts/C terms in the voltage estimation equation, which in
our application are 0.013 and 2, respectively. This is the main
reason that the voltage estimator is more susceptible to capacitor
mismatches than the inductor mismatches. Therefore, the
proposed method requires an accurate recognition of the filter
capacitor value.
6

6.2 Practical implementation

A digitally controlled single-phase inverter was developed to verify
the conclusions of the simulation studies. The experimental platform
IET Power Electron., pp. 1–9
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Fig. 7 Steady-state waveforms for

a and b the nominal resistive load (R = 20 Ω)
c and d the highly non-linear load
consists of a dc-link, a full-bridge IGBT intelligent power module,
an output LC filter, measurement, and gate drive circuits.

The dc-link is fed from a three-phase diode-bridge rectifier. The
control algorithm is implemented by using a TMS320F28335
digital signal processor from Texas Instruments. The experimental
system parameters are the same as the simulation studies. Again,
the converter operation with and without the estimators is
compared numerically in Table 2.

In the first study, the steady-state behaviour of the proposed
controller under the nominal resistive load is investigated, and the
results are shown in Figs. 7a and b, where the load voltage and
current, as well as, the estimation errors are depicted. The
Fig. 8 Transient waveforms for

a and b no load to nominal load step change
c and d zero power startup command

IET Power Electron., pp. 1–9
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performance of both estimators is excellent. It is also shown that
the output voltage is sinusoidal with a very low distortion.

In another study, as a worst case operation, a highly non-linear
load similar to the simulated one is connected to the inverter
output and the results are shown in Figs. 7c and d. Here, the load
voltage is still sinusoidal (THD = 4.6%), despite the highly
distorted load current with a THD of about 75% and a crest factor
of about 3.5:1.

Finally, the transient behaviour of the system for a load step
change from no load to the nominal resistive load is shown in
Figs. 8a and b. It can be seen that the output voltage is not
affected by the change in the load, and the current regulator
7



dynamic is fast, and smooth. In addition, the startup transient
behaviour of the system is shown in Figs. 8c and d. In this case,
all transients, including the estimation and control of the output
voltage, die in less than a quarter of cycle.

As already stated, the quality of the voltage waveform in terms of
THD and the steady-state amplitude and phase errors for different
loading conditions are summarised in Table 2. The operation with
and without the estimators are compared in simulations and
experiments. The simulation and experimental results agree. The
increase of the output voltage THD with the estimators compared
with the direct measurement case is around 10%. The deviation of
the output voltage phase from its reference is negligible, while the
deviation of the output voltage amplitude from its reference, for
the worst loading condition, is still below 5% and 6.5% for
operation with direct measurement and estimation of load
parameters, respectively.
7 Conclusion

The feasibility and performance of a load parameter sensorless
dual-loop control method for the single-phase stand-alone inverter
with the output LC filter have been investigated. This control
topology involves two main control loops: an output voltage
control loop, in which the feedback variable is estimated by the
Kalman filter, and a capacitor current control loop, in which the
feedback variable is estimated by the gradient descent adaptive
controller. In principle, the proposed control scheme requires only
one current sensor to measure the inverter current for control and
protection purposes. The proposed control and estimation strategy
can supply different load types with negligible control error and
harmonic distortions in the output voltage, however it requires an
accurate identification of the filter capacitor value.
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9 Appendices

9.1 Stability of overall system, including the dynamics of
estimators

Assuming that the Kalman gain Kk = [K1 K2]
T is in its steady-state

condition, then by substituting (12) in (15), the a posteriori
estimate of state variables can be written as

x̂k+1 = 1− K1 0
−K2 1

[ ]
(Adx̂k + Bduk )+ K1

K2

[ ]
zk+1 (25)

Substituting for Ad and Bd from (4) and expanding the result, yields

îL(k + 1) = (1− K1) 1− rLTs
L

( )
îL(k)− (1− K1)

Ts
L
v̂O(k)

+ K1 1− rLTs
L

( )
iL(k)− K1

Ts
L
vO(k)+ v(k) (26)

v̂O(k + 1) = −K2 1− rLTs
L

( )
+ Ts

C

( )
îL(k)

+ K2
Ts
L
+ 1

( )
v̂O(k)−

Ts
C
îO(k)

+ K2 1− rLTs
L

( )
iL(k)− K2

Ts
L
vO(k) (27)

Moreover, the dynamic equation of the gradient descent is obtained
by substituting (24) in (22) as

îO(k + 1) = 1

2
(îO(k) + iL(k)) −

1

2

C

Ts
(v̂O(k) − v̂O(k − 1))

− l(iL(k) − îL(k)) (28)
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With the assumption that v̂O(k) = v̂O(k − 1), (28) simplifies to

îO(k + 1) = 1

2
îO(k)+

1

2
− l

( )
iL(k)+ lîL(k) (29)

Finally, the state space equations of system with considering the
equations of the estimators ((26), (27), and (29)) can be concluded as
(see (30))

To ensure the BIBO stability of discrete time systems, all
eigenvalues must lie inside the unit circle in the complex plane.

The magnitudes of eigenvalues of system dynamics matrix AOd

calculated with the system parameters, are

0.3770,

0.5055,

0.9943,

0.9970,

0.9993
iL(k + 1)

vO(k + 1)

îO(k + 1)

îL(k + 1)

v̂O(k + 1)

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦ =

1− rLTs
L

−Ts
L

0 0

Ts
C

1 −Ts
C

0

0.5− l 0 0.5 l

K1 1− rLTs
L

( )
−K1

Ts
L

0 (1− K1) 1−
(

K2 1− rLTs
L

( )
−K2

Ts
L

−Ts
C

−K2 1− rLT

L

(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
︸������������������������������������������������︷︷��������������

AOd

îO(k + 1)

v̂O(k + 1)

[ ]
=

0.5− l 0 0.5 l

K2 1− rLTs
L

( )
−K2

Ts
L

−Ts
C

−K2 1− rLT

L

(⎡
⎣
︸����������������������������������������������︷︷�����������������

COd
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which are all inside the stability region. Therefore, the overall system
considering the equations of the estimators is asymptotically stable.

9.2 Observability and controllability of overall system,
including the dynamics of estimators

The state space equations of system with considering the equations
of the estimators is obtained as (30). Hence, controllability and
observability of overall system can be obtained from below matrices.

S = BOc AOcBOc A2
OcBOc A3

OcBOc A4
OcBOc

[ ]
(31)

V =

Cod

CodAod

CodA
2
od

CodA
3
od

CodA
4
od

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ (32)

The matrices (31), and (32) have full rank. As a result, the overall
dynamic system is observable and controllable.
0

0

0
rLTs
L

)
−(1− K1)

Ts
L

s

)
+ Ts

C
K2

Ts
L
+ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

����������������������������������︸

iL(k)

vO(k)

îO(k)

îL(k)

v̂O(k)

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦+

Ts
L

0

0 0

0 0

1 0

0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸����︷︷����︸
BOd

v(k)

iO(k)

[ ]

0
s

)
+ Ts

C
K2

Ts
L
+ 1

⎤
⎦

�����������������������������︸
îO(k)

v̂O(k)

[ ]
+ 0 0

0 0

[ ]
︸���︷︷���︸

DOd

v(k)

iO(k)

[ ]

(30)
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