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ABSTRACT
In this articleweprove a central limit theorem for the Lp distance In(p) =∫
R

|fn(x)− f (x)|pdμ(x), 1 ≤ p < ∞, where μ is a weight function and
fn is the kernel density estimator proposed by Jones (1991) for length-
biased data. The approach is based on the invariance principle for the
empirical processes proved by Horváth (1985). We study the difference
In(p)with its approximation in terms of its rates of convergence to zero.
We subsequently present a central limit theorem for approximation of
In(p).

1. Introduction

Consider the kernel estimate fn of a real univariate density f introduced by Rosenblatt
(1956):

fn(t ) = 1
nhn

n∑
i=1

K
(
t − Xi

hn

)

whereX1, . . . ,Xn are independent observations from f ,K is a kernel function, and hn a band-
width. A common stochastic measure of the global performance of fn is defined by the Lp

distance

In(p) =
∫
R

| fn(x)− f (x)|pdμ(x), 1 ≤ p < ∞

Wegman (1972) used In(2) to compare the performance of estimators in Monte Carlo trials.
Steele (1978) identified the need to determine the relationship between various measures of
accuracy in density estimation. One suchmeasure, the order of In(2)− EIn(2), is particularly
important in statistics. Hall (1982) first began addressing the issues raised in Steele (1978) by
computing the exact order of convergence of In(2)− EIn(2) to zero using the strong approxi-
mation technique developed by Komlós et al. (1975) for the standard empirical process. Cen-
tral limit theorems for the In(2), based on theKarhunen-Loève expansion, are proved in Bickel
and Rosenblatt (1973). By using martingale techniques, central limit theorems for In(2) have
been obtained by Hall (1984).

A remarkable central limit theorem for the L1 distance ofGrenander’smaximum likelihood
estimate for monotone densities concentrated on a bounded interval is due to Groeneboom
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(1985), which has been discussed in Devroye and Györfi (1985). Their book contains neces-
sary and sufficient conditions for In(1) → 0 in probability or almost surely converges when
μ(t ) = t . The choice of the L1 distance is motivated by invariance under monotone trans-
formations of the coordinate axes and the fact that it is well defined for μ(t ) = t . A central
limit theorem for the Lp distance of Grenander-type estimators for monotone functions was
proved by Durot (2007).

Central limit theorems for In(p), for any p ≥ 1, have been established by Csörgő and
Horváth (1988), by which a test of hypothesis can be carried out for the density function
of f . The results in Csörgő and Horváth (1988) are not restricted to the case of μ(t ) =
t , and do not assume the finiteness of the support of μ. Horváth (1991) has extended
the work of Csörgő and Horváth (1988) to the multivariate case. In the random censor-
ship model, Csörgő et al. (1991) obtained central limit theorems for Lp distances (1 ≤ p <
∞) of kernel estimators. Mojirsheibani (2009) presented two approximations for Lp dis-
tances (1 ≤ p < ∞) of kernel estimators with central limit theorems for them on complete
samples.

The aim of this article is to study a central limit theorem for In(p) in the length-biased
setting. The practical applications of biased sampling range from social sciences, economics,
and quality control to biological and epidemiological studies. A case of particular interest is
the so-called length-biased sampling, also known as stock sampling in labor force studies. In
length-biased sampling subjects are recruited with a probability proportional to their “length”.
The resulting distribution is called the length-biased distribution.

There are studies in the literature on length-biased data at least as old as Wicksel (1925).
The phenomenon of length-bias was systematically studied byMcFadden (1962), Blumenthal
(1967), and later by Cox (1969) in the context of estimating the distribution of fiber lengths in
a fabric. Vardi (1982, 1985), Gill et al. (1988), andVardi (1989) laid down the theoretical foun-
dation of biased sampling. Furthermore, an invariance principle for the empirical processes
was proven by Horváth (1985).

An interesting overview of non parametric contributions to the literature on estimat-
ing problems when the observations are taken from weighted distributions can be found in
Cristóbal and Alcalá (2001).

Kernel density estimation for length-biased data has been investigated by Bhattacharyya
et al. (1988) and Jones (1991). Jones’ estimator proved to possess various advantages over the
former. It is a probability density function, which is particularly better behaved near zero, that
has better asymptotic mean integrated squared error properties and is more readily extend-
able to related problems such as density derivative estimation. From another perspective, the
asymptotic results on sharp minimax density estimation for length-biased data were derived
by Efromovich (2004).

More recently, based on invariance principles for empirical processes, the strong uniform
consistency and asymptotic normality of the kernel density estimator proposed by Jones
(1991) has been proved by Ajami et al. (2013).

In this article, based on the invariance principle for the empirical processes proven by
Horváth (1985), we first establish a central limit theorem for In(p) in the length-biased setting.
Much like the approximation of Lp distance in Mojirsheibani (2009), we obtain an approxi-
mation for In(p) for which we prove a central limit theorem.

The layout of this article is as follows: In Sec. 2, after a review on the length-biased distri-
bution we introduce our notation and present some preliminaries. In Sec. 3, we present the
main results. In order to prove the main theorems, some auxiliary results are needed, which
are included in the Appendix.
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2. Preliminaries

The random variableY has a length-biased distribution of G, if for a given distribution func-
tion F , the d.f. ofY is defined by

G(t ) = 1
μ

∫ t

0
xdF(x), t ≥ 0 (1)

whereμ = ∫∞
0 xdF(x), and is assumed to be finite. Throughout this article we assume thatG

is continuous on R
+ = [0,∞). From this it can be concluded that F is also continuous. Let

F and G have density functions of f and g, respectively. Using Equation (1) the density of Y
is given by

g(t ) = t f (t )
μ

, t ≥ 0

An elementary calculation shows that F is determined uniquely by G, as follows:

F(t ) = μ

∫ t

0
y−1dG(y), t ≥ 0

Let Y1, . . . ,Yn be a sample of the independently and identically distributed from G. The
empirical estimator of F can thus be written in the form of

Fn(t ) = μn

∫ t

0
y−1dGn(y) (2)

where

μ−1
n =

∫ ∞

0
y−1dGn(y) (3)

Gn is an empirical estimator of G given by

Gn(t ) = 1
n

n∑
i=1

I(Yi < t )

where I(A) denotes the indicator of the event A.
Based on a random sample Y1, . . . ,Yn, Jones (1991) proposed the following estimator for

the density function of f :

fn(t ) = 1
hn

∫
R

K
(
t − u
hn

)
dFn(u) (4)

where K is a kernel function and hn is a sequence of (positive) bandwidths tending to zero as
n → ∞.

In this article based on (4), we study the Lp distance

In(p) = In(T, p) =
∫ T

0

∣∣ fn(x)− f (x)
∣∣pdμ(x) 1 ≤ p < ∞ (5)

where 0 < T < ∞ and μ is a measure on the Borel sets on R.

Before stating our results, we introduce further notations and then list all the assumptions
used in this article.
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Assumptions
C(1). dμ(t ) = w(t )dt, where w(t ) ≥ 0 and continuous on [0, τ ], where T < τ < ∞ and

τ = sup{x,G(x) < 1}.
K. Assumptions on the kernel K:
K(1). There is a finite interval such that K is continuous and bounded on it and vanishes

outside of this interval.
K(2).

∫
R
K2(t )dt > 0.

K(3). K is of bounded variation.
K(4). K ′ exists and is bounded.
K(5).

∫
R
K(t )dt = 1.

K(6).
∫
R
tK(t )dt = 0, and

∫
R

|t|3K(t )dt < ∞.

Assumptions on the density f :
F(1). f is uniformly bounded (a.s.) on the [0, τ ].

F(2).
∣∣∣ f

′
(x)

x
1
2 f

1
2 (x)

∣∣∣ and ∣∣∣ f 12 (x)
x
3
2

∣∣∣ are uniformly bounded (a.s.) on the [0, τ ].

F(3). f ′′′ exists and is uniformly bounded (a.s.) on the [0, τ ].
Assumptions on the distributions function G:

G(1). (G(x))
1
r x−2 is uniformly bounded (a.s.) on the (0, τ ) for some r > 2.

Throughout this article N = N(0, 1) stands for a standard normal random variable. Let

σ (t ) = μ2
∫ t

0
y−2dG(y)

σ = lim
t→∞

σ (t ) = μ2
∫ ∞

0
y−2dG(y)

P(x) = (σ (x)
′
)
1
2

m(p) = m(T, p) = E|N|p
(∫

R

K2(t )dt
) p

2
∫ T

0
(σ

′
(t ))

p
2 dμ(t )

r(t ) =
∫
R
K(u)K(t + u)du∫

R
K2(u)du

σ 2
1 = (2π)−1

∫ +∞

−∞

(∫ +∞

−∞

∫ +∞

−∞
|xy|p(1 − r2(u))−1/2

× exp
(

− 1
2(1 − r2(u))

(
x2 − 2xyr(u)+ y2

))
dxdy − (E|N|p)2

)
du

σ 2(p) = σ 2(T, p) = σ 2
1

∫ T

o
(σ

′
(t ))

p
w2(t )dt

(∫
R

K2(t )dt
)p

A natural choice for w(t )dt = dμ(t ) is

w(t )dt = dμ(t ) = (σ
′
(x))

− p
2 f

p
2 dF =

(
x
μ

) p
2

dF (6)

Namely by (6) and the above definitions ofm(p) and σ 2(p) and In(p) in (5), we have

m(p) = E|N|p
(∫

R

K2(t )dt
) p

2
∫ T

0
f

p+2
2 (t )d(t )

σ 2 = σ 2
1

∫ T

0
f p+2(t )dt

(∫
R

K2(t )dt
)p



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 9251

and

In(p) =
∫ T

0
| fn(x)− f (x)|p

(
x
μ

) p
2

dF(x) (7)

We propose an approximation to (7) by

Jn(p) = Jn(T, p) =
∫
R

∣∣ fn(x)− f (x)
∣∣p( x

μn

) p
2

dFn(x) (8)

Observe that Jn(p) corresponds to the approximation of In(p) by replacing F and μ with Fn
and μn given by (2) and (3), respectively. We study the difference between Jn(p) and In(p) as
n → ∞. As a by-product of our findings, we will also state a central limit theorem for the
properly standardized version of Jn(p).

3. Main results

In this section we present our main results. The following inequality will be used in the proof
of the main theorems. Let 1 ≤ p < ∞, then for functions q and u in Lp, we have∫ ∞

0

∣∣|q(t )|p − |u(t )|p∣∣dμ(t )
≤ p2p−1

∫ ∞

0

∣∣q(t )− u(t )
∣∣pdμ(t )

+ p2p−1
(∫ ∞

0
|u(t )|pdμ(t )

)1− 1
p
(∫ ∞

0
|q(t )− u(t )|pdμ(t )

) 1
p

(9)

In the following theorem, we study the asymptotic normality of In(p).

Theorem1. Let 1 < p < ∞. AssumeK(1)–K(3),K(5)− K(6), F(2)− F(3), andC(1) hold.
If as n → ∞,

hn → 0, h−1
n n−B → 0, h4nn → 0

(for any 0 < B < 1
2 − 1

r , (r > 4)), then

(hnσ 2(p))−
1
2 {(nhn)

p
2 In(p)− m(p)} D−→ N(0, 1)

Proof. K(5)− K(6) and F(3) with the two-term Taylor expansion

f (t − uhn)− f (t ) = −uhn f
′
(t )+ 1

2
u2h2n f

′′
(t )− 1

6
u3h3n f

′′′
(t∗),

where t∗ ∈ (t ∧ (t − uhn), t ∨ (t − uhn)
)
, imply that

f(n)(t )− f (t ) =
∫
R

(
f (t − uhn)− f (t )

)
K(u)du

= 1
2
h2n f

′′
(t )
∫
R

u2K(u)du − 1
6
h3n f

′′′
(t∗)

∫
R

u3K(u)du

= Op(h2n) (10)

where

f(n)(t ) = (hn)−1
∫
R

K
(
t − x
hn

)
dF(x) (11)
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Hence by Lemma 4 and (10), we obtain∫ T

0

∣∣∣∣∣ fn(t )− f(n)(t )
∣∣p − ∣∣ fn(t )− f (t )

∣∣p∣∣∣dμ(t )
≤ p2p−1

∫ T

0
| f(n)(t )− f (t )|pdμ(t )

+ p2p−1
(∫ T

0
| fn(t )− f(n)(t )|pdμ(t )

)1− 1
p

×
(∫ T

0
| f(n)(t )− f (t )|pdμ(t )

) 1
p

= Op(h2pn )+ Op

(
(nhn)−

p
2 (1− 1

p )
)
Op(h2n)

Therefore,

(σ 2(p)hn)−
1
2 {(nhn)

p
2 In(p)− m(p)} = n

p
2Op

(
h

5p−1
2

n

)
+ Op

(
h2nn

1
2

)
+(σ 2(p)hn)−

1
2 {(nhn)

p
2 În(p)− m(p)}

The condition limn→∞nh4n = 0, Slutsky theorem, and Lemma 4 complete the proof. �

Since F is unknown, Theorem 1 is not practically useful. In Lemma 6, we approximate
In(p) with Jn(p) in (8). Next in Theorem 2, we state a central limit theorem for Jn(p).

Theorem 2. Let p > 1 be an even integer and assume thatK(1)− K(3),K(5)− K(6), F(2)−
F(3), C(1), and G(1) hold. If, as n → ∞,

hn → 0, nh4n → 0,

n−Bh−1
n → 0,

nh3n
log log n

→ ∞

(for any 0 < B < 1
2 − 1

r , (r > 4)), then

(hnσ 2(p))−
1
2
[
(nhn)

p
2 Jn(p)− m(p)

] D−→ N(0, 1)

Proof. The proof follows from Lemma 6, Theorem 1, and the fact that, under the conditions
of the theorem (on n and hn),

(hnσ 2(p))−
1
2 n

p
2 h

p
2
n

∣∣∣Jn(p)− In(p)
∣∣∣ = op(1) �
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Appendix

In order to make the proofs easier, we need some auxiliary results and notations.

Lemma 1. Let �(1)n (x) = ∫
R
K
(
x−y
hn

)
dW (y). Assume K(1)–K(2), C(1), and F(1) hold. If

limn→∞ hn = 0, then, as n → ∞, we have

(
(hn)p+1σ 2(p)

)− 1
2

{∫ T

0

∣∣P(x)�(1)n (x)
∣∣pdμ(x)− h

p
2
n m(p)

}
D−→ N(0, 1)
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Proof. The proof of Lemma 1 goes along the lines of the proof of Lemmas 1 and 2 in Csörgő
and Horváth (1988). �

Lemma 2. Let �(2)n (x) = ∫
R
K
(
x−y
hn

)
P(y)dW (y). Assume K(1)–K(3), C(1), and F(2) hold.

If limn→∞ hn = 0, then, as n → ∞, we have

(hp+1
n σ 2(p))−

1
2

{∫ T

0
|�(2)n (x)|pdμ(x)− h

p
2
n m(p)

}
D−→ N(0, 1)

Proof.

�(2)n (x) = P(x)�(1)n (x)+
∫ 1

−1
(W (x − yhn)−W (x))(P(x − yhn)− P(x))dK(y)

+
∫ 1

−1

(
W (x − yhn)−W (x)

)
K(y)dP(x − yhn)

: = P(x)�(1)n (x)+ A(1)n (x)+ A(2)n (x)

Using now continuity of Wiener process, the mean value theorem, and F(2), we get

sup
0<x≤T

|A(1)n (x)| ≤ sup
0<t≤T

sup
0<s≤hn

|W (t + s)−W (t )|

×
∫
R

∣∣∣(P(x − yhn)− P(x))
∣∣∣∣∣∣dK(y)∣∣∣

≤ Chn sup
0<t≤T

sup
0<s≤hn

|W (t + s)−W (t )|

× sup
0<x≤T+hn

∣∣∣∣∣ f ′(x)
x 1

2 f 1
2 (x)

− f 1
2 (x)
x 3

2

∣∣∣∣∣ = op(hn) (A.1)

A similar argument gives

sup
0<x≤T

|A(2)n (x)| = op(hn) (A.2)

Applying (9), Lemma 1, (A.1), and (A.2), we obtain
∣∣∣∣
∫ T

0
|�(2)n (x)|pdμ(x)−

∫ T

0
|P(x)�(1)n (x)|pdμ(x)

∣∣∣∣
≤ p2p−1

∫ T

0

∣∣A(1)n (x)+ A(2)n (x)
∣∣p dμ(x)

+p2p−1
(∫ T

0

∣∣P(x)�(1)n (x)
∣∣p dμ(x))1− 1

p

×
(∫ T

0

∣∣A(1)n (x)+ A(2)n (x)
∣∣p dμ(x))

1
p

= op(hp
n)+ op

(
h
(p+1)

2
n

)
(A.3)

(A.3) and Lemma 1 complete the proof. �
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In the following, we use the strong approximation for the empirical process αn(t ) =√
n[Fn(t )− F(t )], which has been proven by Horváth (1985). He defined a mean zero Gaus-

sian process

�(t, n) = μ

∫ t

0
y−1dB(y, n)− μF(t )

∫ ∞

0
y−1dB(y, n) (A.4)

with covariance function

E[�(x, n)�(y,m)] = (mn)−
1
2 (m ∧ n)

[
σ (x ∧ y)

−F(x)σ (y)− F(y)σ (x)+ F(x)F(y)σ
]

(A.5)

such that it approximates the empirical process αn(t ). In (A.4), B(t, n) is a two-parameter
Gaussian process with zero mean and covariance function

E[B(x, n)B(y,m)] = (mn)−
1
2 (m ∧ n)[G(x ∧ y)− G(x)G(y)] (a ∧ b = min(a, b))

which approximate the empirical process

βn(t ) = √
n[Gn(t )− G(t )], t ≥ 0

as obtained by Komlós et al. (1975). Let {W (u, v ), u, v ≥ 0} denote a two-parameterWiener
process. By (A.5), the following representation holds:{

n
1
2�(t, n), t ≥ 0, n ≥ 1

}
D= {W (σ (t ), n)− F(t )W (σ, n), t ≥ 0, n ≥ 1} (A.6)

where D= denotes an equal in distribution.

Lemma 3. Let �n,2(x) = ∫
R
K( x−y

hn
)d�(y, n). Assume K(1)–K(3), C(1), and F(2) hold. If

limn→∞ hn = 0, then, as n → ∞, we can write

(
hp+1
n σ 2(p)

)− 1
2

{∫ T

0
|�n,2(x)|pdμ(x)− h

p
2
n m(p)

}
D−→ N(0, 1)

Proof. By using (A.6),

�n,2(x) =
∫
R

K
(
x − y
hn

)
d�(y, n) D=

∫
R

K
(
x − y
hn

)
d
(
W (σ (y), n)√

n
− F(y)

W (σ, n)√
n

)

Since {
W (x, n)√

n
; 0 ≤ x < ∞, n ≥ 1

}
D= {Wn(x); 0 ≤ x < ∞, n ≥ 1} (A.7)

whereWn(x) is a sequence of standard Wiener processes andWn(x)
D= W (t ) for each n, it is

enough to show that

(
hp+1
n σ 2(p)

)− 1
2

{∫ T

0
|�′

n,2(x)|pdμ(x)− h
p
2
n m(p)

}
D−→ N(0, 1)

where �′
n,2(x) = ∫

R
K( x−y

hn
)d(W (σ (y))− F(y)W (σ )). At first note that∫

R

K
(
x − y
hn

)
W (σ )dF(y)
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is normally distributed with mean 0 and variance

∑
n,x

= σ

(∫
R

K
(
x − y
hn

)
dF(y)

)2

Therefore, for each x,∣∣∣∣
∫
R

K
(
x − y
hn

)
W (σ )dF(y)

∣∣∣ D= |N|
∣∣∣σ 1/2

∫
R

K
(
x − y
hn

)
dF(y)

∣∣∣∣
By F(1) ∫

R

K
(
x − y
hn

)
f (y)dy = hn

∫
R

K(u) f (x − uhn)du

≤ Mhn
∫
R

K(u)du

= O(hn)

whereM = sup0≤x≤τ f (t ).Hence∫
R

K
(
x − y
hn

)
W (σ )dF(y) = Op(hn) (A.8)

Since for each n, ∫
R

K
(
x − y
hn

)
d
(
W (σ (y))

) D= �n
(2)(x) (A.9)

(9), (A.8), and Lemma 2 imply that∣∣∣∣
∫ T

0

∣∣∣ ∫
R

K
(
x − y
hn

)
d
(
W (σ (y))

∣∣∣pdμ(x)−
∫ T

0
|�′

n,2(x)|pdμ(x)
∣∣∣∣

≤ p2p−1
∫ T

0

∣∣∣∣
∫
R

K
(
x − y
hn

)
W (σ )dF(y)

∣∣∣∣
p

dμ(x)

+p2p−1
(∫ T

0

∣∣∣ ∫
R

K
(
x − y
hn

)
d
(
W (σ (y))

)∣∣∣pdμ(x))1− 1
p

×
(∫ T

0

∣∣∣∣
∫
R

K
(
x − y
hn

)
W (σ )dF(y)

∣∣∣∣
p

dμ(x)
) 1

p

= op(hp
n)+ op

(
h

p
2 (1− 1

p )
n

)
op(hn)

By (A.9) and Lemma 2 the proof of Lemma 3 is complete. �

Let

În(p) =
∫ T

0

∣∣ fn(t )− f(n)(t )
∣∣pdμ(t )

where f(n)(t ) is given by (11).

Lemma 4. Assume that K(1)–K(3), F(2), and C(1) hold. If as n → ∞,

hn → 0, h−1
n n−B → 0,
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(for any 0 < B < 1
2 − 1

r , (r > 2)), then

(hnσ 2(p))−
1
2

{
(nhn)

p
2 În(p)− m(p)

} D−→ N(0, 1)

Proof. Using (9), we obtain∫ T

0

∣∣∣∣∣∣∣
∫
R

K
(
t − x
hn

)
dαn(x)

∣∣∣p −
∣∣∣ ∫

R

K
(
t − x
hn

)
d�(x, n)

∣∣∣p
∣∣∣∣ dμ(t )

≤ p2p−1
∫ T

0

∣∣∣∣
∫
R

K
(
t − x
hn

)
d(αn(x)− �(x, n))

∣∣∣∣
p

dμ(t )

+ p2p−1
(∫ T

0

∣∣∣∣
∫
R

K
(
t − x
hn

)
d�(x, n)

∣∣∣∣
p

dμ(t )
)1− 1

p

×
(∫ T

0

∣∣∣∣
∫
R

K
(
t − x
hn

)
d
(
�(x, n)− αn(x)

)∣∣∣∣
p

dμ(t )
) 1

p

:= A(1)n + A(2)n (A.10)

It follows from (A.16) that

A(1)n = Op
(
n−Bp) (A.11)

Also, Lemma 3 and (A.16) imply

A(2)n = n−BOp

(
h

p−1
2

n

)
(A.12)

Hence, by (A.10), (A.11), and (A.12), we get

În(p) =
∫ T

0

∣∣∣∣ 1hn
∫
R

K
(
t − x
hn

)
d
(
Fn(x)− F(x)

) ∣∣∣pdμ(t )
= h−p

n n− p
2

∫ T

0

∣∣∣∣
∫
R

K
(
t − x
hn

)
dαn(x)

∣∣∣∣
p

dμ(t )

= h−p
n n− p

2

∫ T

0

(∣∣∣∣
∫
R

K
(
t − x
hn

)
dαn(x)

∣∣∣∣
p

−
∣∣∣∣
∫
R

K
(
t − x
hn

)
d�(x, n)

∣∣∣∣
p)

dμ(t )

+h−p
n n− p

2

∫ T

0

∣∣∣∣
∫
R

K
(
t − x
hn

)
d�(x, n)

∣∣∣∣
p

dμ(t )

= h−p
n n− p

2

∫ T

0

∣∣∣∣
∫
R

K
(
t − x
hn

)
d�(x, n)

∣∣∣∣
p

dμ(t )

+h−p
n n− p

2Op(n−Bp)+ h−p
n n− p

2Op

(
n−Bh

p−1
2

n

)

which immediately gives

(hnσ 2(p))−
1
2

{
(nhn)

p
2 În(p)− m(p)

}

= h
−(p+1)

2
n Op

(
n−Bp ∨ n−Bh

p−1
2

n

)

+(hp+1
n σ 2(p))

−1
2

{∫ T

0

∣∣∣∣
∫
R

K
(
t − x
hn

)
d�(x, n)

∣∣∣∣
p

dμ(t )− h
p
2
n m(p)

}

Now Lemma 4 follows from Lemma 3. �
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Lemma 5. Suppose the Assumption G(1) holds. Then, we have

sup
0<x<τ

|Fn(x)− F(x)| = O

((
log log n

n

) 1
2
)

a.s.

Proof.

sup
0<x<τ

∣∣Fn(x)− F(x)
∣∣ ≤

(
sup
0<x<τ

∫ x

0
y−1dGn(x)

) ∣∣v−1
n − v−1

∣∣
+ v−1 sup

0<x<τ

∣∣∣∣
∫ x

0
y−1d

(
Gn(y)− G(y))

∣∣∣∣
≤ v−1

∣∣v − vn
∣∣+ v−1 sup

0<x<τ

∣∣∣ ∫ x

0
y−1d

(
Gn(y)− G(y)

)∣∣∣
=: D(1)

n + D(2)
n (A.13)

where

vn := μn
−1 =

∫ τ

0
y−1dGn(y)

and

v := μ−1 =
∫ τ

0
y−1dG(y)

Using theorem of James (1975) and G(1), we obtain for any 0 < δ < 1
2 − 1

r

D(1)
n = v−1

∣∣∣∣
∫ τ

0
y−1d

(
Gn(y)− G(y)

)∣∣∣∣
= v−1n− 1

2

∣∣∣∣
∫ τ

0
y−1dβn(y)

∣∣∣∣
= v−1n− 1

2

∣∣∣∣
∫ τ

0
y−2βn(y)dy

∣∣∣∣
≤ v−1n− 1

2 sup
0<y<τ

(G(y))δ−
1
2
∣∣βn(y)∣∣

∣∣∣∣
∫ τ

0
y−2(G(y))

1
2−δdy

∣∣∣∣
= O

((
log log n

n

) 1
2
)

a.s. (A.14)

A similar argument gives

D(2)
n = v−1n− 1

2 sup
0<x<τ

∣∣∣∣
∫ x

0
y−1dβn(y)

∣∣∣∣
≤ v−1n− 1

2 sup
0<x<τ

∣∣∣∣βn(x)x

∣∣∣∣+ v−1n− 1
2 sup
0<x<τ

∣∣∣∣
∫ x

0
y−2βn(y)

∣∣∣∣
= v−1n− 1

2 sup
0<x<τ

(
(G(x))δ−

1
2
∣∣βn(x)∣∣ (G(x))

1
2−δ

x

)

+ v−1n− 1
2 sup
0<x<τ

∣∣∣∣
∫ x

0
y−2βn(y)

∣∣∣∣
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≤ v−1n− 1
2 sup
0<x<τ

(
(G(x))δ−

1
2
∣∣βn(x)∣∣)

(
sup
0<x<τ

(G(x))
1
2−δx

x2

)

+ v−1n− 1
2 sup
0<x<τ

∣∣∣∣
∫ x

0
y−2βn(y)dy

∣∣∣∣
≤ v−1n− 1

2 sup
0<x<τ

(
(G(x))δ−

1
2
∣∣βn(x)∣∣)

(
τ sup

0<x<τ

(G(x))
1
2−δ

x2

)

+ v−1n− 1
2 sup
0<x<τ

(∣∣βn(y)∣∣(G(y))δ− 1
2
)(∫ τ

0
y−2(G(y))

1
2−δdy

)

= O

((
log log n

n

) 1
2
)

+ O

((
log log n

n

) 1
2
)

= O

((
log log n

n

) 1
2
)

(A.15)

Collecting together (A.13), (A.14), and (A.15), we obtain the result. �
Lemma 6. Let p > 1 be an even integer and define In(p) and Jn(p) as in (7) and (8), respectively.
Suppose that K(1)–K(2), K(5)–K(6), F(2)–F(3), C(1), and G(1) hold. If as n → ∞, hn →
0, and h−1

n n− 1
2 → 0, then for any 0 < B < 1

2 − 1
r , (r > 2), one has

|Jn(p)− In(p)| = Op(h2pn )+ Op(n−p(B+1/2)hn−p
)+ Op

(
n− p

2 hn− (p+2)
2

(
log log n

n

) 1
2
)

Proof.

fn(x) = h−1
n

∫
R

K
(
x − y
hn

)
f (y)dy + h−1

n n− 1
2

∫
R

K
(
x − y
hn

)
d(�(y, n))

+ h−1
n n− 1

2

∫
R

K
(
x − y
hn

)
d(αn(y)− �(y, n))

Denote the last term on the right-hand side of the above expression by rn(x) and observe that

rn(x) = h−1
n n− 1

2

∫
R

[αn(x − uhn)− �(x − uhn, n)]dK(u)

Consequently

|rn(x)| ≤ h−1
n n− 1

2 sup
0<t<∞

|αn(t )− �(t, n)|
∫
R

∣∣dK(u)∣∣
= h−1

n n− 1
2O(n−B) a.s. (A.16)

for any 0 < B < 1
2 − 1

r . Last line results by Theorem 4.2 of Horváth (1985). F(3), K(6), and
K(5) in conjunction with the two-term Taylor expansion

f (x − uhn)− f (x) = −uhn f ′(x)+ (uhn)2
f ′′(x)
2

− (uh3n)
f ′′′
(x∗)
6

where x∗ ∈ (x ∧ (x − uhn), x ∨ (x − uhn)), immediately imply that for some constant 0 <
C1 < ∞

fn(x)− f (x) =
∫
R

(
f (x − uhn)− f (x)

)
K(u)du

+n− 1
2 h−1

n

∫
R

K
(
x − y
hn

)
d(�(y, n))+ h−1

n n− 1
2O(n−B) a.s.
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= C1h2n f
′′(x)− h3n6

−1
∫
R

u3 f
′′′
(x∗)K(u)du

+n− 1
2 h−1

n

∫
R

K
(
x − y
hn

)
d(�(y, n))+ h−1

n n− 1
2O(n−B) a.s.

where the term involving f ′′′ satisfies∣∣∣∣6−1
∫
R

|u|3 f ′′′
(x∗)K(u)du

∣∣∣∣ < some M < ∞

We have ∣∣∣Jn(p)− In(p)
∣∣∣ ≤

∣∣∣v p
2 − v

p
2
n

∣∣∣ ∫ T

0

∣∣∣ fn(x)− f (x)
∣∣∣px p

2 dF(x)

+μ− p
2

n

∣∣∣ ∫ T

0

∣∣∣ fn(x)− f (x)
∣∣∣px p

2 d
(
Fn(x)− F(x)

)∣∣∣
:= C1 +C2 (A.17)

Using the facts that

∣∣ fn(x)− f (x)
∣∣p ≤ Cp

1h
2p
n | f ′′(x)|p +

∣∣∣∣n− 1
2 h−1

n

∫
R

K
(
x − y
hn

)
d�(y, n)

∣∣∣∣
p

+ h3pn Mp + h−p
n n− p

2 n−BpO(1) a.s.

and

| fn(x)− f (x)|p ≥ −Cp
1h

2p
n | f ′′(x)|p +

∣∣∣∣n− 1
2 h−1

n

∫
R

K
(
x − y
hn

)
d�(y, n)

∣∣∣∣
p

− h3pn Mp − h−p
n n− p

2 n−BpO(1) a.s.

it is not difficult to show that

C1 ≤
∣∣∣v p

2 − v
p
2
n

∣∣∣[Cp
1h

2p
n T

p
2

∫ T

0

∣∣ f ′′
(x)
∣∣pdF (x)

+μ− p
2 n− p

2 h−p
n

∫ T

0

∣∣∣ ∫
R

K
(
x − y
hn

)
d�(y, n)

∣∣∣p x p
2

μ
p
2
dF

+h3pn MpT
p
2

∫ T

0
dF(x)+ h−p

n n− p
2 n−BpOp(1)T

p
2

∫ T

0
dF(x)

]

and

C2 ≤ μ
− p

2
n

[
Cp
1h

2p
n T

p
2

∫ T

0
| f ′′(x)|pd(Fn(x)+ F(x))

+
∣∣∣∣n− p

2 h−p
n

∫ T

0

∣∣∣∣
∫
R

K
(
x − y
hn

)
d(�(y, n))

∣∣∣∣
p

x
p
2 d
(
Fn(x)− F(x)

)∣∣∣∣
+
(
O(h3pn )+ h−p

n n− p
2 n−BpO(1)

) ∫ T

0
d(Fn(x)+ F(x))

]
a.s.

:= In + |IIn| + O(h3pn )+ IIIn a.s. (A.18)
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Note that by Lemma 3

n− p
2 h−p

n

∫ T

0

∣∣∣ ∫
R

K
(
x − y
hn

)
d�(y, n)

∣∣∣p x p
2

μ
p
2
dF(x) = Op

(
n− p

2 h− p
2

n

)
(A.19)

Using the inequality∣∣|a(x)|p − |b(x)|p∣∣ ≤ p2p−1
∣∣a(x)− b(x)

∣∣p + p2p−1|b(x)|p−1∣∣a(x)− b(x)
∣∣

(for p ≥ 1), and (A.14), we may write
∣∣vn p

2 − v
p
2
∣∣ ≤ p

2
2

p
2 −1
∣∣vn − v

∣∣ p2 + p
2
2

p
2 −1|v| p

2 −1
∣∣vn − v

∣∣
= Op

((
log log n

n

) 1
2
)

(A.20)

(A.19) and (A.20) conclude that

C1 = h2pn Op

((
log log n

n

) 1
2
)

+ (nhn)−
p
2Op

((
log log n

n

) 1
2
)

+h−p
n n−p

(
B+ 1

2

)
Op

((
log log n

n

) 1
2
)

(A.21)

On the other hand, by using Lemma 5 and F(3) for some 0 < M < ∞, we get∫ T

0
| f ′′(x)|pd

(
Fn(x)+ F(x)

)
≤ M

(
Fn(T )+ F(T )

)
≤ M|Fn(T )− F(T )| + 2MF(T ) = Op(1)

Hence,

In = Op(h2pn ) (A.22)

Next, to deal with IIn, observe that when p > 1 is an even integer one has

IIn = p
2
n− p

2 h−p
n

∫ T

0

(
Fn(x)− F(x)

)
x

p
2 −1
[ ∫

R

K
(
x − y
hn

)
d�(y, n)

]p
dx

+pn− p
2 h−(p+1)

n

∫ T

0
x

p
2

(
Fn(x)− F(x)

)[∫
R

�(x − uhn, n)dK(u)
]p−1

×
[ ∫

R

�(x − uhn, n)dψ(u)
]
dx

:= K (1)
n + K (2)

n (A.23)

where ψ(u) = K ′(u). But

K (1)
n ≤ p

2
n− p

2 h−p
n

(∫ T

0
x2[

p
2 −1]

(
Fn(x)− F(x)

)2
dx
) 1

2

×
(∫ T

0

(∫
R

K
(
x − y
hn

)
d�(y, n)

)2p

dx

) 1
2
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≤ p
2
n− p

2 h−p
n T

p
2 −1 sup

0<x<τ

∣∣Fn(x)− F(x)
∣∣

×
(∫ T

0

(∫
R

K
(
x − y
hn

)
d�(y, n)

)2p

dx

) 1
2

(A.24)

Furthermore, since for each n,

∣∣∣�(1)n (x)
∣∣∣ D= |N|h 1

2
n

(∫
R

K2(u)du
) 1

2

(A.25) and a quick look at proofs of Lemma 3 and Lemma 2 imply that∫
R

K
(
x − y
hn

)
d�(y, n) = Op

(
h

1
2
n

)
(A.25)

Now, by (A.24), (A.25), and Lemma 5, we get

K (1)
n = Op

(
n− p

2 h− p
2

n

(
log log n

n

) 1
2
)

(A.26)

Also,

K2
n ≤ pn− p

2 h−(p+1)
n

(∫ T

0
(Fn(x)− F(x))2xp

[∫
R

�(x − uhn, n)dK(u)
]2(p−1)

dx

) 1
2

×
(∫ T

0

[∫
R

�(x − uhn, n)dψ(u)
]2

dx

) 1
2

≤ pn− p
2 h−(p+1)

n T p sup
x>0

|Fn(x)− F(x)|

×
{∫ T

0

[∫
R

�(x − uhn, n)dK(u)
]2(p−1)

dx

} 1
2

×
{∫ T

0

[∫
R

�(x − uhn, n)dψ(u)
]2

dx

} 1
2

:= pn− p
2 h−(p+1)

n T p × Rn,1 × Rn,2 × Rn,3 (A.27)

By Lemma 5,

Rn,1 = O

((
log log n

n

) 1
2
)

a.s. (A.28)

and (A.25) implies

Rn,2 = Op

(
h

p−1
2

n

)
(A.29)

To deal with the term Rn,3, put

�n(x) :=
∫
R

ψ

(
x − y
hn

)
d(W (σ (y))− F(y)W (σ ))
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whereW (·) is a Wiener process. Clearly for each x, �n(x) is normally distributed with mean
0 and variance

∑
n,x

=
∫
R

ψ2
(
x − y
hn

)
d(σ (y))+ σ

( ∫
R

ψ

(
x − y
hn

)
dF(y)

)2

−2
( ∫

R

ψ

(
x − y
hn

)
dF(y)

) ∫
R

ψ

(
x − y
hn

)
dσ (y)

:= g1(x, n)+ g2(x, n)− g3(x, n)

Therefore, for each x,∣∣∣h− 1
2

n �n(x)
∣∣∣2 D= |N|2.

∣∣∣h−1
n g1(x, n)+ h−1

n g2(x, n)− h−1
n g3(x, n)

∣∣∣
Since

h−1
n g1(x, n) = h−1

n μ

∫
R

ψ2
(
x − y
hn

)
f (y)
y

dy

= μ

∫
R

ψ2(u)
f (x − uhn)
(x − uhn)

du

−→ f (x)
x

∫
R

ψ2(u)du as hn → 0

and

h−1
n g2(x, n) = hnσ

(∫
R

ψ(u) f (x − uhn)du
)2

one concludes that, as hn → 0, by the Cauchy–Schwarz inequality and dominated conver-
gence theorem for someM < ∞,∫

R

∣∣∣h−1
n g1(x, n)+ h−1

n g2(x, n)− h−1
n g3(x, n)

∣∣∣dx
≤
∫
R

h−1
n g1(x, n)dx +

∫
R

h−1
n g2(x, n)dx,

≤
∫
R

h−1
n g1(x, n)dx + MTσ

(∫
R

∣∣ψ(u)∣∣2du)

−→
(∫

R

ψ2(u)du
)(∫

R

f (x)
x

dx
)

+ O(1)

= O(1)+ O(1) = O(1) a.s.

Hence

(∫ T

0
�2
n(x)dx

) 1
2

= Op

(
h

1
2
n

)

Furthermore, since Rn,3
D=
( ∫ T

0 �
2
n(x)dx

) 1
2
for each n ≥ 1, (A.6) and (A.7) imply that

Rn,3 = Op

(
h

1
2
n

)
(A.30)
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Putting (A.28), (A.29), and (A.30) in (A.27)

K (2)
n = Op

(
n− p

2 h
−(p+2)

2
n

(
log log n

n

) 1
2
)

(A.31)

By (A.23), (A.26), and (A.31), we can write

|IIn| = Op

(
n− p

2 h− (p+2)
2

n

(
log log n

n

) 1
2
)

(A.32)

Also Lemma 5 implies that∣∣∣∣
∫ T

0
d (Fn(x)+ F(x))

∣∣∣∣ ≤ |Fn(T )− F(T )| + 2F(T )

= Op(1)

Hence

IIIn = Op
(
h3pn
)+ h−p

n n−p[B+ 1
2 ]Op(1) (A.33)

By (A.18), (A.22), (A.32), and (A.33), we obtain

C2 = Op
(
h2pn
)+ Op

(
n− p

2 h− (p+2)
2

n

(
log log n

n

) 1
2
)

+ Op

(
h−p
n n−p[ 12+B]

)
(A.34)

Combining (A.17), (A.21), and (A.34) completes the proof. �
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