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Abstract The potential of artificial neural network models for simulating the hydrologic 
behaviour of catchments is presented in this paper. The main purpose has been the modelling 
of river flow in a multi-gauging station catchment and real time prediction of peak flow 
downstream.  The study area covers the Upper Derwent River catchment located in River 
Trent basin. The river flow has been predicted using upstream measured data.  Three types 
of ANN were used for this application: Multi-layer perceptron, Recurrent and Lagged time 
recurrent neural networks.  Data of different lengths (1 month, 6 months and 3 years) have 
been used, and flow with 3, 6, 9 and 12 hours lead-time has been predicted.  In general, 
although the ANN shows a good capability to model river flow and predict downstream 
discharge by using only upstream flow data, however the type of ANN as well as the 
characteristics of the training data were found very important factors affecting the efficiency of 
the results. 

1 Introduction 
Computer models of some of the principal hydrological and hydraulic components of 

river floods have been successfully developed in recent years.  Flood forecasting models, 
even in large catchments where the lead-time is long, are of most value when they operate in 
real-time.  The lead-time is most important when flood forecasting is used to operate a flood 
warning system.  For flow forecasters in small river basins, the achievement of an adequate 
lead-time for forecasts is more complicated as it is strongly dependent on the accuracy of the 
weather forecasts for a reasonable period. In a very small catchment, a good forecast can be 
made on the basis of the intensity of the rainfall.  However, for larger catchments the flow 
characteristics will strongly influence the ability to make a good forecast.  For these kinds of 
catchments, the effects of catchment storage, backwater and tidal effects are seen to be 
important in the process of river flow forecasting.  

 
Reliable prediction of flow discharge and its variability along a river is an essential part of 

surface water planning projects.  In addition, prediction of discharge in a particular point 
using upstream conditions helps design storage zones or control measures.  The technique of 
artificial neural networks is widely used as an efficient tool in different areas of water related 
research activities.  It has been used to process rainfall-runoff relationships (Hsu, Gupta and 
Sorooshian 1995, Minns and Hall 1996, Dawson and Wilby 1998, Tokar and Johnson 1999,); 
flow predictions (Karunanithi and Grenney 1994); and stage-discharge relationships 
(Bhattacharya and Solomatine 2000).  In this work it was decided to investigate the 
application of ANN to model river flow discharge variation between gauging stations and 
real-time prediction of flow at downstream points using upstream discharge.  This would be 
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a useful step to prevent damage by predicting flood flow in flood plains, where the risk of 
flooding is high, using the measured flow data from upstream gauging stations.  Three 
different types of ANN have been applied to evaluate the applicability of the technique for 
this particular application. 

2 Real-time forecasting process  
Improvements in river peak flow forecasting have resulted partly from the global increase 

in stream gauging stations and partly from accelerating advances in the technology of data 
collection as well as in computer-based data handling and telecommunication systems. The 
three main parameters in flood forecasting are accuracy, reliability, and timeliness. In flood 
warning applications there is likely to be more emphasis on timings and the reproduction of 
distinctive shapes on the rising limb and crest segment of the hydrograph. Prediction of flow 
by the method presented in this research is carried out for the next time step using the 
measured data at previous time steps. If Q represents the discharge at time t: 
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Where: 
f is an unknown non-linear mapping function. 
e(t) is an unknown mapping error. 
n is the number of past inputs contributing to predict flow discharge at the next time-

step. 
Q(t+1) is river flow at Whatstandwell for next time step which is predicted using 
upstream  flow at time t, t-1, …, t-n, and q(t)(1), q(t)(2) and q(t)(3) are corresponding 
river flow at upstream three stations. 
 

30-minutes flow data and four different lead times were used in this research, and 
predictions are as follows: 
 
Q with 3 hours lead time = f (Q(t-7), Q(t-8),…, Q(t-n) + q(t-7)(1), q(t-8)(1),…q(t-n)(1) + q(t-7)(2), 
q(t-8)(2),…q(t-n)(2)+ q(t-7)(3), q(t-8)(3),…q(t-n)(3)+ e(t))  
Q with 6 hours lead time = f (Q(t-13), Q(t-14),…, Q(t-n) + q(t-13)(1), q(t-14)(1),…q(t-n)(1) + q(t-

13)(2), q(t-14)(2),…q(t-n)(2)+ q(t-13)(3), q(t-14)(3),…q(t-n)(3)+ e(t)) 
Q with 9 hours lead time = f (Q(t-19), Q(t-20),…, Q(t-n) + q(t-19)(1), q(t-20)(1),…q(t-n)(1) + q(t-

19)(2), q(t-20)(2),…q(t-n)(2)+ q(t-19)(3), q(t-20)(3),…q(t-n)(3)+ e(t)) 
Q with 12 hours lead time = f (Q(t-25), Q(t-26),…, Q(t-n) + q(t-25)(1), q(t-26)(1),…q(t-n)(1) + q(t-

25)(2), q(t-26)(2),…q(t-n)(2)+ q(t-25)(3), q(t-26)(3),…q(t-n)(3)+ e(t))  

3 Study site and data manipulation 
The study area covers the upper Derwent River catchment located in the River Trent 

basin. River flow has been predicted using upstream gauging stations data. Three gauging 
stations called Matlock, Chatsworth and Mythambdge have been selected with distances of 
about 10, 25 and 50 kilometres from the subject site of Whatstandwell gauging station 
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respectively. Figure 1 shows an index plan of the upper Derwent river catchment and related 
discharge measuring stations. 

 

Whatstandwell

Matlock

Chatsworth

Mythambdge

Figure 1. Plan of upper Derwent river catchment showing discharge m
stations 

 
Measured flow data for related gauging stations were collected from the Environment 

Agency. In this research flow data at 30 minute intervals during January 1999, the first six 
months of the year 2000, and years 1998, 1999 and 2000 were used as input in different tests. 
For each experiment the data were split up to three parts; one for model training, one for 
cross validation (to prevent model over training), and another for testing the performance of 
the model. To prepare the data for ANN, and to determine the optimum time delay, 
correlation analysis was carried out. The correlation between discharges at Whatstandwell 
(the forecast station) and the other three upstream stations facilitated the calculation of the 
lag times. The results show that maximum correlation coefficients of Matlock, Chatsworth 
and Mythambdge with Whatstandwell are obtained with lag times of 1.5, 3.5 and 5.5 hours 
respectively.    

4 Artificial neural network models 
Neural networks must be trained with an appropriate set of typical input/output pairs of 

data called the training set (in supervised learning). In addition selection of an appropriate 
network structure for the problem to be solved is crucially important. Three types of ANN 
were used for this application called Multi-layer perceptron, Recurrent, and Time lag 
recurrent neural networks.  

4.1 Multi-layer perceptron neural network 
In this network a connection is allowed from a node in layer i only to nodes in layer i+1, 

and not vice versa. An advantage of MLP in terms of mapping abilities is its capability to 
approximate arbitrary functions. This is an important point in the study of non-linear 
dynamics, and solving other function mapping problems. Different types of transfer and 
output functions for hidden and output layers as well as different numbers of hidden layers 
were used to find the best structure of MLP for this application. Finally it was found that the 
tangent hyperbolic function was the most compatible one for the hidden layer. However, for 
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the output layer the sigmoid function was the most suitable. The use of one hidden layer was 
most suitable for this model. 

4.2 Recurrent neural networks 
This type of network can be divided into fully and partially recurrent. Although recurrent 

networks are more powerful than feedforward networks, they are difficult to train and their 
properties are not well understood. The training of a recurrent network is much more 
sensitive to divergence. To construct the best architecture for the network many variations 
were implemented and the results considered. The number of hidden layers, number of 
processing elements in hidden layers, type of transfer and output functions and type of 
learning rule and its parameters have been considered and evaluated. After using different 
types of transfer and output functions for hidden and output layers, it was finally found that a 
tangent hyperbolic function was the best one for the hidden layer. However, for the output 
layer the sigmoid function has been the best one for all tests. Between the dynamic 
processing elements of Gamma, Laguarre and Time delay, the Laguarre and Time delay gave 
better results. The number of hidden layers differed from one in tests with a shorter length of 
input data to two for a longer length of input data. For the tests of this research, a partially 
recurrent network showed better adaptation than a fully recurrent one  

4.3 Time lag recurrent neural networks 
This type of network contains locally recurrent layers with a single adaptable weight.  It 

usually suits temporal problems with short temporal dependency however it does not seem 
appropriate for more difficult temporal problems.  For this type of neural network model it 
was found that tangent hyperbolic function and in few cases sigmoid function was the best 
one for hidden layer.  However, for output layer the sigmoid function was the best one for all 
tests.  Between the dynamic processing elements of Gamma, Laguarre and Time delay, the 
Gamma was found to be the most compatible for this application using this kind of neural 
network. Networks with only one hidden layer presented better performance. 

5 Results 
Flow at Whatstandwell has been predicted in four different experiments referred to as test 

1 to 4.  The length of the flow data input was one month, six months and three years in tests 
1, 2 and 3.  In test 4 the number of input patterns to the ANN models has been investigated. 
In this test several simulations have been used to predict flow at the subject site.  These used 
the three ANNs and data from one, two and three upstream gauging stations.  Figure 2 shows 
the predicted hydrographs with different lead-times for each type of neural network for one 
month of input data (test 1).  Space does not allow for presentation of the result hydrographs 
for tests 2, 3 and 4.  However, to consider the accuracy of the results and compare 
applicability of different types of ANN used in this research, mean squared error (rmse) and 
coefficient of efficiency (R2) values for different length of input data and lead-times of the 
first three tests have been shown in table 1.  As the table shows the Multi-layer perceptron 
network (a static network) did not perform well particularly for longer prediction horizons.  
For simulations using a long period of input data the Time lag recurrent network presented 
poor results although its outputs for simulations with shorter length of record is quite good 
and almost comparable to the Recurrent network.  The Recurrent network has given the best 
results for all prediction horizons as well as against all three input data (record lengths). 
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Using different numbers of input patterns for the model (test 4) by presenting data from 
different numbers of upstream gauging sites did not indicate considerable difference between 
the results. 
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Table1 The values of rmse and R2 of the predicted flow with different type of the neural 
networks, input data length and lead time in training and testing phases (for tests 1 to 3). 

Root mean square error (rmse) Coefficient of efficiency (R2) 
Training Testing Training Testing 

Length 
of 
input 
data 

Pred. 
Lead 
time 

MLP Rec. T.l. 
rec 

MLP Rec. T.l. 
rec 

MLP Rec. T.l. 
rec 

MLP Rec. T.l. 
rec 

3 h 1.727 2.125 5.374 9.484 1.646 2.982 0.988 0.982 0.886 0.341 0.980 0.931 
6 h 3.480 3.012 4.604 11.485 1.818 3.006 0.952 0.964 0.916 0.043 0.976 0.934 
9 h 4.379 3.625 4.932 15.505 2.185 3.243 0.924 0.948 0.903 -0.723 0.966 0.925 

1 mo. 

12 h 6.164 4.899 5.706 15.766 4.313 3.897 0.848 0.904 0.870 -0.759 0.868 0.893 
3 h 2.567 2.315 3.878 4.551 2.168 3.153 0.959 0.966 0.905 0.731 0.939 0.875 
6 h 3.842 3.267 5.290 6.772 2.185 3.344 0.907 0.933 0.824 0.406 0.935 0.858 
9 h 4.418 4.234 3.690 7.472 3.159 3.388 0.877 0.887 0.914 0.277 0.871 0.853 

6 mo. 

12 h 6.562 5.207 4.769 11.230 3.182 4.298 0.730 0.830 0.857 -0.632 0.869 0.761 
3 h 3.352 5.664 12.171 9.298 10.456 12.647 0.978 0.876 0.599 0.978 0.820 0.621 
6 h 6.237 6.990 14.976 14.958 10.783 13.084 0.923 0.862 0.559 0.489 0.793 0.609 
9 h 8.689 9.813 18.329 21.367 11.539 18.736 0.851 0.811 0.190 -0.043 0.696 0.182 

3 yr 

12 h 10.727 11.637 21.504 24.342 11.734 19.930 0.774 0.734 0.091 -0.353 0.686 0.093 

6 Conclusion 
Results obtained from this study show good performance for the dynamic types of the 

neural networks (Recurrent and Time lag recurrent).  The Multi-layer perceptron network did 
not show good performance particularly for longer prediction horizons. It cannot cope well 
with hydrological time series that usually contain local features that do not have a fixed 
position in time.  For simulations using a long period of input data the Time lag recurrent 
network presented poor results although its outputs for simulations with shorter length of 
record were quite good and almost comparable to recurrent network.  Using data from 
different numbers of upstream gauging sites to the model (test 4) did not indicate 
considerable difference between the results.  
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