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ABSTRACT: This research has investigated the application of artificial neural networks (ANN) 
to improve the accuracy of the results obtained from a hydrodynamic model of river flow.  The 
study area was Reynolds Creek Experimental Watershed in southwest Idaho, which has 239 
km2 drainage area and semi-arid climate conditions.  Hydrological processes in this 
catchment are extremely variable because of the high variation in elevation, and consequently 
climate condition, within the river catchment.  After the calibration of a 1D hydrodynamic flood 
routing model of the main river reach, a MLP neural network model has been adopted to 
optimise the outputs of the hydrodynamic modelling procedure.  Using ANN in this way, the 
error produced by the hydrodynamic model was predicted and thereby, the results of the 
model were improved.  In addition, the results of a hydrodynamic model affected by the 
suspension of flow gauging are improved by neural networks.  Combination of these two 
techniques for this specific application uses the potential of both methods and shows a good 
performance.   

1 Introduction 
Flood routing procedures to estimate the changes in a hydrograph as it moves along a river is 
one of the main methods for producing flood warnings and mitigating damage.  It can also 
play a crucial role in other aspects of water resources planning and management.  Generally 
such routing is carried out using hydrological or hydraulic routing methods.  These models 
use information on cross-sections, bed material etc. to construct a model.  Once this has been 
done the model is calibrated by adjusting parameters such as friction factor to ensure that the 
model results match the measured data.  Care must be taken to ensure that the changes to the 
parameters are not unrealistic and do not go beyond the physically realistic range.  In some 
cases discrepancies between models and measure data are due to omitting aspects of the 
physical problem either because the phenomena is too complex or because no data is 
available.  An example of the former is Manning’s formula which is used to represent bed 
shear and turbulence.  The latter encompasses situations where cross-section data or 
hydrological data are not available.  Rather than taking a calibration parameter and adjusting 
it to an unphysical value to represent a phenomena that it was never intended to represent, 
this paper presents work that use a neural network to predict this error based on learning 
from errors in past model runs.  As such the work is making use of the symbolically 
expressed physical laws (conservation of mass, Newton’s Second Law) where they are 
applicable and augmenting them with sub-symbolic representations based on past 
experience. 
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During the last decade new machine learning techniques such as artificial neural 
networks, genetic programming and fuzzy logic have been widely applied to different 
aspects of water-related modelling such as rainfall-runoff, flow discharge and stage 
prediction, regional flood frequency, etc.  Despite some similarities, each of these new 
techniques works with its own procedure.  Neural networks operate on the principle of 
learning from a training set. They must be trained with a set of typical input/output pairs of 
data called the training set. The final weight vector of a successfully trained neural network 
represents its knowledge about the problem. In general, it is assumed that the network does 
not have any a priori knowledge about the problem before it is trained. At the beginning of 
training the network weights are usually initialised with a set of random values. There are a 
variety of neural network models and learning procedures.  

 
There have been some discussions of the relative merits of ANN and hydrodynamic 

approaches to predicting river flows.  As outlined above this research uses a combination of 
the two in a new approach to river modelling where the artificial neural networks (ANN) are 
used to improve the accuracy of the results obtained from a hydrodynamic model of river 
flow.  A MLP neural network model has been adopted to optimise the outputs of the 
hydrodynamic modelling procedure by prediction of the error in the hydrodynamic model. 

2 Study area 
The study area for this research is Reynolds Creeks Experimental Watershed (RCEW), a 
typical intermountain region of the western United States.  It is located in the Owyhee 
Mountains of south-western Idaho with a 239 km2 drainage area.  The main stream flows 
from south to north at an elevation exceeding 2200m.  Most parts of the catchment have 
rugged topography except the north central part where there is a broad valley floor.  
Elevation ranges from 1101 m in the north to a peak of 2241 m in the south. 

 
Local slope and aspect strongly influence the hydrology of the catchment by controlling 

the incoming solar radiation and snow deposition patterns.  The Reynolds Creeks 
Experimental Watershed represents a typical arid and semiarid climate condition where 
climate elements vary highly from part to part.  The climate is largely controlled by the 
elevation and local topography.  Precipitation varies from about 230 mm at the northern 
lower elevation to over 1100 mm in the higher regions at the southern and southwestern 
boundaries where 75% or more of annual precipitation occurs as snowfall (Hanson 2000). 
According to 35 years (1963-1996) of record, annual precipitation has increased 887 mm, or 
4.8 times, over a distance of only 17.6 km between two gauging sites located in two different 
elevations. Based on dew point temperature during storms, 15-55% of the lower elevation 
precipitation falls as snow, and 60-90% of the higher elevation precipitation falls as snow 
(Marks et al; 2000).  Water from snowmelt is very important, as it is the main source of soil 
moisture and stream flow during spring and summer.  For the outlet of the catchment average 
annual water yield has been measured as 0.564 m3/s or 77 mm.  The variation of runoff is 
considerable from year to year.  The largest recorded flow at the outlet gauging site is over 
107 m3/s.  This occurred on December 23, 1964, due to a rain-on-snow event with a frozen 
soil surface. Flow measurement in RCEW started at two sites in 1963, at three other sites in 
1964, followed by eight additional sites in subsequent years.  However, measurements were 
discontinued later in five gauging stations.  Gauging sites were established in sub-catchments 
ranging in contributing area from 1.03 to 23866 hectares.  Quality controlled and validated 
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hourly stream flow data sets are available for 13 sites for the period 1963-1996 (or a subset 
of that time for some sites) (Pierson et al. 2000).   

3 Modelled river reach 
In this study the Reynolds Creek main river reach between Tollgate gauging station upstream 
and the Outlet weir downstream has been modelled.  This reach is a perennial stream with 
14.082 kilometres length of stream course (the thalweg length is 17.073 km).  The 
downstream end of the reach is a self-cleaning overflow V-Notch (SCOV) weir draining all 
23866 hectares of the catchment, and located in a narrow canyon at low elevation (1108 
meters above sea level), and about 12 kilometres south of the confluence of Reynolds Creek 
and the Snake River.  The upstream end of the reach is limited to the Tollgate weir.  This is a 
gauging station with a Drop-Box V-Notch weir located at an elevation of 1410 m above sea 
level.  Drainage area above this weir is 5457 hectares, ranging from 1410 m to 2241 m with 
precipitation mostly in the form of snow.  

4 Hydrodynamic modelling 
River floods are normally gradually varied unsteady flows and so a time-dependent 
simulation is required.  Further, most computational models used to predict river floods are 
one-dimensional.  DHI’s MIKE11 is a professional engineering software package for the 
unsteady hydrodynamic simulation of flows, water quality and sediment transport in 
estuaries, rivers, irrigation systems, channels and other water bodies.  
 

A model was constructed using MIKE11 and was calibrated for the reach between 
Tollgate and Outlet using flow data for a flood wave occurring in the period of February-
April 1982.  Flow data were entered to the model from Tollgate, Macks Creek and Salmon 
Creek (three gauging stations upstream side of the outlet weir).  These three gauging sites, 
which drain three main sub-catchments can be used to model the main river reach.  All other 
gauging sites are located in headwater tributaries of the sub-catchments and do not deliver 
flow directly to the main river. As mentioned earlier the operation of Macks Creek has been 
suspended since 1991 because of ownership problems. The second step in this research was 
to evaluate how gauging site suspension affects the procedure of hydrodynamic modelling 
and how the technique of artificial neural networks can bridge this gap and improve the 
results of hydrodynamic model affected by this shortage of measured data. Therefore, two 
different simulations were carried out: the first one uses flow hydrographs from all three 
gauging stations as boundary conditions of the model, and the second one uses only two 
stations where gauging was continued (Tollgate and Salmon Greek).  53 cross sections 
surveyed between two ends of the reach define the topographical characteristics of the river 
reach in the model.  The estimated flow hydrographs at the outlet for the period of February-
April 1982 in both first and second simulations have been compared to the measured values. 
Figures 1 and 2 show hydrographs for March 11 to April 16 for first simulation (with Mack’s 
Creek data) and second simulation (without Mack’s Creek data) respectively. As the figures 
show the estimated values are not enough close to the measured values especially for the 
peak flow and particularly for the results of second simulation.  As a result the output of the 
model at this stage may not be accurate enough for practical applications.  
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5 Prediction of error by ANN  
To improve the outputs of the hydrodynamic model, an artificial neural network was 
employed to estimate the errors of modelling results in both the first and second simulations.  
The artificial neural network architecture used was a three-layer perceptron feedforward 
neural network.  This type of the neural network is usually trained with the backpropagation 
algorithm.  The backpropagation rule propagates the errors through the network and allows 
adoption of hidden processing elements.  The final weight vector of the successfully trained 
network, which represents its knowledge about the problem, is used to apply to a new set of 
data to evaluate the performance of the model. 

 
The errors of the hydrodynamic model were calculated using the following formula: 
 

estXobsXpE −=

where Ep is the error of estimated pattern, Xobs is the observed value and Xest is the 
estimated value.  The ANN model was trained using Tollgate measured flow and MIKE11 
output for outlet as input to the ANN model and error of MIKE11 estimation (Ep) as the 
output of the neural network model.  

 
Hourly flow data for the period of February 1 to April 30, 1982 were used for this 

simulation.  Prediction of the error for the results of the first and second hydrodynamic 
simulations was carried out separately.  The input to the network was flow data from the 
Tollgate station and the estimations from MIKE11 for the outlet. The output from the 
network was the error of MIKE11 estimations for outlet (EP).  Data was divided into three 
parts for training, testing and cross validation purposes.   February 1 to March 10 was used to 
train the model to establish the relationship between input and output patterns, while the data 
of March 11 to April 16 were used as testing set to evaluate the performance of the model.  
Remaining data (April 17-30) were used as cross validation data set to prevent over training 
of the model.  Figure 1 shows the results of ANN model in testing phase for the first 
simulation, and also the results of the second simulation is shown in figure 2. In these figures 
H(1) and H(2) indicate the hydrographs estimated by hydrodynamic model for the outlet of 
RCEW in first and the second simulations respectively.  

6 Optimised results  
The combination of neural network model and hydrodynamic model gave a clear 
improvement in the prediction results.  It seems that the combination of these two techniques 
uses the benefits of both methods and shows good performance (figure 1).  Also the results 
of hydrodynamic modelling affected by the suspension of the Macks Greek flow gauging has 
been improved appropriately (Figure 2). 
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Figure 1 Estimated flow for the outlet of the RCEW using hydrodynamic model (MIKE11) and 
neural network based optimised values versus measured values (test 1).   
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Figure 2 Estimated flow for the outlet of the RCEW using hydrodynamic model 
(MIKE11) and neural network based optimised values versus measured values (test 2).   

 
To evaluate the accuracy of the results statistically, two criteria were used: coefficient of 

efficiency, R2, and root mean square error, rmse.  Values of these parameters for the results 
of study are shown in table 1. 
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Table 1 Coefficient of efficiency (R2) and root mean square error (rmse) of the results before 
and after optimisation 

Initial results  
(hydrodynamics results) 

Optimised results  
(hydrodynamics +ANN) 

 

first simulation Second simulation first simulation Second simulation 
R2 0.788 0.576 0.876 0.767 
rmse 0.936 1.324 0.718 0.980 

7 Conclusions 
The application of artificial neural networks for correction of the outputs of a 1D 
hydrodynamic flow model in the Reynolds Creek Experimental Watershed, southwest Idaho, 
has been investigated in this study.  After applying a hydrodynamic model using the 
MIKE11 software, the error of the model was predicted using a three-layer feedforward 
neural network model to optimise the outputs.  This gave a significant improvement in the 
results. For the first simulation (before suspension of a gauging site in the catchment), the 
coefficient of efficiency, R2, increased from 0.788 to 0.876.  The root mean square error 
(rmse) improved from 0.936 m3/s to 0.718 m3/s.  For the second simulation (after 
suspension), neural networks improved the results by increasing R2 from 0.576 to 0.767 and 
decreasing rmse from 1.324 to 0.980. 
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