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Abstract

The maximum entropy principle is a flexible and powerful tool for approximation of distributions.

hitherto a lot of work has been done in terms of Shannon entropy. In this paper, we first extend the

maximum entropy approach from Shannon entropy to generalized entropy. Next, as a special case, we

find the maximum quadratic entropy distribution to approximate the model of income distribution with

a given mean and Gini index.
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1 Introduction

As Verdú (1998) describes Information Theory in his review paper, Information Theory is a unifying

theory with profound intersections with Probability, Statistics, Computer Science, and other fields. In-

formation Theory continues to set the stage for the development of communications, data storage and

processing, and other information technologies. Historically, Information Theory was born in 1948, when

Shannon published his famous paper “A mathematical theory of communication.” Motivated by the

problem of efficiently transmitting information over a noisy communication channel, he introduced a

revolutionary new probabilistic way of thinking about communication and simultaneously created the

first truly mathematical theory of entropy. In his paper, the concept of entropy were proposed as a

measure of uncertainty of a random variable.

The concept of information is closely linked with the concept of uncertainty or surprise. In other word,

Uncertainty or surprise can be considered as different shades of information, entropy comes in handy

as a measure thereof. Consider a random experiment with outcomes x1, x2, ..., xN with probabilities

p1, p2, ..., pN , respectively; one can say that these outcomes are the values that a discrete random variable

X takes on. The measure of uncertainty about the collection of events is called entropy. Thus, entropy

can be interpreted as a measure of uncertainty about the event prior to the experimentation. The

information associated with the outcome {X = xi} is denoted by
h(pi) = − log pi. (1)

This concept can be extended to a series of N events occurring with probabilities p1, p2, ..., pN , which

then leads to the Shannon entropy as the expected value of this series as

H = −
N∑
i=1

pi log pi, (2)
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Most environmental processes are continuous in nature. The entropy concepts presented for discrete

variables can be extended to continuous random variables. Let X be a random variable having a con-

tinuous cumulative density function (cdf) F with probability density function (pdf) f , then the basic

uncertainty measure for distribution F is defined as

H(f) = −
∫ ∞

−∞
f(x) log f(x)dx, (3)

provided the integral exists. The Shannon entropy satisfies a number of desiderata, such as continuity,

symmetry, additivity, expansibility, recursivity, and others (Shannon and Weaver (1949)).

There are a generalization of entropy which is proposed by Csiszár (1973). The generalized entropy

named φ-entropy, is defined as

Hφ(f) =

∫ ∞

−∞
φ[f(x)]dx, (4)

where φ is a concave function. Shannon entropy and quadratic entropy which is proposed by Burbea

(1984) are most known special cases of Hφ(f). In Table 1, you see some informational entropies which

can be represent by Hφ(f).

Table 1: Generalized entropies.

Name of entropy φ(x)

Shannon (1948) −x log f(x)
Quadratic entropy, Burbea and Rao (1982) x− x2

Harvda and Charvat (1967) xs

1−s − x, 0 < s, s �= 1

Kapur (1972) xs+(1−x)s−1
1−s , s �= 1

Burbea (1984) xs−(1+x)s+1+(s−1)−1(2s−2)x
s−2 , s �= 2

In economics and the social sciences, inequality can be defined as the dispersion of the distribution of

income or some other welfare indicator. There are various ways to measure inequality. The Lorenz curve

developed by Lorenz (1905) is perhaps the most fundamental tool used to measure income inequality.

Graphically, the Lorenz curve gives the proportion of total societal income accruing to the lowest earning

proportion of income earners. Let X denote a random variable with cumulative distribution function

(cdf) F supported in (0,∞) and mean E(X) = μ. The Lorenz curve is defined as follows:

LF (u) =
1

μ

∫ u

0

F−1(x)dx , 0 ≤ u ≤ 1, (5)

where F−1(x) = inf{t : F (t) ≥ x}. If F is income distribution, then LF (u) denotes the fraction of

total income which is in the hands of the uth fraction of population possessing the lowest income. This

representation forms the basis of many common inequality measures; among them the Gini index which

was proposed by Gini (1914) is a famous and well-known measure. The Gini index, G(F ), is defined as

twice the area between the considered Lorenz curve and the line of perfect equality LF (u) = u,

G(F ) = 2

∫ 1

0

(u− LF (u))du = 1− 2

∫ 1

0

LF (u)du. (6)

The Gini index takes values in the unit interval [0, 1]. A low Gini index indicates more equal income

distribution, while a high Gini index indicates more unequal distribution. Various generalizations of the

Gini index have already been suggested in the literature. Kakwani (1980) and Yitzhaki (1983) proposed

a family of generalized Gini indices by introducing different weighting functions for the area under the

Lorenz curve

Gν(F ) = 1−
∫ 1

0

ν(ν − 1)(1− u)ν−2LF (u)du, ν > 1. (7)
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In the case of ν = 2, we have the Gini index. When ν increases, higher weights are attached to small

incomes.

Pietra (1932) proposed another inequality measure that is most useful and appropriate in the case

of asymmetric and skewed probability distributions. The Pietra index, P (F ), is defined as the maximal

vertical deviation between the Lorenz curve and the equality line,

P (F ) = max
0≤u≤1

{u− LF (u)}. (8)

See Kleiber and Kotz (2003) and the references therein for more details about inequality measures.

Approximation of distributions is a fundamental problem in statistical data analysis. The maximum

entropy principle proposed by Jaynes (1957), gives us a general way of approximating a distribution.

According to this principle, the best approach is to ensure that the approximation satisfies any constraints

on the unknown distribution that we are aware of, and that subject to those constraints, the distribution

should have maximum entropy. The problem of maximizing entropy subject to some constraint such as

moments has been studied by many authors. For example, see Kagan et al. (1973) and Kapur (1989).

Recently, some works have been done in the subject of entropy maximization under the constraints on

the inequality measures. Eliazar and Sokolov (2010a) found the distribution that maximizes entropy

subject to a given mean and Gini index. Also, Eliazar and Sokolov (2010b) obtained the distribution

that maximizes entropy subject to a given mean and Pietra index. Khosravi et al. (2015) found the

maximum entropy under the constraint on generalized Gini index. In this paper, we intend to develop

their results in terms of generalized entropy.

The rest of the paper is as follows: In Section 2 we review some results on entropy maximization

under some moment constraints and inequality measures constraints. Section 3 is devoted to our result

in maximization of generalized entropy with a general constraint. In Section 5, we obtain maximum

quadratic entropy distribution under the constraints on mean and Gini index.

2 Maximum entropy

As pointed out by Jaynes (1957), when an inference is made on the basis of incomplete information, it

should be drawn from the probability distribution that maximizes the entropy subject to the constraints

on the distribution. The resulting maximum entropy probability distribution corresponds to a distribu-

tion which is consistent with the given partial information, but has maximum uncertainty or entropy

associated with it.

2.1 Maximum entropy under constraints on moments

Let X be a continuous random variable with pdf f(x) and let the following constraints hold,⎧⎨
⎩
∫∞
−∞ f(x)dx = 1∫∞
−∞ hi(x)f(x)dx = θi, i = 1, 2, ...,m.

(9)

Kagan et al. (1973) showed that the pdf of maximum entropy distribution under the constraints (9) is

given by

f(x) = A exp[−λ1h1(x)− λ2h2(x)− ...− λmhm(x)],

where A, λ1, λ2, ..., λm are to be obtained by using the constraints (9). In the following, some well-known

special cases are presented.

• If the range of the random variable X is [0, 1]: Within the class of probability distributions

supported on the unit interval, the entropy maximizer is the uniform distribution.
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• If the range of the random variable X is [0,∞): Within the class of probability distributions

supported on non-negative real numbers, and possessing a given mean, the entropy maximizer is

the exponential distribution.

• If the range of the random variable X is (−∞,∞):

1. In the constraints (9), if h1(x) = (x− a)2, where a is a fixed real number, then the maximum

entropy distribution is normal with mean a and variance θ1.

2. In the constraints (9), if h1(x) = x and h2(x) = (x− θ1)
2, that is when the mean and the vari-

ance of X are prescribed to be θ1 and θ2 respectively, then the maximum entropy distribution

is normal with mean θ1 and variance θ2.

3. Dispersion: One the most basic approach to gauge statistical heterogeneity is the notion of

dispersion: measuring the fluctuations of the probability distribution around its mean. The

dispersion is given by the functional

D(f) =

(∫ ∞

−∞
|x− μ|pf(x)dx

) 1
p

, p ≥ 1,

The greater D(f), the more scattered and heterogeneous the probability distribution and the

smaller D(f), the more concentrated and homogeneous the probability distribution. In the

case p = 2, the dispersion equals the standard deviation, and the square dispersion equals the

variance of distribution. In the constraints (9), if h1(x) = x and h2(x) = |x−θ1|p, that is when
the mean and the dispersion of X are prescribed to be θ1 and θ2 = σp, respectively, then the

Subbotin’s distribution with the following density function has maximum entropy,

f(x) =
φ(p)

σ
exp

(
−1
p

∣∣∣∣∣∣x− θ1
σ

∣∣∣∣∣∣p) ,−∞ < x <∞, (10)

where φ(p) = p1−1/p

2Γ(1/p)
and Γ(.) is the complete gamma function. In the case p = 2, (10) is the

pdf of the normal distribution.

2.2 Maximum entropy under constraints on inequality measures

Since among distributions supported on non-negative real line, the experience has shown that the ex-

ponential distribution doesn’t fit to income data well, looking for the maximum entropy distributions

under other constraint has been continued. Holm (1993) derived a family of maximum entropy quantile

functions under the constraints on the mean and Gini index. Ryu (2008) determined the functional form

of the share function (as a pdf) by the maximum entropy principle under the constraint on the Bonferroni

index. Yaghoobi et al. (2014) derived a family of maximum Tsallis entropy quantile functions under

the constraints on the mean and Gini index. In this subsection, this question is answered: “What is the

maximum entropy distribution subject to a given mean and a given measure of inequality?” The answer

is provided when inequality measure is Gini index, Pietra index and generalized Gini index.

2.2.1 Gini index

Let X be a non-negative random variable with pdf f and cdf F . Here the problem of maximizing entropy

subject to a given mean and a given Gini index is stated. In other words, the problem is maximizing the

entropy of X subject to the following constraints,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫∞
0

f(x)dx = 1,∫∞
0

xf(x)dx = μ,

G(F ) = γ.
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Eliazar and Sokolov (2010a) showed that under the aforementioned constrains, the survival function

(F̄ = 1− F ) of the maximum entropy distribution is given by

F̄ (x) =
1

σ exp(ρx) + (1− σ)
, x ≥ 0,

where σ is positive real valued parameter depending on γ = 1 + 1
σ−1 − 1

log σ
and ρ = log σ

(σ−1)μ .

2.2.2 Pietra index

Eliazar and Sokolov (2010b) showed that within the class of pdfs possessing a given mean and a given

Peitra index that is under the constraints⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫∞
0

f(x)dx = 1,∫∞
0

xf(x)dx = μ,

P (F ) = η,

the entropy maximizer is bi-exponential pdf

f(x) =

⎧⎨
⎩c1 exp(αx) if 0 < x < μ,

c2 exp(−βx) if μ < x <∞,

where α and β are real exponents depending on μ and η; c1 and c2 are normalizing coefficients satisfying

the relation log(c2/c1) = (α+ β)μ.

2.2.3 Generalized Gini index

Khosravi et al. (2015) extend the result of Eliazar and Sokolov (2010a) by replacing generalized Gini

index with Gini index and showed under the constraints⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫∞
0

f(x)dx = 1,∫∞
0

xf(x)dx = μ,

Gν(F ) = γ,

(11)

the maximum entropy distribution has the following survival function,

F̄ (x) =

(
1

c1 exp(c2x) + (1− c1)

) 1
ν−1

, x ≥ 0, (12)

where c1 and c2 depend on μ and γ, and are obtained from (11).

3 Maximum generalized entropy

In this section, the generalized entropy (4) is considered and we intend to find the maximum generalized

entropy under the general constraints. For this purpose, we present the following theorem.

Theorem 3.1. Necesssary and sufficient condition for the generalized entropy Hφ to have maximum for

a given cdf F(x) with pdf f(x), under the convex (in f) constraints∫ ∞

−∞
Gi(F (x), f(x), x)dx = θi , i = 1, 2, ...,m,

is that F(x) satisfy the equation:

m∑
i=1

λi

(
∂Gi

∂F
− d

dx

∂Gi

∂f

)
+ f ′φ′′(f) = 0, (13)

where λ1, λ2, ..., λm are Lagrange multipliers.
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Proof. Since −Hφ(f) is a convex functional, it is sufficient to F (x) satisfy the Euler’s equation for the

corresponding Lagrangian, that is

∂L

∂F
− d

dx

∂L

∂f
= 0, (14)

where

L(F, f, x) =

m∑
i=1

λiGi(F, f, x)− φ(f).

From Euler’s equation (14) we have

m∑
i=1

λi
∂Gi

∂F
− d

dx

(
m∑
i=1

λi
∂Gi

∂f
− φ′(f)

)
= 0.

The above equation hold iff the equation (13) hold.

Theorem 3.1 give us a general rule for finding the maximum generalized entropy. All afformentioned

maximum entropy distributions can be obtained using the equation (13). For example, when we have

Shannon entropy (φ(x) = −x log(x)) and G1(F, f, x) = f(x);

• If Gi(F, f, x) = hi(x)f(x), i = 2, ...,m, then the results of section 2.1 is obtained.

• If G2(F, f, x) = xf(x) and G3(F, f, x) = [F (x)− 1]2 then the results of section 2.2.1 is obtained.

• If G2(F, f, x) = xf(x) and G3(F, f, x) = max(0, x − μ)f(x) then the results of section 2.2.2 is

obtained.

• If G2(F, f, x) = xf(x) and G3(F, f, x) = [F (x)− 1]ν then the results of section 2.2.3 is obtained.

4 Maximum quadratic entropy under the constraint on

Gini index

In this section, within the class of distributions supported on the positive real line, we intend to find

the distribution that maximizes the quadratic entropy as a special case of generalized entropy under the

constraints ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫∞
0

f(x)dx = 1,∫∞
0

xf(x)dx = μ,

G(F ) = ϑ.

(15)

The result is stated in the next theorem.

Theorem 4.1. The survival function of quadratic entropy maximizer distribution under the constraints

(15) is

F̄ (x) =
eα(2β−x) − eαx

e2αβ − 1
, 0 ≤ x ≤ β, (16)

where α and β depend on μ and ϑ, and are obtained from (15).

Proof. From theorem 3.1, the maximum quadratic entropy must satisfy in equation (13), when φ(f) =

f − f2. So we have the following equation:

−λ2 − 2λ3F̄ (x)− 2f ′(x) = 0.

Since F̄ (x) is a survival probability function, λ2 must be equal zero. Thus, we arrive at the differential

equation

λ3F̄ (x) + f ′(x) = 0.
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The solution of this differential equation is

F̄ (x) = c1e
√

λ3x + c2e
−√

λ3x.

Again, since F̄ (x) is a survival probability function, the support of the distribution should be limited.

Thus, we arrive at the survival function in (16).

Conclusion

The principle of maximum entropy is a technique that can be used to estimate distribution of populations.

In this paper, we studied a generalization of maximum Shannon entropy in terms of φ-entropy. Using it

the maximum quadratic entropy distribution as an approximation of income distribution was found.
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