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Flow estimation for ungauged catchments using a neural network 
method  

Mohammad T. Dastorani1& Nigel G. Wright2 
 

This research focused on the application of artificial neural networks for flood 
prediction in ungauged catchments. Catchment descriptors were used as input data 
and the index flood was the output of the model. Different types and numbers of 
catchment descriptors (17 descriptors and more than 1000 catchments) were used 
to choose those that gave the best relationship with the hydrological behaviour and 
flood magnitude. ANN models with different architectures were developed and 
applied to training and validation sets of data to find the best type of ANN for this 
application. Selection of pooling groups of catchments either randomly or 
according to geographical proximity did not produce desirable results. Therefore 
hydrologically similar catchments were clustered using the WINFAP-FEH 
Software before entering descriptors into the ANN model. This improved the 
accuracy of predicted floods. 

Introduction 
Floods mean many things to many people depending on the profession they are engaged in.  
To the civil engineers who are responsible for designing flood protection measures it means 
how to build up a design flood based on the knowledge of hydrology of the catchment area.  
This is required to plan engineering structures such as storage reservoirs, schedule of 
operations etc. Further as the flood wave passes through a river it is necessary to know how 
the stage varies with respect to time and distance for the design of river engineering works as 
well as for establishment and operation of flood warning systems by the civil authorities. To 
do this, the most important factor is to predict flood discharge magnitude accurately. Flood 
prediction is a complicated situation specially for the ungauged catchments considered here as 
there is no flow data to use. 
 
The technique of artificial neural networks has been found to be a powerful tool for solving 
different problems in a variety of applications ranging from pattern recognition to system 
optimisation. A neural network is an interconnected assembly of simple processing elements, 
units or nodes, whose functionality is loosely based on the animal neurone. It is based on 
learning the process from inputs to outputs using a training data set, and it mimics these for a 
new set of inputs to reach corresponding outputs. Recently, it has been applied to problems of 
water resources engineering, river flow modelling, and catchment rainfall-runoff processing. 
The technique of artificial neural networks is widely used as an efficient tool in different areas 
of water related research activities. It has been used in different water research areas such as 
evaluation of rainfall-runoff relationship (Hsu, Gupta and Sorooshian 1995, Minns and Hall 
1996).  
 
The present study focuses on the application of artificial neural networks for river flood 
prediction of ungauged catchments using catchment descriptors. In addition, the identification 
of appropriate factors affecting flood flows of ungauged catchments (for use as inputs to the 
models) as well as the suitable architecture of neural networks for this particular application 
have been considered. 
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Artificial neural networks  
A neural network consists of a large number of simple processing elements that are variously 
called neurones, units, cells, or nodes. Each neurone is connected to other neurones by means 
of direct communication links, each with an associated weight. The weights represent 
information being used by the network to solve a problem. Neural networks operate on the 
principle of learning from a training set. They must be trained with a set of typical 
input/output pairs of data called the training set. The final weight vector of a successfully 
trained neural network represents its knowledge about the problem. In general, it is assumed 
that the network does not have any a priori knowledge about the problem before it is trained. 
At the beginning of training the network weights are usually initialised with a set of random 
values. There are a variety of neural network models and learning procedures. Two classes of 
neural networks that are usually used for prediction applications are feed-forward networks 
and recurrent networks. The neural network approach is a black-box approach and the user 
need not know much about the flow process. The ANN model structure is suited ideally for 
the modelling of highly non-linear relationship between inputs and outputs. In this research 
the software The NeuroSolutions neural networks environment produced by 
NeuroDimension, Inc. (NeuroSolutions, 2001) was used to construct neural network models 
for this study. ANN models with different architectures have been constructed and applied to 
training and validation sets of data to find the best ANN for this application.  Different values 
for the parameters of learning rate, number of PEs, number of hidden layers, type of 
activation and output functions were tested for each architecture as well as for each set of 
data. Finally, it has been found that the Multi-Layer Perceptron (MLP) network with three 
layers, and Tangent hyperbolic function in hidden layer and Sigmoid function in output layer 
is the most accurate network for this purpose. Figure 1 shows a simple architecture of a 
typical 3-layer feedforward neural network, which has been used in this research. An 
advantage of MLP in terms of mapping abilities is its capability of approximating arbitrary 
functions. This is an important point in the study of nonlinear dynamics, and solving other 
function mapping problems. 

                        Fig. 1 A simple architecture of MLP neural network used in this research. 

This type of the neural networks is normally trained with backpropagation algorithm.  The 
backpropagation rule, propagates the errors through the network and allows adoption of the 
hidden processing element.  It works with error correction learning to update the weights that 
from the system response at processing element i at iteration n (yi(n)), and the desired 
response (di(n)) for a given input pattern an instantaneous error (ei(n)) is defined by: 
                                  ( ) ( ) ( ) 1niynidnie −=  
Using the theory of gradient descent learning, the weights are adopted by correcting the value 
using: 
                                ( ) ( ) ( ) ( ) 21 nixninijwnijw ηδ+=+  
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Where wij(n+1) is the weight of processing elements i to j for the iteration n+1, wij(n) the 
value of the same weight for iteration n, δi(n) is the local error computed directly from ei(n), 
and the constant η is the step size.  Momentum learning, which has been used for the MLP 
neural network in this research, is an improved version of gradient descent in which a 
memory term is used to speed up and stabilize convergence.  In this type of learning, weights 
are updated by following equation.  
               ( ) ( ) ( ) ( ) ( ) ( )( ) 311 −−++=+ nijwnijwnixninijwnijw αηδ  

α is the momentum and normally is set between 0.1 and 0.9.  The final weight vector of the 
successfully trained network, which represents its knowledge about the problem is used to 
apply to a new set of data to evaluate the performance of the model. A further parameter to be 
evaluated in this study was the number of processing elements (PEs) for the hidden layer of 
the neural network models.  Results obtained from a simple test showing the quality of the 
results (R2 for predicted and measured values) obtained with different numbers of PEs (10, 
14, 50, 100 and 200) for a pooling group of catchments with seven inputs. this result showed 
that the variation of the accuracy of the outputs for different PEs is not considerable, although 
there is a decrease when the number of the PEs passes 100.       
 
Each set of data was split into three parts for training, cross validation (to prevent over 
training), and testing (to test the model performance by using a trained network for a new set 
of data) purposes. In each pooling group, 60% of the catchments was used for training, 10% 
for cross validation, and 30% for testing of the model performance.   

Identification of appropriate model inputs 
As mentioned earlier, catchment descriptors have been used as the inputs to train and test 
artificial neural network models. However, some of the descriptors have more influence on 
runoff generation and flooding process than others. Identification of most important 
catchment characteristics, which have the strong relationship with runoff, is an important step 
to accurate prediction of the flow in an ungauged catchment. Although selection of the 
descriptors which have the most influence to runoff is the most important point, the number of 
descriptors used in the model is also important. Decreasing the inputs to make the modelling 
as simple as possible while keeping the accuracy of the prediction in an acceptable level, is a 
big advantage in terms of time and effort. It also affects usefulness of the model where there 
is limitation or additional cost for preparation or extraction of the required descriptors. To 
identify the most relevant descriptors to use as input of the neural network models, in this 
study the technique of neural network itself has been used.  A multi-layer preceptron neural 
network was used with different types and number of inputs and the results were compared.  
 
The number of input patterns is important in neural network modelling, as it has considerable 
influence on the ability of the models to process the task and go from input to output.  A very 
small number of inputs may cause insufficient recognition by the network of the nature of the 
problem in order to map the relationship between inputs and outputs.  A very large number of 
inputs may also lead to a complexity of the relationship and consequent poor performance of 
the modelling. From the hydrological point of view the optimum state is to use the minimum 
number of inputs whilst keeping the results to a desirable or acceptable level of accuracy.  
This was done in this case.  Of course in addition to the number of descriptors the type of 
descriptors is very important, as usually runoff has a stronger relationship with some of the 
descriptors of the drainage catchment than others. Identification of these descriptors and using 
them will help to improve the accuracy of the outputs. Several simulations were carried out 
using different numbers and types of descriptors, and the results were compared to identify 
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the most important number and types of the catchment descriptors to use as input to ANN 
models and predict river flood of the ungauged catcments. From figure 2, which shows 
correlation coefficient of the outputs from the ANN simulations using different number of 
inputs with the related measured values, it is clear that models with 5, 6, 7, 8, and 9 inputs 
represent the more accurate results. To get more confidence in the choice of the right number 
of inputs, the results of the tests has also been considered using root mean square error 
(RMSE), and the results confirm what is seen in figure 2. By comparing the the results of 
these tests and the desire to have as few inputs as possible, the number of 7 descriptors has 
been selected for further simulations. These are as follows: 

• AREA = Catchment drainage area using an IHTDM-derived boundary (km2). 

• BFIHOST = Bas Flow Index derived using the HOST classification. 

• SPRHOST= Standard Percentage runoff derived using the HOST classification. 

• FARL= Index of Flood Attenuation attributable to Reservoirs and Lakes. 

• SAAR= Standard period (1961-1990) Average Annual Rainfall (mm). 

• SMDBAR= Mean SMD for the period 1941-70 calculated from MORECS monthend 
values (mm). 

• PROPWET= Proportion of time when SMD was ≤6 mm during 1961-90. 

      Figure 2 Squared correlation coefficient (R) between measured flow and predicted flow by ANN using 
different number of catchment descriptors in training and validation phases, and the average value 

Randomly and geographically selected group of catchments 
Two groups of catchments have been considered in this step. The first one, whose members 
have been selected randomly from all over the United Kingdom, contains 70 catchments. 
After selection of the members of the group, all descriptors of the catchments have been 
extracted and prepared to enter into the model.  The second group, which contains 52 
catchmens was formed according to an initial consideration of similarity in terms of drainage 
area and geographical location.  For the second group, after specification of the catchments 
their descriptors have been extracted and used to train and test the models. All catchments in 
this group have an area less than 100 km2.  In each group, 60%, 30% and 10% of the members 
have been used for training, testing and cross validation purposes respectively. Figures 3 and 
4 show the results obtained from the tests using the first and second groups in testing phases 
of the simulation. 
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Figure 3 Results obtained from ANN model for a group of 70 random catchments against the actual values - 
testing phase 
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Figure 4 Results obtained from ANN model for a group of 52 selected catchments  against the actual values - 
testing phase  

 
As can be seen from the figures, the accuracy of the results is not satisfactory, and also there 
is no considerable difference between two results. Although in the second test catchments 
were selected from same geographical location and the same category of drainage area (all 
under 100 km2), the results show there is no important improvement in output accuracy over 
the first test that has been selected randomly. The coefficient correlation between predicted 
and measured floods (R) for the first test is 0.98 and 0.87 for training and testing phases 
respectively. For the second test where catchments have been selected according to the area 
and geographical location R, is 0.91 and 0.79 for training and testing phases respectively. 
Although in the training phase the predicted flow data and measured flow values show a high 
correlation coefficient, they do not show good performance in the testing phase, which is 
more important in terms of the evaluation of model performance. This shows that the model 
cannot learn the process in training phase properly to be able to reach appropriate weights and 
apply them to the new set of data in testing phase.   
 
Prediction results for pooling groups 
The WINFAP-FEH was used to form pooling groups. This procedure identifies the 
catchments based on hydrological similarities. The ANN was trained again based on these 
pooling sets (60% of each pooling group) of catchments and was tested by 30% of the 
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catchments in each pooling group. After employing the WINFAP-FEH and forming pooling-
groups, the accuracy of the results of the neural networks was improved by about 14% and 
7% for the groups containing 52 and 70 catchments respectively.  The outputs of the model 
where closer to the measured values especially in testing phase. This shows that employing of 
the WINFAP-FEH in this stage has helped artificial neural networks to produce more 
practical outputs. Figure 5 shows the results from a pooling group of 52 catchments for the 
subject site of Tay in testing phase. For this test R was 0.96 and 0.93 for training and testing 
phases respectively.   For another pooling group (formed for the subject site of Thurso with 
70 catchments), the results have been shown in figure 6 for testing phase. For this test R was 
0.98 and 0.94 for training and testing phases respectively. 
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Figure 5 Results obtained from ANN model for a pooling group of 52 catchments  (for Tay subject site) in 
testing phase. 
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Figure 6 Results obtained from ANN model for a pooling group of 70 catchments  (for Thorso subject site) in 
testing phases  

Relationship between accuracy and group homogeneity   
It was decided to analyse the relationship between two appropriate factors showing the 
accuracy of the model results (agreement between the predicted values and the actual values) 
and homogeneity of the pooling groups. The purpose was to consider the effects of 
homogeneity of the formed groups on the outputs of the ANN models. To meet this purpose, 
more pooling groups for subject sites located in different parts of the UK were formed and 
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used to predict the flow. R2 (squared of the correlation coefficient between predicted results 
and the measured values) was plotted against heterogeneity factor of the pooling groups, H2. 
Evaluation of these two parameters for several different pooling groups show that an 
increased heterogeneity factor decreases the accuracy of the results of ANN predicted flows. 
First the number of pooling groups was increased to 6 and these two parameters were 
considered. Results have been plotted in figures 7. In terms of the pooling groups 
homogeneity evaluation, FEH suggest that a pooling group is homogenous when H2<2, it is 
considered heterogeneous when 4>H2>2, and it is very heterogeneous when H2 >4. Looking 
at these figures  show that for six pooling groups except one of them (number 1) there is a 
good agreement between predicted and measured flow for the pooling groups when 
heterogeneity is smaller and especially when it is less than 1. Heterogeneity factor (H2) of the 
pooling groups was also plotted against the root mean square error (rmse) of the results 
obtained from ANN models using these pooling groups. This graph also confirmed the clear 
effect of forming hydologically similar groups of catchments in performance of the technique 
of artificial neural networks in ungauged catchment flood prediction. The number of pooling 
groups was again extended to 12 and the results between H2 and R2 indicated almost the same 
conditions as for 6. 

Figure 5.17 Heterogeneity factor (H2) of WINFAP-FEH and coefficient correlation between predicted and 
measured peak flow (R2) in testing phase for 6 different pooling groups. 
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Figure 5.18 Relationship between the H2 (pooling group heterogeneity factor) and the rmse (root mean square 
error between predicted and measured flow) in training and testing phases of ANN for the six pooling groups 
formed by WINFAP-FEH. 

Comparison of the results to FEH method  
The Flood Estimation Handbook (FEH) presented a method to estimate annual maximum 
flood (QMED) for rural catchments (URBEX<0.025) using catchment descriptors (see FEH 
volume 3 for more information). To evaluate the efficiency of the ANN based procedure 
presented in this research, the results of the testing phase data (catchments that have not 
contributed in training phase) were compared to the results obtained by FEH for those 
catchments. The testing phase results of four pooling groups formed in this research (Thurso, 
Derwent, Tay and Urel) were used for this comparison (only catchments with urbanisation 
factor less than 0.025 which has been mentioned in FEH). Root mean square error (rmse) and 
coefficient of efficiency (R2) between the measured flow and predicted flow by ANN 
(presented in this research) and FEH were calculated to evaluate the accuracy of the 
estimations. Table 1 shows these values for the results of each pooling group. 
 
Table 1 Root mean square error (rmse) and coefficient of efficiency (R2) between the measured flow and 
predicted flow by ANN (presented in this research) and FEH  

Root mean square error (rmse) Coefficient of efficiency (R2) Group 
FEH method ANN method FEH method ANN method 

Derwent 102.6608 87.97555 0.744576 0.812424 
Thurso 65.18505 53.60212 0.765902 0.841705 
Urel 137.0868 117.6087 0.5015 0.633096 
Tay 145.3701 100.7791 0.658049 0.835656 
Total together 147.9979 90.10736 0.474627 0.80525 

Discussion 
The initial results obtained from the ANN model of ungauged catchment flood prediction 
were not desirable. These results were the outputs of the model that used descriptors from 
randomly or geographically formed groups of catchments. However, after employing the 
WINFAP-FEH and forming pooling-groups, the accuracy of the results of the neural networks 
was improved considerably.  This is due to the homogeneity of the catchments selected in 
pooling groups. In clustering the catchments by this method hydrological factors are 
considered and hydrological responses through the members of these pooling groups are more 
similar than the catchments clustered randomly or according to geographical proximity. Using 
descriptors extracted from hydrologically similar catchments in the ANN model gives more 
relevant representation of the whole drainage area to the model. It is to be expected that the 
ANN model using these input data can produce more reliable results.  By looking at the 
outputs in this stage it is clear that the outputs of the model were closer to the measured 
values especially in the testing phase, which shows the ability of the model to cope with new 
sets of data.  
 
Another finding of this research was the specification of the catchment descriptors that have 
the highest influence on flood magnitude. This is a very important point as the type of inputs 
is one of the most important factors in the success of this type of investigation. Several types 
and number of catchment descriptors can be used as inputs and there is no given rule 
representing the catchment characteristics that have the strongest relationship with the 
discharge. The neural network technique was again used to do this. Several simulations were 
carried out using different numbers and type of descriptors, and the results were compared to 
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identify the most important number and types of the catchment descriptors to use as input to 
ANN models. After a correlation coefficient analysis for the outputs of the ANN simulations 
with different number of inputs, it became clear that models with 5, 6, 7, 8, and 9 inputs 
represent the more accurate results. Calculation of the values of root mean square error (rmse) 
for the results of the tests also confirmed what was seen earlier in correlation coefficient 
analysis. Finally by taking this finding into account and also attempting to have as small as 
possible number of inputs, the number of 7 descriptors was found to be the most appropriate 
number of inputs for further simulations. In addition to the number of inputs the type of inputs 
was nother point to be cleared. Several tests were carried out by selection and use of different 
types of the descriptors for each identity test the most relevant types of descriptors were 
specified for each identity test. As a result the descriptors of AREA, SAAR, BFIHOST, 
SPRHOST, FARL, SMDBAR, PROPWET were found to be the most relevant inputs to the 
ANN model to predict flow of ungauged catchments. By looking at these descriptors it 
becomes clear that the results taken from these tests are reliable. These descriptors are 
physically the most important factors in terms of catchment hydrological analysis. These 
descriptors represent characteristics such as drainage area, rainfall, river base flow index, 
lakes and reservoirs, and catchment soil property and moisture. These characteristics  are very 
important in runoff analysis and some of them are also the main parameters used in empirical 
methods of flood prediction. Identification of the type and number of catchment descriptors as 
inputs of the model showed its maximum effect when the WINFAP-FEH pooling groups were 
used to the model.  
 
The relationship between accuracy of the results and homogeneity of the pooling groups was 
evaluated. This was carried out to find effects of homogeneity of the formed groups on the 
outputs of the ANN model. More pooling groups were created to complete this evaluation, 
and heterogeneity factor (H2) was considered against the closeness of the predicted peak flow 
to measured values (R2) for several different pooling groups. The result was that an increased 
heterogeneity factor decreases the accuracy of the results of ANN predicted flows, and 
normally a good agreement between predicted and measured flow is seen when heterogeneity 
is less than 1.  
 
Consideration of the pooling group homogeneity factor and the closeness of the predicted 
results to the measured values indicates that the forming of the pooling groups is efficient 
only when the groups have a high enough level of homogeneity.  In this study for the groups 
with H2 less than 1, the neural network model produces predictions close enough to the 
measured values.  It can be said that ANN seems to be an appropriate tool to model river flow 
and predict peak flows for unguaged catchments or catchments with a short record period of 
data when a suitable method is used to identify hydrologically similar catchments in the 
region. This research once again indicates that selection of the catchments to form pooling 
groups based on geographical proximity is not an efficient way in most cases.  Homogeneity 
of the catchments must be considered based on hydrological parameters, which show 
similarity in reaction to precipitation, runoff generation and hydrological responses of the 
catchments.  
  
By comparing the results of the procedure presented in this research to those produced by the 
FEH method it was shown that the accuracy of the outputs presented by this method is higher 
than the FEH method. For all four pooling groups considered R2 for ANN method results is 
higher than the FEH method. The difference in R2 is between 7 to 18 percent for the results in 
different pooling groups (table 1). This comparison shows that ANN can be an appropriate 
alternative to produce more practical predictions in ungauged catchments.    
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Conclusions 
In this paper the application of an artificial neural network for ungauged sites was evaluated. 
In addition to the type of the compatible neural networks for this problem, the type and 
number of catchment descriptors were found important to get an acceptable result. By 
choosing the right type and number of basin characteristics as inputs, and compatible type of 
the neural network model as well as suitable model parameters, this technique gives an 
efficient tool to solve the problem of sites where the lack of data limits the efficiency of other 
modelling tools. In terms of flow prediction for these sites, correct selection of the members 
of the groups seems necessary. This should be done using a sophisticated method, which can 
select the catchments according to their similarity in response to the hydrological events, as 
geographical proximity does not seem so efficient in terms of catchment group homogeneity. 
The results obtained from this research were compared to those of the method presented by 
FEH for ungauged sites. Values of root mean square error and coefficient of efficiency 
calculated for the results of these two methods showed that the results of this research are 
more accurate than those produced by FEH method. 
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