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Application of the combination of hydrodynamic and artificial 
neural network approaches for river peak flow prediction  

 
Mohammad T. Dastorani1& Nigel G. Wright2 

 
The application of artificial neural networks for the correction of the outputs of a 
1D hydrodynamic flow model in a semi arid catchment has been investigated in 
this study.  A hydrodynamic model was constructed to predict flow at the outlet 
using time series data from upstream gauging sites as boundary conditions the 
results was not close enough to the actual values.  Then the model was replaced by 
an ANN model but the results were not desirable.  Finally the error of the model 
was predicted using a three-layer feedforward neural network model to optimise 
the outputs.  This gave a significant improvement in the results.  Due to suspension 
of flow gauging in one of the upstream sites, there is no data for this site for the last 
decade.  To evaluate the adaption of models with this problem, all simulations were 
repeated but without data from the suspended site. A combination of these two 
techniques produced outputs that were more accurate than the results of the models 
individually  

Introduction  
Issues like flooding and associated damage, droughts and water shortages, and compromised 
water quality are major concerns facing communities worldwide.  Understanding these issues 
requires that the hydrologists have access to high quality long-term data sets to be able to 
make reliable predictions about future conditions. Completion of hydrologic process research, 
ecosystem analysis, model development, calibration and validation will help to manage and 
protect the world’s water resources and to mitigate the hazards of an unforeseen future. 
  
In a flood prediction system, especially for large river catchments, a combination of rain fall-
runoff and routing models may be used. A rainfall-runoff model is normally used for 
tributaries while a hydrodynamic or routing model for the main river reaches. The 
computational models used to predict river floods are in most cases one-dimensional.  River 
floods are normally gradually varied unsteady flows and so a time-dependent simulation is 
required.   
 
In this research, after consideration of the study area and the most important factors such as 
climate conditions, precipitation characteristics, flow regime and data gauging network in the 
Reynolds Creek Experimental Watershed (RCEW), modelling works were completed. Models 
were developed using hydrodynamic and artificial neural networks separately to predict flow 
at the outlet of the catchment, and the performances were evaluated. Then a MLP neural 
network model was adopted to optimise the outputs of the hydrodynamic modelling procedure 
by prediction of the error produced by the hydrodynamic model. 

Study area 
The study area for this part of the research is Reynolds Creeks Experimental Watershed 
(RCEW) southwest Idaho (USA), a typical intermountain region of the western United States.  
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It is located in Owyhee Mountains of south-western Idaho, about 80 km south-west of Boise 
with 239 km2 drainage area.  The main stream flows from south to north in the Owyhee 
mountains at an elevation exceeding 2200m.   
 
The topography of the study area is generally rugged except in the broad valley floor in the 
north-central part of the watershed. It ranges from a broad, flat alluvial valley to steep, rugged 
mountain slopes.  The elevation ranges over 1100m through the catchment, resulting in a 
strong climatic gradient.  The lower boundary of the catchment is determined by the outlet 
weir location, which is near the head of a small canyon through which Reynolds Creek flows 
before entering the Snake River about 12 km to the north.  The lowest elevation on the 
watershed is 1101 m above the sea level and the highest elevation is 2241m at the southern 
boundary of the catchment. The eastern boundary rises to about 1525m and the western to 830 
m above sea level. The climate of the RCEW and more localised distribution of soils and 
vegetation are largely controlled by the elevation and local topography.  The catchment’s 
main perennial stream flow is generated at the highest elevations in the south and north west 
where deep and late lying snow packs are the main source for water. Local slope and aspect 
strongly influence the hydrology of the catchment by controlling the incoming solar radiation 
and snow deposition patterns (Seyfried et al; 2000).   
 
Quality controlled and validated hourly stream flow data sets are available for 13 sites since 
1963 (or for subset of that time for some sites) (Pierson et al. 2000).  Figure 1 shows the 
location of all flow gauging stations in the Reynolds Creek Experimental Watershed. One of 
the gauging stations (Macks Creek) was established early in the 1960s and the measuring of 
flow in a main tributary was suspended in 1991. 

Figure 1 (a) Watershed boundaries, stream network and weir locations in the RCEW (after Pierson et al; 2000), 
(b) Tollgate weir, the upstream end of the modelled reach and (c) Outlet weir, downstream end of the reach in 
RCEW. 

 

( c) 

(b) 
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In this study the Reynolds Creek main river reach between the Tollgate weir upstream and the 
Outlet weir downstream has been modelled.  This reach is a perennial stream with 14.082 
kilometres length of stream course (the detailed surveyed thalweg length has been calculated 
as 17.073 kilometres). The downstream end of the reach is the Outlet weir, which is also the 
outlet point of the RCEW (figure 1b). The upstream end of the reach is limited to the Tollgate 
weir (figure 1c).  The longitudinal slope of the modelled water way in upper parts of the reach 
is relatively greater than in lower parts.  A total of 53 cross sections have been drawn by 
surveying the distance between two weirs to provide the data required for calibration of the 
models. 

Flow prediction by hydrodynamic model 
The MIKE 11 package (from Danish Hydraulics Institute) was used to construct 1D 
hydrodynamic model for the reach between the Tollgate and Outlet weirs to predict flow at 
the Outlet for a flood wave occurring in the period of February-April 1982.  Flow data were 
entered into the model from Tollgate, Macks Creek and Salmon Creek (three gauging stations 
upstream side of the outlet weir) as the boundary conditions.  These three gauging sites which 
drain three main sub-catchments can be used to model main river reach, while all other 
gauging sites are located in headwater tributaries of the sub-catchments and not delivering 
flow directly to the main river. 53 cross sections with associated photographs of the main 
channel and flood plain in each cross section location were used to define geometry and 
roughness (Manning’s n) to the model.  A Q-H relationship at the outlet weir section was used 
as the downstream boundary of the model.  Initially the hydrodynamic model was just used to 
predict flow at the Outlet point using data from the three sites mentioned above. Figure 2 
shows the related hydrograph for March 11 to April 16 predicted by the model against the 
measured values. As the figure shows, the estimated values are not close enough to the 
measured values especially for the peak flow. In comparison wih the actual hydrograph the 
model underestimates the outputs.  As a result the output of the model at this stage may not be 
accurate enough for practical applications.  

Results of Mike 11 for prediction of flow at the outlet of the 
Reynold Creeks Experimental Watershed
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Figure 2 Estimated flow for the outlet of the Reynolds Creek Experimental Watershed using MIKE 11 versus 
the measured values (using all three upstream sites). 
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As mentioned earlier the operation of Macks Creek has been suspended since 1991. The 
second step in this part of the research was to evaluate how this gauging site suspension 
affects the hydrodynamic modelling and how the technique of artificial neural networks might 
be able to bridge this gap in order to improve the results of the hydrodynamic model affected 
by this shortage of measured data. Therefore, another simulation was carried out but this time 
using data from only two stations where gauging has been continued (Tollgate and Salmon 
Creek).  The estimated flow hydrograph of this simulation is compared to the measured 
values in Figure 3 (the hydrograph is for the period March 11 to April 16). 

Results of MIKE 11 for prediction of flow at the outlet of the RCEW (using 
Tollgate and Salmon Creek only)
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Figure 3 Estimated flow for the outlet of the Reynolds Creek Experimental Watershed using MIKE 11 versus 
the measured values (using Tollgate and Salmon Creek only).  
  
As can be seen from the figure results are not satisfactory and much worse than the first 
simulation. This clearly shows the effect of the absence of the Macks Creek as a source of 
data for the model.  

Flow prediction by neural network model 
A neural network model was developed and used to predict flow at the outlet point of the 
RCEW by the same input data as used in hydrodynamic model in previous section. In other 
words, for the same purpose and same data the hydrodynamic model was replaced by a neural 
network model. The artificial neural network architecture used was a three-layer perceptron 
feedforward (MLP) network. Although different architectures of neural networks were tested 
to be used for this purpose, The MLP was the most relevant one (it presented the most 
accurate results. One hidden layer with a tangent hyperbolic transfer function was used in this 
model, while the function in the output layer was a logistic one. To prevent the model from 
over training, a small part of data was specified and entered as a cross-validation data set.  
Data was divided into three parts to use as training, testing and cross validation data sets.  
February 1 to March 10 was used to train the model to establish the relationship between 
input and output patterns, while the data of March 11 to April 16 was used as a testing set to 
evaluate the performance of the model. The remaining data (April 17-30) was used as cross 
validation data set. The period of data specified for testing phase was similar to the period of 
data used in MIKE 11 to facilitates comparison of the results. 
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In the first simulation all three upstream gauging sites (Tollgate, Macks Creek and Salmon 
Creek) were used as sources of data to the model. Figures 4 shows the results obtained from 
this simulation in testing phase. As in the hydrodynamic modelling, the simulation was 
repeated here without data from the suspended gauging site (Macks Creek) to see how this 
technique deals with the problem of data source reduction. Figure 5 shows the outputs of this 
simulation in the testing phase.  

Results of ANN model for prediction of flow at the outlet of the RCEW (using 
all three upstream gauging sites)
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Figure 4 Estimated flow for the outlet of the Reynolds Creek Experimental Watershed using ANN versus 
measured values in testing phase (all stations). 

Results of ANN model for prediction of flow at the outlet of the RCEW (using 
Tollgate and Salmon Creek)
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Figure 5 Estimated flow for the outlet of the Reynolds Creek Experimental Watershed using ANN versus 
measured values in testing phase (no Macks Creek).  
  
Comparing figure 4 figure 5 shows that removal of the Macks Creek data from the ANN 
model actually caused a significant improvement in the predictions. In addition to the figures 
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the values of R2 and RMSE (table 1) indicates this improvement quite clearly. This behaviour 
was not what was expected.  However a neural network is a black box model, and depending 
on the nature of the problem and especially the attitude of data, defines the relationship 
between input and output, and increasing or decreasing the entered data cannot necessarily 
improve the performance.   
 
In view of the above it was decided to carry out a simulation after removing a second source 
of data (Salmon Creek) and therefore use data only from Tollgate, which is located across the 
main stream and for which the data shows more correlation to those of the outlet. Figure 6 has 
been drawn using the outputs of the model in this condition against the measured values. This 
figure shows that removing of Salmon Creek data from the model has affected the results by 
decreasing the accuracy which is the opposite to what occurred when Macks Creek data was 
removed. Therefore the neural network model has produced its best possible results in the 
second simulation (using Tollgate and Salmon Creek to enter data to the model).  
            

Results of ANN model for prediction of flow at the outlet of the RCEW 
(using data from Tollgate only)-testing phase

0

5

10

15

20

25

30

1 40 79 11
8

15
7

19
6

23
5

27
4

31
3

35
2

39
1

43
0

46
9

50
8

54
7

58
6

62
5

66
4

70
3

74
2

78
1

82
0

85
9

89
8

Time (hr)

Fl
ow

 (m
3 /s

)

Measured Predicted

Figure 6 Estimated flow for the outlet of the Reynolds Creek Experimental Watershed using ANN versus 
measured values in testing phase (no Macks Creek & Salmon Creek).   

Combination of ANN and hydrodynamic models 
In this part a combination of two techniques (hydrodynamic and ANN) was used to predict 
flow at the outlet of the RCEW. 

ANN model to predict errors 
To improve the accuracy of the hydrodynamic model, an artificial neural network was 
employed to estimate the errors of hydrodynamic modelling results. Different architectures 
such as Radial basis function, Recurrent network, Time Lag Recurrent network and Multi-
layer Perceptron (MLP) were used and the predicted errors were compared to the actual 
errors. The MLP gave the most accurate results and therefore it was selected as the neural 
network architecture to be combined with the hydrodynamic model in this part of the 
research.  
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The error of the hydrodynamic model estimations was calculated using the following formula: 
                              )4.5(estXobsXpE −=  

where Ep is the error of the estimated pattern, Xobs is the observed value and Xest is the 
estimated value.  The ANN model was trained using Tollgate measured flow data and MIKE 
11 outputs for the outlets as input to the ANN model and the difference between MIKE 11 
outputs and the measured values for outlet (error of MIKE 11 estimation) as output of the 
neural network model (EP). 
 
Hourly flow data for the period of February 1 to April 30, 1982 was used for this simulation 
(similar to that used in hydrodynamic and ANN models in previous sections). The prediction 
of error for the first (using all three stations) and second (without Macks Creek) 
hydrodynamic simulations was carried out separately. The data sets for training, testing and 
cross validation were the same as in the previous ANN modelling. Figure 7 shows the results 
of ANN model in this simulation in testing phase.  

Mike 11 results error predicted by an ANN model - testing 
phase
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Figure 7 Prediction of the error of MIKE11 outputs for outlet of the Reynolds Creek Experimental Watershed 
using an ANN model-testing phase.  

Optimised results and discussion 
The combination of a hydrodynamic model and ANN caused a clear improvement in the 
results.  As figure 7 shows the MLP neural network makes good prediction of errors. The left 
side of the graph, where the small errors occurred (low flow part of the hydrograph), the 
predicted line does not follow the small variations of the actual error graph but produces 
values which are a general average of the error values in this part of the graph. However, 
when the maximum error occurs (right side of the graph where corresponds to the peak flow 
period of the flow hydrograph) the predicted line follows the actual line. In this part of the 
graph the variation of the error is considerable and the closeness of the predicted and 
measured lines is of importance. It seems that the combination of these two techniques for this 
specific application uses the potential of both methods (Figure 8). The optimised flow 
hydrograph of the MIKE11 model for the outlet of the RCEW using ANN after suspension of 
the Macks Creek gauging site (without using data from this site) is shown in Figure 9. The 
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results have been improved considerably in comparison to figure 3, which shows the results 
of the hydrodynamic model for the same condition (without data from Macks Creek). The 
results shown in figure 9 also indicate an improvement in prediction of the peak flow in 
comparison to the results of the ANN model (figure 5).    

Optimised results of Mike 11 using ANN for prediction of flow at 
the outlet of the RCEW (with Macks Creek data)
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Figure 8 Optimised flow hydrograph of MIKE11 for outlet of the Reynolds Creek Experimental Watershed 
using ANN (with Macks Creek). 

Optimised results of Mike 11 using an ANN model for flow 
predcition at the outlet of the RCEW (no Macks Creek data)
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Figure 9 Optimised flow hydrograph of MIKE11 for outlet of the Reynolds Creek Experimental Watershed 
using ANN (without Macks Creek). 

  

In general, the predicted values for the low flow period (the left side of the hydrographs) 
seems closer to the actual values compared to the high flow period predictions (the peak flow 
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in right hand side of the hydrographs). For example the ANN model using all three gauging 
sites (figure 4) performed very well on prediction of the low flow but its output for peak flow 
period is extremely overestimated.  

To evaluate the accuracy of the results statistically, two criteria were used: coefficient of 
efficiency, R2, and root mean square error, rmse.  Values of these parameters for the results of 
study are shown in table 1.  
 
Table 1 Coefficient of efficiency (R2) and root mean square error (rmse) of the results before and after 
optimisation 

First simulations (before suspension) Second simulations (after suspension)  
MIKE 11 ANN MIKE11+ANN MIKE 11 ANN MIKE11+ANN 

R2 0.6435 0.5432 0.9153 0.8035 0.8725 
RMSE 0.9364 2.8143 0.7158 1.3242 1.0813 0.9806 
 
Looking at the table makes the point clear that the improvement of the accuracy of the results 
produced by the combination of these two models is over those produced by them 
individually.  This is true about all simulations either with or without using data from Macks 
Creek. For the results of the hydrodynamic model alone, the outputs are generally 
underestimated. This is mostly due to the absence of a part of the catchment runoff as the 
boundary condition of the model. The south sector of the catchment has the most precipitation 
and runoff and most of this flow is measured at the Tollgate site. Flow measured in two other 
main tributaries (Macks Creek and Salmon Creek) are also considered to the model but there 
are still several small tributaries draining about 40% of the catchment that have no data to 
enter to the model. Getting under estimated predictions from the hydrodynamic model is to be 
expected as part of the catchment is not contributing to the model. The unsatisfactory nature 
of the results produced by the ANN model alone is not however a simple task to explain.  
Neural network modelling is a black box method and establishment of an efficient input-
output relationship is strongly case and data dependent. The reliability of the outputs is mostly 
dependent on these relationship established between the inputs and outputs. A strong 
relationship in the training phase normally gives the most accurate output in the testing phase 
(as long as the testing data set is in the range of training data and the model is not over 
trained). The strength of this relationship depends on the correlation between the data series 
used as inputs and outputs. In most cases this correlation depends on the range, order and 
nature of data sets rather than closeness of the values or the number of input patterns. For 
example, correlation between a series such as {1, 2, 3, 4, 5} and {10, 20, 30, 40, 50} is 
stronger than correlation between a series such as {1, 2, 3, 4, 5} and {9, 21, 29, 42, 52}. 
Removing the data of a gauging site in the present case removes the flow data of a part of 
catchment from the hydrodynamic model boundary and causes underestimation of the 
outputs. However, in the neural network model removing of the Macks Creek data caused 
better correlation between the combination of Tollgate and Salmon creek data and the outlet 
data, and finally leads to better performance of ANN model. Even simulation with only one 
input pattern (Tollgate data) produced results better than the simulation with three input 
patterns. In modelling with this technique there are no certain rules to set all required 
parameters to reach desirable results, and trial and error procedure in some aspects of 
modelling by this technique is the only way to improve the output accuracy.   
 
Replacement of the hydrodynamic model by a neural network model with the same input data 
produced results completely different from the hydrodynamic model. For the low and normal 
flow discharge, ANN produced results are quite close to the measured values. However, in 
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prediction of the high flow discharge (flood wave) the outputs are considerably over 
estimated in contrast to the hydrodynamic model.  In contrast to the outputs of the 
hydrodynamic model, removing the Macks Creek data from the ANN model did not decrease 
the accuracy of the results but in fact caused a significant improvement of the predictions. In 
this method quality of data regardless of the size of data set in some cases can change its 
performance considerably. Improvement of the accuracy by removing Macks Creek data 
prompted an investigation of removing the second source of data (Salmon Creek) and use data 
only from Tollgate. However, removing of the Salmon Creek data from the model has 
affected the results by decreasing of the accuracy in contrast with what occurred when Marks 
Creek data was removed. Therefore the neural network model has produced its best possible 
results in the second simulation (using Tollgate and Salmon Creek to enter data to the model).  

Conclusion 
The Neural Network technique is an appropriate predictor of the error in hydrodynamic 
models. For practical purposes the improvement of predictions is crucially important as it 
strongly affects the costs and risk of projects. Coupling of the existing hydrodynamic methods 
with new machine learning tools such as artificial neural networks seems an important step 
forward to more reliable prediction of river flow.    
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