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Abstract In this paper, we consider a four dimensional

model of the human immunodeficiency virus-1 (HIV-1)

with delay, which is an extension of some three dimen-

sional models. We approach the treatment problem by

adding two controllers to the system for inhibiting viral

production. The optimal controller u1 is considered for

vaccine and u2 for the drug. The Pontryagin maximum

principle with delay is used to characterize these optimal

controls. At the end, numerical results are presented to

illustrate the optimal solutions. The validity of the model

was confirmed by proper semi-quantitative simulation of

some clinical data. The model was used to predict the

possible beneficial effects of vaccine and anti-retroviral

drug administration in HIV-1 disease.

Keywords CTL response � HIV-1 infection � Pontryagin
maximum principle with delay � Optimal control

Introduction

An abundance of mathematical models has been developed

to understand the dynamics and control of infectious dis-

eases. Many of them have been proposed to obtain the

stable region of immune response and virus spread (Bala-

subramaniam et al. 2015; Tian and Xu 2014; Kwon 2007;

Shamsara et al. 2016b; Elaiw 2010). HIV-1 is a widespread

viral infection without cure. Drug treatment can transform

HIV-1 disease into a treatable long-term infection. There

are now 17 drugs in common use for HIV-1 treatment

(Volberding and Deeks 2010). Reducing viral population

and improving the immune response is the purpose of new

treatments. Using optimal control techniques is one of the

main strategies for such treatments (Grigorieva et al. 2014;

Joshi 2002; Laarabi et al. 2015). In fact, optimal

chemotherapy to avoid the excessive use of drugs is the

aim of many mathematical models (Karrakchou et al.

2006; Shamsara et al. 2016a). Indeed, when these drugs are

administered in high dose they are toxic to the human body

and cause damages. Moreover, mathematical modelling

with delay differential equations (DDEs) is widely used for

analysis and predictions in various areas of the life sci-

ences. The time delays in these models take into account a

dependence of the present state of the modelled system on

its past history. For example, the activation rate of cyto-

toxic T lymphocyte (CTL) response at time t may depend

on the population of antigen at a previous time. In HIV-1,

the period of contacting the HIV-1 with a target cell until

producing new viruses from infected cell needs the fol-

lowing stages:

(i) The period between the viral entry of a target cell and

integration of viral Deoxyribonucleic acid (DNA) into the

host genome, (ii) the period from the integration of viral

DNA to the transcription of viral Ribonucleic acid (RNA)
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and translation of viral proteins such as reverse transcrip-

tase, integrate, and protease, (iii) the period between the

transcription of viral RNA for the release and maturation of

virus. In more realistic HIV-1 infection models for study-

ing the virus dynamics and Hopf bifurcation, time delay

have been considered (Balasubramaniam et al. 2015; Tian

and Xu 2014; Elaiw 2010; Shu et al. 2013; Shamsara et al.

2016c).

Many scientists, consider a three dimensional model for

HIV-1 such as (Grigorieva et al. 2014; Wang et al. 2015).

In addition, the dynamics of four dimensional models with

considering different variables and parameters is investi-

gated (with or without delay) (Laarabi et al. 2015; Sham-

sara et al. 2016a).

In this paper, first we define a four dimensional model

with two controls and one delay. This contribution is an

extension of three dimensional models, specially (Grig-

orieva et al. 2014). The three dimensional model with one

controller in Grigorieva et al. (2014) is:

_xðtÞ ¼ k� bxðtÞyðtÞ
1þ pzðtÞ � l1xðtÞ;

_yðtÞ ¼ bxðtÞyðtÞ
1þ pzðtÞ � l2yðtÞ;

_zðtÞ ¼ �l4zðtÞ þ vðtÞ:

8
>>>>><

>>>>>:

ð1:1Þ

where x(t) and y(t) are concentrations of the uninfected and

infected target cells (which are T helper cells in case of

HIV-1 infection) at moment t respectively. z(t) is the

immune response and concentration of an antiviral drug. In

the model the uninfected cells are activated at a constant

rate k and die at a rate l1. The infected cells die at a rate l2
which includes the deaths caused by both cytopathicity of

virus and cell-mediated immune response (cytotoxic

T lymphocytes). Drug is introduced to a patient at a rate

v(t) and is removed at a rate l4zðtÞ.
In this paper, we used modelling of Wodarz (2014) for

CTL immune response to extend the above three dimen-

sional system as a four dimensional model. In fact, based

on Wodarz (2014) for CTL modelling the population of

CTL is divided into two subpopulations: CTL precursors

(CTLp) and CTL effectors (CTLe). CTLp do not have any

antiviral activity, while CTLe do have antiviral activity.

Thus, the model includes two populations: the memory

precursors w(t) and the effector CTL z(t). In this case, we

assume that an initial number of CTL is present that has

just been activated for the early stage of the disease. The

new model has advantage that can show the different

mechanisms of CTL. Furthermore, we add the delay

parameter to show the time between the initial viral entry

into a target cell and subsequent viral production.

Our extended model with CTL immune response and

intracellular delay is as follows:

_xðtÞ ¼ k� bxðtÞyðtÞ
1þ pzðtÞ � l1xðtÞ;

_yðtÞ ¼ bxðt � sÞyðt � sÞ
1þ pzðtÞ � l2yðtÞ;

_wðtÞ ¼ cð1� qÞyðtÞwðtÞ � l3wðtÞ;
_zðtÞ ¼ �l4zðtÞ þ cqyðtÞwðtÞ:

8
>>>>>>><

>>>>>>>:

ð1:2Þ

In (1.2), upon contact with antigen, CTLp proliferate is

described by the term cð1� qÞyðtÞwðtÞ. Differentiation into

effectors is described by cqy(t)w(t). The parameter c de-

scribes the rate of CTL expansion. The parameter q is the

probability that the precursor CTL will differentiate into an

effector CTL. CTL precursors die at a rate l3 and effectors

die at a rate l4.
For simplifying of the analysis, one can substitute a

variable sðtÞ ¼ bð1þ pzðtÞÞ�1
in (1.2). In the denominator

of s(t), from the biological point of view, the parameter

p and the variable z(t) cannot be negative. Consequently,

the system (1.2) will be taken the form:

_xðtÞ ¼ k� sðtÞxðtÞyðtÞ � l1xðtÞ;
_yðtÞ ¼ sðtÞxðt � sÞyðt � sÞ � l2yðtÞ;
_wðtÞ ¼ cð1� qÞyðtÞwðtÞ � l3wðtÞ;
_sðtÞ ¼ l4sðtÞ �

cqp

b
s2ðtÞyðtÞwðtÞ � l4

b
s2ðtÞ:

8
>>>>><

>>>>>:

ð1:3Þ

The initial condition for the above system is

xðhÞ ¼ /1ðhÞ� 0

yðhÞ ¼ /2ðhÞ� 0

wðhÞ ¼ /3ðhÞ� 0

sðhÞ ¼ /4ðhÞ� 0

8
>>><

>>>:

ð1:4Þ

where h 2 �s; 0½ �, / ¼ /1;/2;/3;/4ð ÞT2 C. Here C ¼
C �s; 0½ �;R4

þ
� �

is the Banach space of continuous functions

from �s; 0½ � to R4
þ equipped with the sup-norm, where

R4
þ ¼ x1; x2; x3; x4ð Þ j xi � 0; i ¼ 1; 2; 3; 4f g:

The boundedness, positiveness and continuity of solutions

of system (1.3) are given by the following lemma.

Lemma 1 The corresponding solution (x(t), y(t), w(t),

s(t)) of system (1.3) is defined on the biggest semi-interval

D and are bounded.

Proof Since the right hand side of system (1.3) is com-

pletely continuous and locally Lipschitz on C , the solution

(x(t), y(t), w(t), s(t)) with initial conditions (1.4) exists and is

unique on the biggest semi-interval D ¼ ½0; T�, where

0\T\þ1 (Hale and Lunel 2013). The forth equation of

the system (1.3) is the Bernoulli equation, integrating yields

sðtÞ ¼ sð0Þel4t 1þ sð0Þ
Z t

0

el4s
cqp

b
yðsÞwðsÞds

� ��1

ð1:5Þ
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Integrating the first, second and third equations of system

(1.3) yields

xðtÞ ¼ xð0Þe
R t

0
ðsðdÞyðdÞþl1Þdd þ k

Z t

0

e
�
R t

0
ðl1þsðdÞyðdÞÞdd

dr ð1:6Þ

yðtÞ ¼ yð0Þe
R t

0
ðsðcÞxðc�sÞyðc�sÞ�l2Þdc ð1:7Þ

wðtÞ ¼ wð0Þe
R t

0
ðcð1�qÞyðnÞ�l3Þdn ð1:8Þ

Thus, by (1.5)–(1.8), xðtÞ[ 0, yðtÞ[ 0, wðtÞ[ 0 and

sðtÞ[ 0 hold for all t 2 D. Next we show that positive

solutions of (1.3) are ultimately uniformly bounded for

t� 0. The forth equation of (1.3) gives

_sðtÞ� l4sðtÞ �
l4
b
s2ðtÞ

thus, sðtÞ� b
1þbc0e�l4 t and limsup

t!1
sðtÞ� b. Therefore, the

solution s(t) of system (1.3) is bounded. Let M denotes this

upper bound. Also in (1.3)

_xðtÞ� k� l1xðtÞ

so, limsup
t!1

xðtÞ� k
l1
. Now

_xðtÞþ _yðtþ sÞ ¼ k� sðtÞxðtÞyðtÞ�l1xðtÞþ sðtþ sÞxðtÞyðtÞ
�l2yðtþ sÞ

�k�MxðtÞyðtÞ�l1xðtÞþMxðtÞyðtÞ
�l2yðtþ sÞ ¼ k�l1xðtÞ�l2yðtþ sÞ

�k�lðxðtÞþ yðtþ sÞÞ

where l¼minfl1;l2g and limsup
t!1

ðxðtÞþ yðtþ sÞÞ� k
l.

Moreover,

_xðtÞþ _wðtÞþ cðq� 1Þb
M2cqp

_sðtÞ�k�l1xðtÞ� cðq� 1ÞyðtÞwðtÞ

�l3wðtÞ�
cðq� 1Þbl4

M2cqp
sðtÞþ cðq� 1Þ

M2
s2ðtÞyðtÞwðtÞ

�k�l1xðtÞ� cðq� 1ÞyðtÞwðtÞ�l3wðtÞ

� cðq� 1Þbl4
M2cqp

sðtÞþ cðq� 1Þ
M2

M2yðtÞwðtÞ

�k�l1xðtÞ�l3wðtÞ�
cðq� 1Þbl4

M2cqp
sðtÞ

�k� dðxðtÞþwðtÞþ cðq� 1Þb
M2cqp

sðtÞÞ

where d ¼ minfl1; l3; l4g and limsup
t!1

ðxðtÞ þ wðtÞ þ
cðq�1Þb
M2cqp

sðtÞÞ� k
d. As a consequence, x(t), y(t), w(t) and s(t) of

system (1.3) are ultimately uniformly bounded. h

This paper is organized as follows:

In ‘‘The optimal control problem with delay’’ section,

the Pontryagin maximum principle with delay for charac-

terizing the optimal control and some preliminaries of

optimal control with delay are stated. Section ‘‘Characteri-

zation of an optimal control for system (1.3)’’ is devoted to

determine the optimal control problem to minimize the

level of infection for system (3.1). Section ‘‘Numerical

simulation’’ is illustrated some examples (simulations)

which numerically shows the result of optimality of the

system. In ‘‘Results and discussion’’ section, we compare

our results with clinical data.

The optimal control problem with delay

This section is devoted to some preliminaries of optimal

control problem with delay, which is necessary in the next

sections. For more details, one can see (Göllmann et al.

2009).

Pontryagin maximum principle The Pontryagin maxi-

mum (or minimum) principle is used in optimal control

theory to find the best possible control for taking a

dynamical system from one state to another, especially in

the presence of constraints for the state or input controls.

A quite general optimal control problem governed by a

delay differential system can be formulated in the follow-

ing form,

minimize Lðu; xuÞ ¼
Z T

0

Gðt; uðtÞ; xuðtÞ; xuðt � sÞÞdt þ uðxuðTÞÞ

ð2:1Þ

subject to u 2 K � L1ð0; T ;RmÞ ðT [ 0Þ, where xu is the

solution to

x0ðtÞ ¼ f ðt; uðtÞ; xðtÞ; xðt � sÞÞ; t 2 0; Tð Þ
xð0Þ ¼ x0

�

ð2:2Þ

Here

G : 0; T½ � � Rm � RN � RN ! R;

u : RN ! R;

f : 0; T½ � � Rm � RN � RN ! RN

x0 2 RN ;m;N 2 N and K � L1ð0; T ;RmÞ is a closed

convex subset.

We assume here that for any u 2 L1 0; T ;Rmð Þ, problem
(2.2) admits a unique solution denoted by xu. Equa-

tion (2.2) is called the state problem.

1. u 2 K is called the control (or controller). This is a

constrained control because u 2 K and K is a subset of

L1 0; T ;Rmð Þ.
2. xu is the state corresponding to the control u and the

mapping.
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3. u 7!Lðu; xuÞ ¼ /ðuÞ is the cost functional (the function
that should be minimized).

We say that u	 2 K is an optimal control for Problem (2.1) if

Lðu	; xu	 Þ � Lðu; xuÞ

for any u 2 K. The pair ðu	; xu	 Þ is called an optimal pair

and Lðu	; xu	 Þ is the optimal value of the cost functional.

Pontryagin function with delay is given by:

Hðt; uðtÞ; xðtÞ; xðt� sÞ; pðtÞÞ ¼ Gðt; uðtÞ; xðtÞ; xðt� sÞÞ
þ f ðt; uðtÞ; xðtÞ; xðt� sÞÞpðtÞ

This function is Hamiltonian, if satisfies in the following

relations

x0ðtÞ ¼ Hp

and

p0ðtÞ ¼ �Hx

p(t) is defined as the adjoint function.

Since we are going to use optimal control, we state the

following theorem which one can find the proof in Göll-

mann et al. (2009).

Theorem 1 (maximum principle for the optimal control

problem (OCP)). If u	ðtÞ and x	ðtÞ are optimal for problem
(2.1) with delay, then there exists a piecewise differentiable

costate (adjoint) function p(t) such that

Hðt; x	ðtÞ; x	ðt � sÞ; u	ðtÞ; pðtÞÞ
�Hðt; x	ðtÞ; x	ðt � sÞ; uðtÞ; pðtÞÞ

ð2:3Þ

for all controls u at each time t, where H is the Hamilto-

nian previously defined and

p0ðtÞ ¼ � oH

ox
ðt; xðtÞ; xðt � sÞ; uðtÞ; pðtÞÞ � v½0;tf�s�ðtÞ

oH

oxs
ðt þ s; xðt þ sÞ; xðtÞ; uðt þ sÞ; pðt þ sÞÞ ð2:14Þ

where xs ¼ xðt � sÞ.

pðtf Þ ¼ 0 ðtransversality conditionÞ ð2:5Þ

the OCP must satisfy (optimality condition):

oH

ou
¼ 0 ð2:6Þ

i.e., the minimization is over all admissible controls.

Characterization of an optimal control for system
(1.3)

In this section, we determine the optimal control for our

system (1.3).

There are some antiretroviral (ARV) drugs which help the

immune system in preventing the HIV-1 infection, although it

is not possible to cure it. Reverse Transcriptase Inhibitors

(RTIs) is one of the chemotherapies, another group of

antiretoviral drug is the Protease Inhibitors (PIs) which pre-

vent the production of viruses from the actively infected

CD4þ T cells. In this study, u1 shows the effect of different

vaccines that is proposed for HIV-1 infection treatment such

as DNA vaccines, mucosal vaccines and an HIV-1-lipopep-

tide vaccine (de Goede et al. 2015; Herasimtschuk et al.

2014; Launay et al. 2013). u2 is devoted for the drug known as

Reverse Transcriptase Inhibitor (RTI). This drug inhibits the

virus from infecting new cells by preventing the reverse

transcription (Shim et al. 2003). Hence, (1.3) becomes

_xðtÞ ¼ k� sðtÞxðtÞyðtÞ � l1xðtÞ;
_yðtÞ ¼ sðtÞxðt � sÞyðt � sÞ � l2yðtÞ � u2ðtÞyðtÞ;
_wðtÞ ¼ cð1� qÞyðtÞwðtÞ � l3wðtÞ;
_sðtÞ ¼ l4sðtÞ �

cqp

b
s2ðtÞyðtÞwðtÞ � l4

b
s2ðtÞ

þu1ðtÞxðtÞ þ u2ðtÞyðtÞ:

8
>>>>>>><

>>>>>>>:

ð3:1Þ

Our aim is to look for protocols of administration, which

are as much as drugs and vaccine efficient as possible and

not too toxic. So, we restrict the amount of drugs and

vaccine administered to the patient (Lenhart and Workman

2007). Thus, we consider a biological bound for each of the

controllers, as

0� uiðtÞ� uimax
; i ¼ 1; 2

The lower bounds for u1 and u2 correspond to no therapy.

Next, we characterize the optimal control pair ðu	1; u	2Þ,
which gives the optimal drug dosage for patient recovery

(Laubenbacher 2007). Consider the closed convex set, K ,

which is defined in ‘‘The optimal control problem with

delay’’ section. Let K � L1ð0; tf ;RmÞ and m ¼ 2 then,

K ¼ U (see Roy 2016; Aniţa et al. 2011), where

U ¼
uðtÞ ¼ ðu1ðtÞ; u2ðtÞÞ j u1; u2 are Lebesguemeasurable;

0� uiðtÞ� uimax; t 2 ½0; tf �; i ¼ 1; 2

� �

:

ð3:2Þ

Our problem is to minimize the objective functional

min
uð:Þ2U

J ¼
Z tf

0

A1xðtÞ þ A2yðtÞ þ
1

2
B1u

2
1ðtÞ þ

1

2
B2u

2
2ðtÞ

� 	

dt

� �

ð3:3Þ

x(t) and y(t) are the solutions of system (3.1) and the

parameters A1 [ 0, A2 [ 0, B1 [ 0 and B2 [ 0 represent

the weights on the benefit and cost functional.

This optimal control is defined based on (Laarabi et al.

2015; Grigorieva et al. 2014). The aim is to find an optimal

control for minimizing the objective functional defined in

(3.3) subject to the state system (3.1). In other words, we

are seeking optimal control pair ðu	1; u	2Þ such that

Jðu	1; u	2Þ ¼ min Jðu1; u2Þ; ðu1; u2Þ 2 Uf g: ð3:4Þ

220 Theory Biosci. (2016) 135:217–230
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Let the initial conditions be

xð0Þ ¼ x0

yð0Þ ¼ y0

wð0Þ ¼ w0

sð0Þ ¼ s0:

8
>>><

>>>:

ð3:5Þ

In addition, for biological reasons, we assume that the

initial data for system (3.1) satisfy

x0 � 0; y0 � 0; w0 � 0; s0 � 0; t 2 �s; 0½ �:

In the following by using Collins et al. (2010) in relation to

our problem, we show the existence and uniqueness solu-

tion of system (3.1) in entire interval ½�s; tf �. First, we
introduce the following notations

f ðXðtÞÞ ¼
k� sðtÞxðtÞyðtÞ � l1xðtÞ
sðtÞxðt � sÞyðt � sÞ � l2yðtÞ � u2ðtÞyðtÞ
cð1� qÞyðtÞwðtÞ � l3wðtÞ
l4sðtÞ �

cqp

b
s2ðtÞyðtÞwðtÞ � l4

b
s2ðtÞ þ u1ðtÞxðtÞ þ u2ðtÞyðtÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

where XðtÞ ¼ ðxðtÞ; yðtÞ;wðtÞ; sðtÞÞT . Let H : ½t � s; t� ! R

be a function, then one can define a new function on Ht :

½s; 0� ! R by

HtðrÞ ¼ Hðt þ rÞ

for �s� r� 0. Thus, system (3.1) can be rewritten as

X
0 ðtÞ ¼ Fðt; xtðrÞ; ytðrÞ;wðtÞ; sðtÞÞ

where F : ½0; aÞ � Cð½�s; 0�;R2Þ � R2 ! R5 for a 2 ½0; tf �.
In other words, for each ðt;w;u;w; sÞ 2 ½0; aÞ � Cð½�s; 0�;
R2Þ � R2, Fðt;w;u;w; sÞ should be a well defined point in

R5. Also, we consider xtðt � s� tÞ ¼ xðt þ t � s� tÞ
¼ xðt � sÞ, hence, xtð�sÞ ¼ xðt � sÞ and similarly

ytð�sÞ ¼ yðt � sÞ. Furthermore,

Fðt; xtð�sÞ; ytð�sÞ;wðtÞ; sðtÞÞ ¼ f ðt; xðt � sÞ; yðt � sÞ;wðtÞ; sðtÞÞ
ð3:6Þ

From (3.6), one can see

x0 ¼ /1ð0Þ; y0 ¼ /2ð0Þ

where / is defined in (1.4). We can further consider a

solution to our problem in terms of an integral equation.

We see that

xðtÞ ¼
/1ðtÞ if � s� t�0

/1ð0Þþ
R t
0
Fðr;xrð�sÞ;yrð�sÞ;wðrÞ; sðrÞÞdr if 0� t� tf

�

and

yðtÞ ¼
/2ðtÞ if � s� t�0

/2ð0Þþ
R t
0
Fðc;xcð�sÞ;ycð�sÞ;wðcÞ;sðcÞ;u2ðcÞÞdc if 0� t� tf

�

Now, we state the following Lemma

Lemma 2 If f(X(t)) has continuous first partial deriva-

tives with respect to all but its first argument, then f(X(t)) is

locally Lipschitz.

Proof Since all the partial in the Jacobian matrix of

f(X(t)) with respect to X(t) is continuous, thus f(X(t)) is

locally Lipschitz. h

Moreover, since f is locally Lipschitz on ½0; a� � R4

! R5, then function F mapping ½0; aÞ � Cð½�s; 0�;R2Þ �
R2 ! R5 is locally Lipschitz.

Theorem 2 Let Fðt; xt; yt;w; sÞ : ½0; tf Þ � Cð½�s; 0�;
R2Þ � R2 ! R5 be continuous and be locally Lipschitz. If

kFðt; qÞk�MðtÞ þ NðtÞkqk

on ½0; tf Þ � Cð½�s; 0�;R2Þ � R2, where M(t) and N(t) are

continuous positive function on ½0; tf � and q ¼
ðxt; yt;w; sÞT , the unique noncontinuable solution exists on

the entire interval ½�s; tf �.

Proof Fðt; xt; yt;w; sÞ has already been shown to be

locally Lipschitz. Also, with g1ðtÞ ¼ t � s and the right

hand side of our differential equation system (3.1) being

continuous, then Fðt; xðt � sÞ; yðt � sÞ;wðtÞ; sðtÞÞ is a

composition of continuous functions and hence is contin-

uous on ½0; tf Þ. So, that’s enough to show

kFðt; qÞk�MðtÞ þ NðtÞkqk is satisfied. By neglecting the

negative terms in the system (3.1), we have

x0ðtÞ� k

y0ðtÞ� sðtÞxðt � sÞyðt � sÞ
w0ðtÞ� cð1� qÞwðtÞyðtÞ
s0ðtÞ� l4sðtÞ þ u1ðtÞxðtÞ þ u2yðtÞ

8
>>><

>>>:

ð3:7Þ

From first term of (3.7), x(t) is bounded on the entire

interval ½�s; tf �. By Lemma 1, the second and third terms

of (3.7) indicate that y(t) and w(t) are also bounded on

½�s; tf �. The right hand side of the forth term of (3.7) is a

first order linear differential equation with respect to s(t).

Since, x(t) and y(t) are bounded on ½�s; tf � so solution,

s(t) is bound, if the admissible controls uiðtÞ; i ¼ 1; 2 to be

bounded on ½�s; tf �. Now, we can define Q and R as the

upper bounds for the right hand side of the second and third

terms of (3.7). As a consequence

xðtÞ
yðtÞ
wðtÞ
sðtÞ

0

B
B
B
@

1

C
C
C
A

0

�

0 0 0 0

0 0 0 0

0 0 0 0

u1ðtÞ u2ðtÞ 0 l4

0

B
B
B
@

1

C
C
C
A

xðtÞ
yðtÞ
wðtÞ
sðtÞ

0

B
B
B
@

1

C
C
C
A

þ

k

Q

R

0

0

B
B
B
@

1

C
C
C
A

ð3:8Þ
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We see that via our transformation in Eq. (3.6) that

kFðt; qÞk� kf ðt; xðt � sÞ; yðt � sÞ;wðtÞ; sðtÞÞk. Therefore,

kFðt; qÞk�M þ Nkqk where

M ¼

k

Q

R

0

0

B
B
B
@

1

C
C
C
A

N ¼

0 0 0 0

0 0 0 0

0 0 0 0

u1ðtÞ u2ðtÞ 0 l4

0

B
B
B
@

1

C
C
C
A

Now, by application of this theorem and with the

assumption of boundedness of admissible controls, we

have the uniqueness of a solution on ½�s; tf Þ. h

Theorem 3 There exists an optimal control pair ðu	1; u	2Þ 2
U which minimizes the objective functional Jðu1; u2Þ.

Proof Let ðu1nð:Þ; u2nð:ÞÞn� 1 be a minimizing sequence

and Pnð:Þ ¼ ðxn; yn;wn; snÞ be the state trajectory corre-

sponding to ðu1nð:Þ; u2nð:ÞÞ. Since Pnð:Þ and P
0
nð:Þ are both

bounded in L1, then Pnð:Þ is a uniformly bounded and

equicontinuous sequence. Therefore, by the Arzela-Ascoli

Theorem, there exists P	 and ðu	1; u	2Þ such that

Pnð:Þ ! P	ð:Þ uniformly on ½0; tf �:

Also, since fJðu1; u2Þ; ðu1; u2Þ 2 Ug is bounded by zero by

below and there exists a sequence ðu1n ; u2nÞ in U such that

lim
n!1

Jðu1n ; u2nÞ ¼ lim
n!1

Z tf

0

A1xnðtÞ þ A2ynðtÞ þ
1

2
B1u

2
1n
ðtÞ

þ 1

2
B2u

2
2n
ðtÞ ¼ inf

ðu1;u2Þ2U
Jðu1; u2Þ

since xn ! x	, yn ! y	 uniformly and ðu1n ; u2nÞ ! ðu	1; u	2Þ
weakly in L1½0; tf � on a subsequence due to the bounds on

the controls. Passing to the limit in the state DDE system,

we obtain that P	 is the state vector corresponding to

control ðu	1; u	2Þ. Thus, we obtain

Jðu	1; u	2Þ ¼ min Jðu1; u2Þ; ðu1; u2Þ 2 Uf g:

Therefore, ðu	1; u	2Þ is an optimal control pair. h

The function

H ¼Hðx	ðtÞ;y	ðtÞ;w	ðtÞ; s	ðtÞ;w1ðtÞ;w2ðtÞ;w3ðtÞ;
w4ðtÞ;u	1ðtÞ;u	2ðtÞÞ

¼ ðk� s	ðtÞx	ðtÞy	ðtÞ�l1x	ðtÞÞw1ðtÞ
þ ðs	ðtÞx	ðt� sÞy	ðt� sÞ�l2y	ðtÞ� u	2ðtÞy	ðtÞÞw2ðtÞ
þ ðcy	ðtÞw	ðtÞð1� qÞ�l3w	ðtÞÞw3ðtÞ

þ ð�l4
b
s2	ðtÞþl4s	ðtÞ�

cqp

b
s2	ðtÞy	ðtÞw	ðtÞ

þ u	1ðtÞx	ðtÞþ u	2ðtÞy	ðtÞÞw4ðtÞ

� A1x	ðtÞþA2y	ðtÞþ
1

2
B1ðu	1ðtÞÞ

2þ 1

2
B2ðu	2ðtÞÞ

2

� 	

;

ð3:9Þ

with the optimality condition

oH

ou	
¼ 0 )

oH

ou	1
¼ 0

oH

ou	2
¼ 0

8
>><

>>:

ð3:10Þ

and the adjoint equation

_w1 ¼ � oH

ox
� v½0;tf�s�ðtÞ

oH

oxs
ðt þ sÞ

_w2 ¼ � oH

oy
� v½0;tf�s�ðtÞ

oH

oys
ðt þ sÞ

_w3 ¼ � oH

ow

_w4 ¼ � oH

os

8
>>>>>>>>>><

>>>>>>>>>>:

ð3:11Þ

with transversality conditions wiðtf Þ ¼ 0, i ¼ 1; 2; 3; 4 is a

Hamiltonian function. Now we apply the necessary con-

ditions to the Hamiltonian function H in (3.9).

Theorem 4 Let ðx	ðtÞ; y	ðtÞ;w	ðtÞ; s	ðtÞÞ be optimal state
solutions associated with the optimal control ðu	1ðtÞ, u	2ðtÞÞ
for the optimal control problem (3.3)–(3.5). Then by (3.11),

the adjoint system can be obtained by

with transversality conditions

_w1ðtÞ ¼ � oH

ox	
� v½0;tf�s�ðtÞ

oH

ox	s
ðt þ sÞ ¼ s	ðtÞy	ðtÞ þ l1ð Þw1ðtÞ � u	1ðtÞw4ðtÞ þ A1 � v½0;tf�s�ðtÞy	ðtÞs	ðt þ sÞw2ðt þ sÞ

_w2ðtÞ ¼ � oH

oy	
� v½0;tf�s�ðtÞ

oH

oy	s
ðt þ sÞ ¼ s	ðtÞx	ðtÞw1ðtÞ þ ðl2 þ u	2ðtÞÞw2ðtÞ � cð1� qÞw	ðtÞw3ðtÞþ

cqp

b
s2	ðtÞw	ðtÞw4ðtÞ � u	2ðtÞw4ðtÞ þ A2 � v½0;tf�s�ðtÞx	ðtÞs	ðt þ sÞw2ðt þ sÞ

_w3ðtÞ ¼ � oH

ow	
¼ �cy	ðtÞð1� qÞw3ðtÞ þ l3w3ðtÞ þ

cqp

b
s2	ðtÞy	ðtÞw4ðtÞ

_w4ðtÞ ¼ � oH

os	
¼ x	ðtÞy	ðtÞw1ðtÞ þ

2l4
b

s	ðtÞw4ðtÞ � l4w4ðtÞ þ
2cqp

b
s	ðtÞy	ðtÞw	ðtÞw4ðtÞ

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð3:12Þ
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wiðtf Þ ¼ 0; i ¼ 1; . . .; 4: ð3:13Þ

Furthermore, the optimal control is given as follows:

u	1 ¼ max min
x	w4

B1

; u1max

� �

; 0

� �

u	2 ¼ max min
y	ðw2 � w4Þ

B2

; u2max

� �

; 0

� �

:

8
>>><

>>>:

ð3:14Þ

Proof By the theorem of existence and uniqueness in

differential equation Hale and Lunel (2013) and the Pon-

tryagin maximum principle with delay given in Göllmann

et al. (2009), for the pair ðu	1ðtÞ; u	2ðtÞÞ and the corre-

sponding trajectory ðx	ðtÞ; y	ðtÞ;w	ðtÞ; s	ðtÞÞ, there exists a
nontrivial solution ðw1ðtÞ;w2ðtÞ;w3ðtÞ;w4ðtÞÞ of the adjoint
system (3.12). Now by condition (3.10), one can have

oH

ou	1
¼ B1u

	
1 þ x	w4 ¼ 0;

oH

ou	2
¼ B2u

	
2 � y	w2 þ y	w4 ¼ 0:

8
>><

>>:

)
u	1 ¼ � x	w4

B1

;

u	2 ¼ � y	ðw2 � w4Þ
B2

:

8
>><

>>:

ð3:15Þ

Control ðu	1ðtÞ; u	2ðtÞÞ satisfies the relationships

u	1 ¼

0 if
x	w4

B1

� 0

x	w4

B1

if 0\
x	w4

B1

\u1max

u1max
if

x	w4

B1

� 0

8
>>>>>><

>>>>>>:

ð3:16Þ

and

u	2 ¼

0 if
y	ðw2 � w4Þ

B2

� 0

y	ðw2 � w4Þ
B2

if 0\
y	ðw2 � w4Þ

B2

\u2max

u2max
if

y	ðw2 � w4Þ
B2

� 0

8
>>>>>>><

>>>>>>>:

ð3:17Þ
Since ðw1ðtÞ;w2ðtÞ;w3ðtÞ;w4ðtÞÞ is a solution of (3.12),

then u	1ðtÞ; u	2ðtÞ
� �

can be calculated as the optimal control

(3.14). h

Numerical simulation

In this section, first we indicate the equilibria and the

Jacobian matrix of system (1.2). We are going to use the

result of the subsection (4.1) for other subsections, to

determine the stable and unstable regions for the treated

disease. Furthermore, in other subsections we will show

different behaviours of system (3.1) by the figures.

Untreated model

Equilibria of system (1.2) at s ¼ 0 are

E0 ¼
k
l1

; 0; 0; 0

� �

; E1 ¼
l2
b
;� l1l2 � bk

l2b
; 0; 0

� �

;

E2 ¼ x	; y	;w	; z	ð Þ:

where at E2

x	 ¼ � l2l3 � kcð1� qÞ
l1cð1� qÞ ; ð4:1Þ

y	 ¼ l3
cð1� qÞ ; ð4:2Þ

w	 ¼ � l4ðl1l2cð1� qÞ þ l2l3b� kcð1� qÞbÞ
l1l2l3pcq

; ð4:3Þ

z	 ¼ � l1l2cð1� qÞ þ l2l3b� kcð1� qÞb
l1l2pcð1� qÞ : ð4:4Þ

In the interior equilibria E2 from biological point all four

components, healthy and infected CD4 þ T cells and both

CTLs, w(t) and z(t) should be positive. Hence, from (4.2)

and (4.1) one should have

ð1� qÞ[ 0 ð4:5Þ

kcð1� qÞ[ l2l3 ð4:6Þ

The Jacobian matrix of system (1.2) is

PðKÞ ¼

Kþ b y
pzþ 1

þ l1
b x

pzþ 1
0 � b xyp

pzþ 1ð Þ2

�e�K sb y
pzþ 1

Kþ l2 �
e�K sb x
pzþ 1

0
e�K sb xyp

pzþ 1ð Þ2

0 �c 1� qð Þw K� c 1� qð Þyþ l3 0

0 �cqw �cqy Kþ l4

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð4:7Þ
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Numerical Hopf bifurcation for untreated model

Parameters are chosen as same as Wang et al. (2015):

Note that in Table 1, the parameters values are based on

clinical data.

With the above parameters values and (4.7) at E2, one

can obtain the characteristic polynomial:

K4 þ 2:510743438� 1:850000000 e�K s
� �

K3

þ 1:302747080� 1:155600653 e�K s
� �

K2

þ �0:08521662687 e�K s þ 0:1486876805
� �

K

þ 0:008371116414 e�K s ¼ 0

ð4:8Þ

Substituting K ¼ ix and separating the real and imaginary

parts, one has

x4 þ 1:850000000 sin xsð Þx3

þ �1:302747080þ 1:155600653 cos xsð Þð Þx2

� 0:08521662687 sin xsð Þx
þ 0:008371116414 cos xsð Þ ¼ 0 ð4:9Þ

�2:510743438þ 1:850000000 cos xsð Þð Þx3

� 1:155600653 sin xsð Þx2

þ �0:08521662687 cos xsð Þ þ 0:1486876805ð Þx
� 0:008371116414 sin xsð Þ ¼ 0 ð4:10Þ

Adding up the squares of the Eqs. (4.9) and (4.10), leads to

x8 þ 0:275838451x6 � 0:3848961513x4

þ 0:01484615284x2 � 0:00007007559002 ¼ 0
ð4:11Þ

let x0 be a positive solution of (4.11). By (4.9) and (4.10),

s will obtain from

Note that, at s ¼ s0 the system (1.2) undergoes Hopf

bifurcation (Balasubramaniam et al. 2015; Yu and Cao

2007). From Figs. 1, 2, one can see, as the delay

parameter s increases and s[ s0 oscillatory dynamics

will return to the stable state form. But if the time delay

is reduced, s\s0, transient oscillations induced

by unstable periodic solutions is appeared. This shows

the sensitivity of the model dynamics on the time delay

s.
In Figs. 1, 2, the parameter s is defined such that system

(1.2) undergoes Hopf bifurcation as the parameter is var-

ried. Hence, in Fig. 1, one can observe sustained periodic

oscillations induced by stable periodic solutions.

In Fig. 2, transient oscillations induced by unstable pe-

riodic solutions are illustrated.

The Table 2 is corresponding with clinical information

(Margolis 2014), see Figs. 3, 4, 5, 6, 7, 8, 9.

Figure 3 shows the unstable trajectories without treat-

ment, by using the parameters value in Table 2.

Both CD4þ and virus counts have large fluctuations and

average counts of CD4þ decreases while average virus

counts increases by time.

Only Treatment Control (u1 ¼ 0)

In Fig. 4, only the treatment control u2 is used to optimize

the objective function J(u) while the vaccination control u1
is set to zero.

The graph of CD4þ and virus counts demonstrated that

the progression of HIV-1 can be simulated by the model.

The Fig. 5 shows that high and frequent doses of

antiretroviral drug were needed to achieve optimal control

of HIV-1.

Only vaccination control (u2 ¼ 0)

In Fig. 6, only the vaccination, control u1, is used to

optimize the objective function J(u) while the treatment

control u2 is set to zero (Fig. 7).

Combined vaccination and treatment strategy

In this case, the combination of vaccine and drug is

considered.

Table 1 Parameters taken from Wang et al. (2015)

Parameter Value Unit

k 180 day�1 mm�3

b 0.002 day�1 mm�3

l1 0.16 day�1

l2 1.85 day�1

l3 0.8 day�1

l4 0.5 day�1

c 2 day�1

q 0.6 day�1

p 0.2 day�1

s0 ¼
1

x0

ð�x4
0 þ 1:302747080x2

0Þð1:155600653x2
0 þ 0:00837111641Þ

ð1:155600653x2
0 þ 0:008371116414Þ2 þ ð1:85x2

0 � 0:08521662687Þ2

 

þ ð1:85x3
0 � 0:08521662687Þð2:510743438x3

0 � :1486876805Þ
ð1:155600653x2

0 þ 0:008371116414Þ2 þ ð1:85x2
0 � 0:08521662687Þ2

! ð4:12Þ
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Explanations of the Figs. 3, 4, 5, 6, 7, 8, 9

Combination therapy controlled the disease progression

better than treatment by vaccine or antiretroviral drug.

There is less fluctuation in the level of CD4þ and virus.

Additionally, the proposed treatment regime for the

antiretroviral drug had a more regular pattern. The total

dose of administered drug in a same period was lower than

mono therapy with antiretroviral drug. The AUC (area

under the curve), of the ART graph in Fig. 9 is 388.8379

and it was lower than the one that calculated for Fig. 5

(AUC of Fig. 5 is 450.6702).

Remark 1 Although in Fig. 8 most of HIV-1-infected

cells die, but a small proportion of them survive with HIV-

Fig. 1 Graphs of stable solutions x(t) (CD4þ T cells) and y(t) (viral load), with initial value ðx0; y0;w0; z0Þ ¼ ð995:7; 0:5; 0:3962556306;
0:3804054055Þ, and s[ s0 ¼ 1:454520056

Fig. 2 Graphs of unstable solutions x(t) (CD4þ T cells) and y(t) (viral load), with initial value ðx0; y0;w0; z0Þ ¼ ð1120; 0:4; 0:03962556306;
0:53804054055Þ, and s\s0 ¼ 1:454520056
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1 DNA persistently integrated in their genome. Since these

cells are some of the longest-lived cells in the body, HIV-1

infection can persist for decades in this latent cellular

reservoir that is inaccessible to the immune system or

present antiretroviral therapy (Palmisano and Vella 2011).

Furthermore, the initiation of antiretroviral therapy

(ART) during primary infection may offer clinical benefits

for HIV-1-infected individuals by reducing HIV-1 DNA

reservoir size and chronic T-cell activation (Hey-Cun-

ningham et al. 2015). So, it was attempted to find out if the

beneficial effect of early retroviral therapy can be simu-

lated by the proposed model. For this aim, the Fig. 10 is

simulated with the initial value which is obtained after near

6 month, without any treatment (see Fig. 3).

Table 2 Parameters are chosen such that the equilibrium point E2 to

be unstable

Parameter Value Unit

k 10 day�1 mm�3

b 5 day�1 mm�3

l1 0.1 day�1

l2 2 day�1

l3 3 day�1

l4 0.25 day�1

c 0.75 day�1

q 0.5 day�1

p 100 day�1

s 7� 10�8 day�1

Fig. 3 Graphs of unstable solutions x(t) (CD4þ T cells) and y(t) (viral load), with initial value ðx0; y0;w0; z0Þ ¼ ð70; 10; 0:081; 0:21Þ

Fig. 4 Graphs of optimal solutions x	ðtÞ (optimal CD4þ) and y	ðtÞ (optimal viral load) with the same initial values and same parameter s, as
Fig. 3 and u1 ¼ 0
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As it was shown early ART (Fig. 4) accompanied with

better control of CD4þ level compared to 6-months

delayed ART (Fig. 10) that was consistent with clinical

results Le et al. (2013).

Results and discussion

Result

For numerical simulation first we considered the untreated

model without any control. In this case, the parameter s is

chosen to show that system (1.2) with delay can have a

complex dynamic and undergoes Hopf bifurcation.

Thereafter, the effects of controllers on (1.3) have been

investigated. Decline in uninfected CD4þ cells and

uncontrollable increase in virus counts are seen in acute

phase of the HIV-1 disease (Hattaf and Yousfi 2012) that

was simulated by the model (Fig. 3). It was shown clini-

cally that ART can keep the virus count very low (Sáez-

Cirión et al. 2013) and similar results were obtained by

simulation (Fig. 4). The viral load can be controlled by

current antiviral therapy regimes. However, they do not

eliminate HIV-1 from latently infected reservoirs and life-

long antiviral therapy is necessary. Despite of this decline

in virus level, reservoir of the virus was remained (Mar-

golis 2014). It was proposed that concomitant vaccination

can improve the results of ART (de Goede et al. 2015). In

addition, there is a concern of adverse effects and even

Fig. 5 Graphs of optimal control u2, with A1 ¼ A2 ¼ 100 and

B2 ¼ 4. The area under the curve u2 is equal with 450.6702

Fig. 6 Graphs of optimal solutions x	ðtÞ (optimal CD4þ) and y	ðtÞ (optimal viral load) with the same initial values and same parameter s, as
Fig. 3 and u2 ¼ 0

Fig. 7 Graphs of optimal control u1, with A1 ¼ A2 ¼ B1 ¼ 100. The

area under the curve u1 is equal to 260.7155
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toxicity of life-long therapy with the antiretroviral drugs

(Margolis 2014).

Discussion

Our numerical simulations indicated that using two con-

trollers (vaccine and drug) lead to better outcomes in

comparison to vaccine or drug alone. Furthermore,

administration of vaccine decreases the total dosage of

drug (area under the curve of Figs. 9 and 5 for u2). Thus,

administration of vaccine decreases the dosage and possi-

ble side effects of long-term therapy by antiviral drugs. The

beneficial effect of early ART were reported by several

studies (Le et al. 2013; Macatangay and Rinaldo 2015;

Hogan et al. 2012; Sáez-Cirión et al. 2013; Stöhr et al.

2013). The better improvement of CD4þ using early ART

was reported (Le et al. 2013). The simulation results were

in consistence with this report and early treatment with

antiretroviral drug (Fig. 4) showed more promising out-

comes than a delayed treatment (Fig. 10).

For numerical simulating with controllers, the package

TOMLAB and MATLAB software is used.

Conclusion

In this paper, we considered a problem of optimal control

for HIV-1 infection model with delay. We have defined a

four dimensional model which is equipped with two con-

trols. Introducing controller u2 in conjunction with

Fig. 8 Graphs of optimal solutions x	ðtÞ (optimal CD4þ) and y	ðtÞ (optimal viral load) with the same initial values and same parameter s, as
Fig. 3

Fig. 9 Graphs of optimal controls u1, and u2, with A1 ¼ A2 ¼ B1 ¼ 100 and B2 ¼ 4. The area under the curve for u1 is 186.4272 and the area

under the curve for u2 is 388.8379
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controller u1 improved the CTL response and inhibited the

viral replication effectively. Introduced model in this study

simulated some of the features of HIV-1 disease and pre-

dicted the beneficiary effects of combination therapy by

vaccine and anti-retroviral therapy. Also, by the Figs. 1, 2,

3, 4, 5, 6, 7, 8, 9 and 10, we have shown that our numerical

solutions are corresponding with the clinical information.
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