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Abstract. In this paper, the dynamic behavior of an immuno-

suppressive infection model, specifically AIDS, is analyzed. We

show through a simple mathematical model that a sigmoidal CTL

response can lead to the occurrence of transcritical bifurcation. This

condition usually occurs in immunodeficiency virus infections (such

as AIDS infection) in which viruses attack immune cells CD4+T.

Our results imply that the dynamic interactions between the CTL

immune response and HIV infection are very complex and in the

CTL response, dynamics can exist the stable regions and unstable

regions. At the end of the paper, numerical simulations are presented

to illustrate the main results.
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1. Introduction

One of the most complicated organs of higher organisms is the immune system. The func-

tion of the immune system is to fight off pathogenic organisms that enter and grow within

the host (for example, viruses, bacteria, unicellular eukaryotic parasites such as malaria, and

multicellular parasites such as worms). Immune responses can be subdivided broadly into

two categories: (i) innate or nonspecific responses, and (ii) specific, adaptive responses. In-

nate immune mechanisms provide a first line of defense against an invading pathogen. They

include physical barriers like the skin, changes in the environment of the body, such as fever,

and immune cells that can fight pathogens in a nonspecific way. Nonspecific is the key word
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here and means that these responses cannot specifically recognize the physical structure of

the pathogen. Instead, these nonspecifics sense that an invader is present and react. While

such responses slow down the initial growth of a pathogen, they are usually insufficient to

clear an infection. For removing an infection, a specific and adaptive immune response is

required [12]. The adaptive immune response consists of three main branches. 1. The B

cells secret antibodies that neutralize free virus particles. 2. The CTL (also known as CD4+

T cells) attack infected cells. 3. The CD4+ T helper cells are very important regulators

that ensure that CTL and B cell responses are developed efficiently. In immunosuppressive

infection models, infected cells attack to CD4+ T cells and infect them; subsequently, they

cannot help CTL and CD4+ T cells to act efficiently. Mathematical models have been of

central importance for understanding the dynamics between viral infections and immune re-

sponses, particularly in the context of a human immunodeficiency virus (HIV) infection [6].

Significant emphasis has been placed on the viral side of these dynamics, including the esti-

mation of basic viral parameters. Subsequent work has focused on the immune side of these

interactions in trying to explain a variety of experimental observations about the dynamics

of immune cells in various infections. One particular part of the immune system that is very

important in the fight against viral infections is the killer T cells or cytotoxic T lymphocytes

(CTL). They basically fight intracellular pathogens [13]. Clinical data have shown that for

some human pathogens, such as HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV),

drug therapy sometimes is not completely effective [9, 6]. Recently, in 2015 [1, 10] and 2014

[8], impaired immune responses in immunosuppressive infection models have attracted more

and more attention. Mathematical models have been developed to capture the interaction

in vivo among HIV [1, 3, 5, 8, 10, 12, 13].

The following model is general and satisfied the clinical data, so it was pursued by scientists;

see the above references. In 2003, this model was developed and considered [3].

{
ẏ = ygr(y)− yz

ż = zf(y)
(1.1)

In this system, y is the virus population and z is the population of the immune cells. The

function gr(y) should be satisfied in:

{
1.gr(0) > 0, ∂gr

∂y < 0 ∀y
2.∃ y∗ > 0 , gr(y

∗) > 0, ∂gr(y)
∂y > 0∀r, y.

(1.2)

Also the following conditions were assumed for f(y) in [3]

{
3. ∃ y1, y2 > 0 such that f(y1) = f(y2) = 0

4. ∂f
∂y > 0 for y = y1 and

∂f
∂y < 0 for y = y2

(1.3)

gr(y) is the virus growth function that depends on the viral replication rate, r, and f(y) is

the immune expansion function that does not depend on r. In the above case, when viral
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replication is high and the virus load is between y1 and y2, immune expansion is increasing

and levels of antigen are sufficient to trigger sustained immunity[3]. In [3], a special function

for gr(y) and f(y) is introduced (see Model (3.1)). Model (3.1), in 2015 [1, 10], was considered

to investigate the stability of the CTL immune response. Shu et al [8] in 2014 obtained saddle

point for system (3.1) which shows stable and unstable. Note that all the above investiga-

tions were on the eigenvalues with the non-zero real part and they didn’t consider the zero

eigenvalue (bifurcation theory).

In this paper, we are interested in only one zero eigenvalue of the system (3.1) at the fixed

point, which can lead to the occurance of transcritical bifurcation [2, 4, 7]. Since our con-

centration is on AIDS, we change the condition (1.3), in order to consider a weak immune

system. The difference between HIV and AIDS is: HIV is the beginning of the AIDS disease,

in AIDS; virus load rises more sharply, and the CD4+ T cell (which defend against ADIS cells)

drops sharply [12]. From a mathematical point of view, ∂f
∂y > 0 means that the function f is

a strictly increasing function with respect to the variable y. From a biological perspective, it

means that the function of immune system responses to the disease increase. In this study

the conditions for f(y) are as follows:{
1. ∃ y∗ > 0 ; f(y∗) = 0

2. ∂f
∂y = 0 for y∗ > 0.

(1.4)

The new conditions cause a critical situation for the function f . For this case, we try to find

a zero eigenvalue to apply transcritical bifurcation. Bifurcation theory helps us to obtain

conditions for the parameters to keep the disease stable. In other words, by finding a region

for parameter r with respect to parameter k, we tried to keep the immune system in proper

condition as long as possible. Our work is organized as follows:

In Section 2, we give some preliminary definitions of bifurcation and theorem, which are going

to be use in other Sections. Section 3 is devoted to bifurcation of system (3.1). Section 4

illustrates our numerical results. Section 5 is the conclusion.

2. preliminaries

Bifurcation theory is fundamental for the qualitative study of dynamical systems, and can

be used to reveal complex dynamical behaviors of the biological systems under study, such

as bistability, recurrence, and regular oscillation. Characterized by a controllable parameter,

called the bifurcation parameter, bifurcation occurs at a critical value of this parameter where

the properties of equilibria change significantly.

We consider bifurcations of equilibria of autonomous systems which depend on one single

parameter µ:

ẋ = f(x, µ) , x ∈ Rn , µ ∈ R(2.1)

The system (2.1) is called smooth if f(x, µ) is differentiable up to any order in both x and µ.

Equilibria of (2.1) are solutions of the algebraic equations

f(x, µ) = 0(2.2)
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In order to graphically illustrate the dependence of an equilibrium x on µ, we require a scalar

measure of the n-vector x. We shall use the notation [x] for such a measure of x. A diagram

depicting [x] versus µ, where (x, µ) solves equation (2.2), will be called a bifurcation diagram.

The continuous curves of solutions of (2.2) under variation of µ are called branches. The

branches of smooth systems are continuous and smooth but can split into more branches.

On a regular point of a branch, that is, on a point where the branch does not split or turn

around, we can define the slope of the branch. We will use the following abbreviations:

J(x, µ) :=
∂f(x, µ)

∂x
, fµ :=

∂f(x, µ)

∂µ
(2.3)

Both derivatives exist for a smooth system. Using the implicit function theorem it follows

that, provided that the Jacobian matrix J(x, µ) is non-singular, locally (??) is equivalent to

writing x as a function of µ, i.e, 0 = f(x(µ), µ). Then it follows from differentiating (??) with

respect to µ that

J(x, µ)
dx

dµ
+ fµ(x, µ) = 0(2.4)

As J(x, µ) is non-singular, we can solve for dx
dµ . A point (x, µ) is called regular if det(J(x, µ)) ̸=

0.

Definition 1 (Bifurcation). The appearance of a topologically nonequivalent phase portrait

under a variation of parameters is called a bifurcation [2, 4, 7, 9, 11].

Definition 2. Transcritical bifurcation is a particular kind of local bifurcation, meaning that

it is characterized by an equilibrium having an eigenvalue whose real part passes through

zero.

A transcritical bifurcation is one in which a fixed point exists for all values of a parameter and

is never destroyed. However, such a fixed point interchanges its stability region with instability

region as the parameter is varied. In other words, both before and after the bifurcation, there

is one unstable and one stable fixed point [2, 4, 7, 9].

Theorem 1. (Sotomayor theorem) Suppose that fµ0(x0) = 0 and that n × n matrix A =

Df(x0, µ0) has a simple eigenvalue λ = 0 with eigenvector ν and that AT has an eigenvector

ω corresponding to the eigenvalue λ = 0. Furthermore, suppose that A has k eigenvalues with

a negative real part and (n−k−1) eigenvalues with a positive real part and that the following

conditions are satisfied:

ωT fµ(x0, µ0) ̸= 0 , ωT [D2f(x0, µ0(ν, ν))] ̸= 0(2.5)

Then there is a smooth curve of equilibrium points for ẋ = f(x, µ) in Rn × Rpassing through

(x0, µ0) and tangent to the hyperplane Rn × µ0. Depending on the signs of the expressions in

(2.2 ). In this case the system experiences a saddle node bifurcation. If the conditions (2.5 )

are changed to :
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ωT fµ(x0, µ0) = 0 , ωT [Dfµ(x0, µ0)] ̸= 0 and ωT [D2f(x0, µ0)(ν, ν)] ̸= 0(2.6)

Then the system (2.1) experiences a Transcritical bifurcation. And if the condition (2.5 )

changed to:

ωT fµ(x0, µ0) = 0 , ωT [Dfµ(x0, µ0)ν] ̸= 0 , ωT [D2f(x0, µ0)(ν, ν)] = 0 and ωT [D3f(x0, µ0)] ̸= 0

(2.7)

then the system (2.1) experiences a Transcritical bifurcation.

Proof. For the proof, one can see [7]. □

3. Bifurcation of the system (3.1)

Consider the following system of differential equations:
ẏ = ry(1− y

k )− ay − pyz

ż = czy
1+dy − qyz − bz

(3.1)

where y and z are as before. The virus population is assumed to grow logistically: r is the

viral replication rate at low viral loads, and we assume that this rate is decreased linearly

with increased viral load to reach zero at a viral load k. Immune cells are assumed to be

inhibited by the virus at a rate qyz and die at a rate b.

Clearly E0 = (0, 0) is a trivial equilibrium of the system. There exist an equilibrium E1 =

(ȳ, 0) = (kr (r − a), 0) provided r > a > 0.

The equilibrium E1 is called the virus dominant equilibrium (VDE). Moreover, we can find

another equilibrium E∗ = (y∗, z∗), where y∗ > 0 and z∗ > 0, satisfying the following equations:

{
r(1− y∗

k )− a− pz∗ = 0
cy∗

1+dy∗ − qy∗ − b = 0
(3.2)

E∗ > 0 means that while the virus population is growing, immune cells start to increase;

therefore, our main attention will be on equilibrium E∗. It follows from the first equation of

(3.2)

z∗ =
r(k − y∗)− ak

pk
> 0(3.3)

By z∗ > 0, one can find ȳ such that

y∗ < ȳ(3.4)

In order to find y∗ for E∗, we should solve the quadratic equation

h(y) = qdy2 + (−c+ q + bd)y + b = 0, y∗ < ȳ(3.5)
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to obtain a double root for (3.5), one should have

∆ = 0 ⇒ (c− q − bd)2 = 4bqd ⇒ c− q − bd = ±2
√

bqd(3.6)

The minus sign for the root is not applicable, so

c− q − bd = 2
√

bqd(3.7)

or equivalently c = (
√
q +

√
bd)2.

Conditions (3.6) and (3.7) on polynomial (3.5) lead to

g(y) = (y − c− q − bd

2qd
)2 = (y − 2

√
bqd

2qd
)2 = (y −

√
b

qd
)2(3.8)

Consequently,

y∗ =

√
b

qd
(3.9)

and

E∗ = (

√
b

qd
,
r(k −

√
b
qd)− ak

pk
)(3.10)

Because y∗ < ȳ, we can define a threshold (see following definition) as follow:

rk − ry∗ > ak ⇒ r(k − y∗) > ak ⇒ r >
ak

k − y∗
(3.11)

⇒ rt =

{
ak

k−y∗ if y∗ < k

∞ if y∗ > k
(3.12)

Definition 3. In mathematical or statistical modeling, a threshold model is any model where

a threshold value, or set of threshold values, is used to distinguish ranges of values where the

behavior predicted by the model varies in some important way.

With the above statements, one can have the following lemma

Lemma 1. Suppose that (3.7) is satisfied.

(a) If r ≤ a, then the trivial equilibrium E0 = (0, 0) is the only equilibrium.

(b) If a < r ≤ rt (i.e a < r and y∗ ≥ ȳ), then there are two equilibria E0 and E1 = (ȳ, 0),

where ȳ = k
r (r − a)

(c) If rt < r (i.e a < r and y∗ < ȳ), then there are three equilibria, E0, E1 and additional

equilibrium E∗ = (y∗, z∗) with z∗ = r(k−y∗)−ak
pk
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We call E∗ the immune control equilibrium(ICE).

Here we would like to determine the type of the equilibria (E0, E1 and E∗) for the system

(3.1).

3.1. Global dynamics of (3.1). Let (y∗, z∗) be an equilibrium of (3.1). The associated

characteristic equation of (3.1) is given by

g0(λ) = λ2 + c1λ+ c0 = 0(3.13)

where

c1 = −(r − 2r

k
y∗ − a− pz∗ +

cy∗

1 + dy∗
− qy∗ − b)(3.14)

and

c0 = (r − 2r

k
y∗ − a− pz∗)(

cy∗

1 + dy∗
− qy∗ − b) + py∗(

cz∗

(1 + dy∗)2
− qz∗)(3.15)

At E0 = (0, 0), two roots of the characteristic equation are λ1 = −b < 0 and λ2 = −(a− r).

Therefore, E0 is stable if r ≤ a. Otherwise, if r > a, then E0 is a saddle point.

At E1, y
∗ = ȳ , z∗ = 0, a direct calculation implies that E1 is stable.

At E∗ we have

c1 =
ry∗

k
> 0(3.16)

and

c0 = py∗z∗(−q +
c

(1 + dy∗)2
) = py∗z∗g1(y).(3.17)

If g1(y) = 0, then ỹ =
√
c−√

q
d
√
q . Substituting ỹ in g(y) where

g(y) = (y − c− q − bd

2qd
)2(3.18)

we have

g(ỹ) = (

√
c−√

q

d
√
q

− c− q − bd

2qd
)2

= (

√
q +

√
bd−√

q −
√
bd

d
√
q

)2 = 0

(3.19)
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ỹ = y∗, therefore c0 = 0

In this case since λ1 + λ2 = −c1 < 0 , λ1λ2 = 0 which gives us

λ1 = 0(3.20)

and

λ2 = −c1 = − r

k

√
b

qd
(3.21)

The system (3.1) under condition (3.7) for the equilibrium E∗ has one negative eigenvalue

and one zero eigenvalue. Next we check the conditions for the Transcritical bifurcation. For

this purpose, we use Sotomayor theorem (see theorem 2.3). In the following, we calculate the

Jacobian matrix, second derivative of the Jacobian matrix and also eigenvector ν correspond-

ing to eigenvalue λ1 = 0 for A and ω,the eigenvector of λ1 = 0, corresponding to AT .

The Jacobian matrix of (3.1) is

A =

[
r − 2r

k y − a− pz −py
cz

(1+dy)2
− qz cy

1+dy − qy − b

]
(3.22)

where condition (3.7) implies that

cz

(1 + dy)2
− qz =

cy

1 + dy
− qy − b = 0(3.23)

Therefore,

A =

[
r − 2r

k y − a− pz −py

0 0

]
(3.24)

The Jacobian matrix A at E∗ will be

AE∗ =

[
− r

k

√
b
qd −p

√
b
qd

0 0

]
(3.25)

By a direct calculation, the eigenvectors ν and ω are

ν = (ν1, ν2) = (−kp

r
, 1)(3.26)

ω = (ω1, ω2) = (0, 1)(3.27)

D2f(E∗)(ν, ν) =

[
∂2f1(E∗)

∂y2
ν1ν1 +

∂2f1(E∗)
∂y∂z ν1ν2 +

∂2f1(E∗)
∂y∂z ν2ν1 +

∂2f1(E∗)
∂z2

ν2ν2
∂2f2(E∗)

∂y2
ν1ν1 +

∂2f2(E∗)
∂y∂z ν1ν2 +

∂2f2(E∗)
∂y∂z ν2ν1 +

∂2f2(E∗)
∂z2

ν2ν2

]
=

[
0

σ

]
(3.28)
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If σ ̸= 0 implies that D2f(E∗)(ν, ν) ̸= 0.

Also, one should have

fr(E
∗) =

√
b
qd(1−

√
b
qd

k )

0

(3.29)

From (3.25) and (3.27), one can obtain

wT fr(E
∗) = 0(3.30)

The above calculations and results lead to the conclusion that conditions (2.4) are valid.

Therefore, by the Sotomayor theorem, the system (3.1) undergoes transcritical bifurcation.

4. Example (numerical simulation )

The parameters data are choosen such that the Figures 1-5 are in consistent with [1, 3, 5,

8, 10, 12, 13]. Since we are dealing with AIDS, the following Figures show the regions of weak

immune response.

We try to find a region for parameter r with respect to parameter k.

From (3.8) r > ak
k−y∗ , but y

∗ =
√

b
qd , therefore

r >
ak

k −
√

b
qd

> 0(4.1)

so

k >

√
b

qd
(4.2)

Thus, the parameter region is obtained in Figure 1:

Figure 1. Parameter region r with respect to k by considering a = 3, b = 2,

q = 9 and d = 2.
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We use numerical techniques to determine the system (3.1) with condition (2.4).

Figure 2. a = p = 3, k = 4/3, q = 9, b = 2 and r = 10 with initial condition (13 ,
3
2).

In Figure 2, first we obtain the parameter r with respect to y and z. Next by considering

the values a = p = 3, k = 4/3, q = 9, b = 2 and r = 10, the stability regions of the orbits

are investigated. Therefore, system (3.1) is in a steady state; this means that however the

immune response of the body is so weak that is still can defend against the disease.

Figure 3 shows that after 100 days, immune cells could not control the growth of virus cells
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and so the system (3.1) is unstable.

Figure 3. a = p = 3, k = 10, q = 9, b = 2 and r = 5 with initial condition (13 ,
2
3).
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Figure 4. a = 4, p = 3, k = 40, q = 9, b = d = 2, c = 36 and r = 5 with

initial condition (13 ,
115
4 ).

Figure 5. a = 4, p = 3, k = 400, q = 9, b = d = 2, c = 36 and r = 5 with

initial condition (13 ,
115
4 ).

Results. Results: Figure 1 shows the region which one can choose r with respect to k. In

Figure 2, k is small, so one can see the stable regions. Figures 3, 4 and 5 show an unstable

region corresponding to an increase in the virus (k ≥ 10).

Compares: In this study by assuming condition (1.4), for system (3.1), we paid attention

to AIDS. According to our knowledge, this condition that causes a complex dynamic is not

considered in any related previous works [1, 8, 10]. The new condition was lead to an one zero

eigenvalue and as a consequence, by applying Sotomayor theorem, to transcritical bifurcation.

Therefore, we determined the stable and unstable regions (by different given values, small and

large for k) by using transcritical bifurcation.

5. Conclusion

In this paper, we analyzed system (3.1), with condition (1.4), at the equilibrium corre-

sponding to only one zero eigenvalue (co-dimension one bifurcation). In order to determine

transcritical bifurcation, we applied condition (2.7) in Sotomayer theorem (see theorem 2.3).

One can notice that as we mentioned in the results of our investigation, the difference between

this study and others [1, 8, 10]. From the biological point of view, the stable and unstable

regions correspond to the viral population load. Moreover Figures 3, 4 and 5 showed that the

virus population of AIDS increases for the value of k ≥ 10.
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