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Abstract

In this paper we define the generalised non-commuting graph Γ(H,K),
where H and K are two subgroups of a non-abelian group G. Take (H ∪
K) \ (CH(K) ∪ CK(H)) as the vertices of the graph and two distinct vertices
x and y join, whenever x or y is in H and [x, y] 6= 1. We obtain diameter
and girth of this graph. Also, we discuss the dominating set and planarity of
Γ(H,K). Moreover, we try to find a connection between Γ(H,K) and the relative
commutativity degree of two subgroups d(H,K). Furthermore, we prove that
if Γ(H,G)

∼= Γ(K,G), then ΓH
∼= ΓK . And finally we introduce a special case

when subgroup K is equal to the non-abelian group G.
Key words: commutativity degree, non-abelian group, non-commuting

graph
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1. Introduction and preliminaries. The study of algebraic structures,
by using the properties of graphs, is an exciting research topic in the last twenty
years. This fact leads to many fascinating results and questions. There are many
papers on assigning a graph to a ring or group and investigation of algebraic
properties of ring or group using the associated graph, for instance see [1,2].

A simple graph ΓG is associated with a group G, whose vertex set is G\Z(G)
and the edge set is all pairs (x, y), where x and y are distinct non-central elements
such that [x, y] = x−1y−1xy 6= 1. The non-commuting graph of G was introduced
by Erdős. He asked whether there is a finite bound for the cardinalities of cliques
in ΓG, if ΓG has no infinite clique. This problem was posed by Neumann in [3] and
a positive answer was given to Erdös’s question. Later, many similar researches
about this graph have been done by authors which some of them related to the
work given by Neumann in [3]. Of course, there are some other ways to construct
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a graph associated with a given group or semigroup. We may refer to the works
of Bertram et al. [4], Grunewald et al. [5], Moghadamfar et al. [6], and
Williams [7], or recent papers on the relative non-commuting graph, Erfanian
et al. [8].

In the next section, we introduce the generalised non-commuting graph Γ(H,K).
We state some of the basic graph theoretical properties of Γ(H,K) which are mostly
new or a generalisation of some results in [8]. For instance, determining diame-
ter, dominating set, domination number and planarity of the graph. The third
section aims to state a connection between the generalised non-commuting graph
and the commutativity degree. We will present a formula for the number of edges
of Γ(H,K) in terms of d(H) and d(H,K). Moreover, we observe that the gener-
alised non-commuting star graph exists, although in [8] we see there is no relative
non-commuting star graph. We also present some conditions under which we have
generalised non-commuting complete bipartite and bipartite graph. In the last
section, we explain some properties of Γ(H,K), where K = G.

2. The generalised non-commuting graphs. In this section, we define
the generalised non-commuting graph for any non-abelian group G and subgroups
H, K.

Definition 2.1. Let H and K be subgroups of non-abelian group G. We
associate a graph Γ(H,K) with the subgroups H and K as follows: Take (H ∪K) \
(CH(K) ∪ CK(H)) as the vertices of the graph and two distinct vertices x and y
are adjacent, whenever x or y is in H and [x, y] 6= 1. We call it the generalised
non-commuting graph of subgroups H and K of G.

It is easy to see that if K = G then the generalised non-commuting graph
Γ(H,K) coincides with the relative non-commuting graph Γ(H,G) (see [8]). If
H,K = G then the generalised non-commuting graph Γ(H,K) is the non-commu-
ting graph ΓG (see [9]). Thus we discuss the generalised non-commuting graph
such that it does not coincide with the relative non-commuting graph or non-
commuting graph unless we mentioned it in the text. Let us start with the
following result about the degree of the vertices. The proof is straightforward so
we omit it.

Proposition 2.2. Suppose Γ(H,K) is the generalised non-commuting graph
of the non-abelian group G and its subgroups H and K. Then

(i) If x ∈ H \ (K ∪ CH(K)), then deg(x) = |H ∪K| − |CH(x) ∪ CK(x) ∪
CH(K)|.

(ii) deg(x) = |H ∪K| − |CH(x) ∪ CK(x)| for x ∈ H ∩K.

(iii) Finally, if x ∈ K \ (H ∪ CK(H)), then deg(x) = |H| − |CH(x) ∪
CH∩K(H)|.

Recall that the diameter of the graph is the greatest distance between any
pair of vertices and the girth of the graph is the length of the shortest cycle.
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Theorem 2.3. For non-abelian group G and its subgroups H, K with trivial
centre, diam(Γ(H,K)) ≤ 3. Moreover, girth(Γ(H,K)) ≤ 4.

Proof. Let x be a vertex of Γ(H,K). If H ⊆ CK(x), then x ∈ CK(H) or
x = 1 which is a contradiction. Therefore H * CK(x) and similarly K * CK(x).
Suppose x and y are non-adjacent vertices. Now consider the following three
cases:

Case 1. Suppose x, y ∈ K. There exist vertices h1, h2 ∈ H such that
[x, h1] 6= 1 and [y, h2] 6= 1. If x joins h2 or y joins h1, then d(x, y) = 2. Assume
this does not happen. Therefore, the non-central element h1h2 is adjacent to x
and y.

Case 2. Let x ∈ H and y ∈ K. Since x /∈ CH(K) and y /∈ CK(H), there
exist k ∈ K and h ∈ H such that [x, k] 6= 1 and [y, h] 6= 1. If x joins h, then
d(x, y) = 2. Assume they are not adjacent, and k joins to h, then d(x, y) = 3.
If x is not adjacent to h and k does not join h, then xh ∈ H exists such that
[xh, k] 6= 1 and [xh, y] 6= 1. Thus d(x, y) = 3.

Case 3. If x, y ∈ H, then there exist k1, k2 ∈ K such that [x, k1] 6= 1,
[y, k2] 6= 1. If x joins k2 or y meets k1 then d(x, y) = 2. Otherwise, the non-
central element k1k2 is adjacent to x and y so d(x, y) = 2. Consequently, we can
say that diam(Γ(H,K)) ≤ 3.

By similar argument, if x ∈ K and y ∈ H, then there exist h ∈ H and k ∈ K,
such that [x, h] 6= 1 and [y, k] 6= 1. If y joins h, then there is a triangle of the
form {x, h, y}. Assume y does not join h and h and k are adjacent. Thus there
is a cycle of the form {x, y, k, h}. Now suppose y and h are not adjacent and h
does not joins k. So there exist xy ∈ K, [xy, h] 6= 1 and [xy, y] 6= 1. Hence there
is a cycle of the form {x, y, xy, h} and girth(Γ(H,K)) ≤ 4.

Now, let us start discussion about the dominating sets of generalised non-
commuting graphs. A subset of the graph is a dominating set if every vertex
which is not in the subset is adjacent to at least one member of the subset. We
should note that the following three propositions are a generalisation of some
results in [8].

Proposition 2.4. Let H, K be subgroups of non-abelian group G. If x ∈ H
and {x} is a dominating set for Γ(H,K), then CH(K) ∩ CK(H) = 1, x2 = 1 and
CH(x) = 〈x〉, or 〈x, y〉, where y ∈ CH(K) and xy ∈ CK(H).

Proof. Suppose 1 6= z ∈ CH(K)∩CK(H). Thus [z, h] = 1 and [z, k] = 1 for
all h ∈ H and k ∈ K. It is clear that zx ∈ H is a vertex and does not join x,
which is a contradiction. Now assume x2 6= 1. Therefore x−1 is a vertex which is
not adjacent to x, which is a contradiction. If t ∈ CH(x) and t /∈ {1, x}, then the
vertex t is not adjacent to x, which is a contradiction.

Proposition 2.5. Let H, K be subgroups of non-abelian group G and S ⊆
V (Γ(H,K)). Then S is a dominating set for Γ(H,K) if and only if CK(S)∪CH(S) ⊆
CK(H) ∪ CH(K) ∪ S.

Proof. Suppose that S is a dominating set. If t is a vertex such that
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t ∈ CK(S) ∪ CH(S), then t ∈ CH(S) or t ∈ CK(S) which implies [t, S] = 1. As
S is a dominating set, t ∈ S. If t is not a vertex, then t ∈ CK(H) ∪ CH(K).
Conversely, we suppose on the contrary that S is not a dominating set. Thus
there is a vertex t /∈ S and it is not adjacent to any element of S. Therefore
[t, S] = 1 and so t ∈ CK(S)∪CH(S) ⊆ CK(H)∪CH(K)∪S. Hence t ∈ S, which
is a contradiction.

Proposition 2.6. Let H, K be subgroups of non-abelian group G, X =
{h1, . . . , hn} and Y = {k1, . . . , kl} are generating sets for H and K, respectively,
such that hihj , kskt /∈ CH(K) ∪ CK(H) for 1 ≤ i < j ≤ n and 1 ≤ s < t ≤ l. If
X ∩ CH(K) = {hm+1, . . . , hn} and Y ∩ CK(H) = {ks+1, . . . , kl}, then

S = {h1, . . . , hm, k1, . . . , ks} ∪ {h1hm+1, . . . , h1hn, k1ks+1, . . . , k1kl}

is a dominating set for Γ(H,K).
Proof. Let t be a vertex which does not belong to S. Consider the following

two cases:
Case 1. If t ∈ H, then there exists an element k ∈ K such that k =

kα1
i1
· · · kαl

im
, kij ∈ Y , αi are integers with [t, k] 6= 1. Thus [t, kij ] 6= 1. If 1 ≤ ij ≤ s,

then t joins kij ∈ S as required. If kij is not a member of S, then ki1kij ∈ S is
adjacent to t.

Case 2. If t ∈ K, then there exists an element h ∈ H such that h =
hβ1i1 · · ·h

βn
im

, hij ∈ X, βi are integers with [t, h] 6= 1. Thus [t, hij ] 6= 1 for some
1 ≤ ij ≤ n. If hij ∈ S, then the result is clear. If hij does not belong to S, then
hi1hij ∈ S and joins t.

In graph theory an independent set is a set of vertices in a graph, no two
of which are adjacent. It is clear that V (Γ(H,K)) \ H is an independent set for
Γ(H,K).

3. The generalised non-commuting graphs and d(H,K). For any
finite group G, the commutativity degree of G, denoted by d(G) is the probability
that two randomly chosen elements of G commute with each other [10]. It can be
defined as the following ratio:

d(G) =
1

|G|2
|{(x, y) ∈ G×G : [x, y] = 1}|.

Similarly, if H and K are two subgroups of G, then the generalised commutativity
degree of H, K in G is defined as follows:

d(H,K) =
1

|H||K|
|{(h, k) ∈ H ×K : [h, k] = 1}|.

It is clear that if one of H or K is a central subgroup of G, then d(H,K) = 1
(see [11]). In this section, we present a formula for the number of edges of the
generalised non-commuting graph Γ(H,K). Consequently we will give an upper
bound for |E(Γ(H,K))|.
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Proposition 3.1. Let H,K be subgroups of non-abelian group G. Then the
number of edges for the generalised non-commuting graph is obtained by
(1)

|E(Γ(H,K))| = |H||K|(1− d(H,K)) +
|H|2

2
(1− d(H))− |H ∩K|

2

2
(1− d(H ∩K)).

Proof. It is clear that the number of edges with two ends in H is computed
by (|H|2/2)(1−d(H)). Furthermore, the number of edges with one end in H and
another in K is |H||K| − |H||K|d(H,K). Finally, we should eliminate the edges
that have been calculated twice by (|H ∩ K|2/2)(1 − d(H ∩ K)), which implies
the assertion.

Example 3.2. In this example we compute the number of edges for some
certain groups.

(i) Suppose D8 = 〈a, b : a4 = b2 = 1, ab = a−1〉 is the dihedral group of
order 8, H = 〈ab〉 and K = 〈b〉 are two subgroups of D8. Obviously
V (Γ(H,K)) = {ab, b}, d(H) = 1, d(H,K) = 3/4, |E(Γ(H,K))| = 1 and
Γ(H,K) is K2.

(ii) Let S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} be the symmetric group
of order 6, H = {e, (1 2)} and K = {e, (1 3)} be subgroups of S3. It is
clear that again Γ(H,K)

∼= K2.

Corollary 3.3. Let Γ(H,K) be a generalised non-commuting graph. Then

|E(Γ(H,K))| ≤ |H|(|K|+
3

16
|H| − 1)− |CH(K)|(|K| − 1).

Proof. By using Theorem 2.1 in [8] and [10] the assertion is clear.
Now, we recall the star graph as a tree on n vertices in which one vertex is

of degree n− 1 and the others are of degree 1.
Example 3.4. Let D2n = 〈a, b : an = b2 = 1, ab = a−1〉 be the dihedral

group of order 2n, H = 〈a〉 and K = 〈b〉. Then Γ(H,K) is a star graph. If n is

an even number, then V (Γ(H,K)) = n− 1, deg(ai) = 1, i 6= n

2
, 1 ≤ i ≤ n− 1 and

deg(b) = n − 2. Therefore, Γ(H,K) is a star graph. Moreover, d(H,K) = (n +
2)/2n and by Proposition 3.1 or by the fact Γ(H,K) is a star graph it follows that
|E(Γ(H,K))| = n − 2. If n is an odd number, then V (Γ(H,K)) = n. Furthermore,
deg(ai) = 1, 1 ≤ i ≤ n− 1 and deg(b) = n− 1. Hence Γ(H,K) is a star graph. We
deduce d(H,K) = (n+ 1)/2n and so |E(Γ(H,K))| = n− 1.

Since there is no edge between vertices of Γ(H,K) which belongs to K, Γ(H,K)

is not complete in general. Γ(H,K) is a complete graph if and only if |H| = |K| = 2
and generators of H and K do not commute.

If H is an abelian group, obviously Γ(H,K) is bipartite. Clearly, if H is an
abelian subgroup of G and CK(x) = 1 for all x ∈ H \{1}, then Γ(H,K) is complete
bipartite.
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Example 3.5. In this example we present groups such that their associated
generalised non-commuting graphs are complete bipartite or regular.

(i) H = {e, (1 3 4), (1 4 3)} and K = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
are two subgroups of alternating group A4. It is clear that V (ΓH,K) =
{(1 3 4), (1 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. Moreover d(H) = 1,
d(H,K) = 1/2 and so by Proposition 3.1 |E(Γ(H,K))| = 6. Thus Γ(H,K)

is a complete bipartite graph.

(ii) Let D12 = 〈a, b : a6 = b2 = 1, ab = a−1〉 be dihedral group of order
12, H = {1, a2, a4, ab, a3b, a5b} and K = {1, b} be its subgroups. By
a simple computation we have d(H) = 20/36, d(H,K) = 8/12 and so
Proposition 3.1 implies |E(Γ(H,K))| = 12. Moreover, ΓH,K is a 4-regular
graph, i.e. each vertex has 4 neighbours.

4. The special case K = G. Now, let us start to discuss Γ(H,K) in
special cases. In this section we denoted VG\H = V (Γ(H,G)) ∩ (G \ H) and
VH = V (Γ(H,G)) ∩H.

Lemma 4.1. Let G be a finite non-abelian group. Then Γ(H,G) is empty
graph if and only if H is abelian subgroup of G.

Theorem 4.2. Let G be a non-abelian group and Γ(H,G) be a non-empty
graph. Then Γ(H,G) is connected and diam(Γ(H,G)) = 2. Also, girth(Γ(H,G)) = 3.

Proof. Let x, y be vertices of Γ(H,G) which are not adjacent. Consider the
following three cases.

Case 1: Let x, y ∈ VG\H be not adjacent. First we claim that x, y are
not isolated vertices. Let x be an isolated vertex. Then H \ Z(H) ⊆ CG(x).
Therefore, H = 〈H \ Z(H)〉 ⊆ CG(x) and x ∈ CG(H), which is a contradiction.
Hence x is not a single vertex, as claimed.

Thus we can consider a vertex h1 ∈ H \ (Z(H)∪CG(x)) such that x joins to
h1. By similar argument there exists a vertex h2 ∈ H \ (CH(h1) ∪ CG(y)) such
that h2 joins to y. If either [h1, y] 6= 1 or [h2, x] 6= 1, then d(x, y) = 2. Otherwise
[h1, y] = [h2, x] = 1 and there exists the vertex h1h2 which is adjacent to x and
y. So d(x, y) = 2.

Case 2: Suppose x ∈ VH and y ∈ VG\H such that x and y are not-adjacent
in Γ(H,G). Assume that h′ ∈ H \ (CG(y)∪CH(x)), then h′ is adjacent to x and y
so d(x, y) = 2.

Case 3: Consider x, y ∈ VH are not-adjacent. Then there exists a vertex
h ∈ VH which is adjacent to x and y so d(x, y) = 2. Consequently, we can say
that the diam(Γ(H,G)) = 2.

Now, since ΓH is an induced subgraph of Γ(H,G) and has girth 3 (see [9]), so
the girth of Γ(H,G) is also 3.

Proposition 4.3. Let G be a finite non-abelian group and Γ(H,G) be a non-
empty regular graph. Then G = H is nilpotent of class at most 3 and also
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G = P × A, where A is an abelian group and P is a p-group (p is a prime)
and furthermore ΓP is a regular graph.

Proof. By [9], it is enough to show that H = G. Let H 6= G and {g, h}
be an edge in Γ(H,G) such that g ∈ VG\H and h ∈ VH . Since Γ(H,G) is a regular
graph, then

deg(h) = deg(g)

=⇒ |G| − |CG(h)| = |H| − |CG(H) ∪ CH(g)|
= |H| − |CG(H)| − |CH(g)|+ |CG(H) ∩ CH(g)|

=⇒ |G|+ |CG(H)|+ |CH(g)| = |H|+ |CG(h)|+ |CG(H) ∩ CH(g)|
≤ |H|+ |CG(h)|+ |CH(g)|

=⇒ |G|+ |CG(H)| ≤ |H|+ |CG(h)| ≤ |G|
2

+
|G|
2

=⇒ |G|+ |CG(H)| ≤ |G|,

which is a contradiction. Therefore G = H.
Theorem 4.4. Let H1, H2 be subgroups of non-abelian group G such that

Γ(H1,G)
∼= Γ(H2,G). Then ΓH1

∼= ΓH2.

Proof. First we claim that the vertices of H1 are mapped to the set of
vertices in H2. Assume that there exists h ∈ VH1 such that φ(h) ∈ VG\H2

, where
φ is a graph isomorphism. Thus deg(h) = deg(φ(h)) and we have

|G \ CG(h)| = |H2| \ |CG(H2) ∪ CH2(φ(h))| < |H2|.

But |G \ CG(h)| ≥ |G|/2, so |H2| > |G|/2, which is a contradiction. Therefore,
we have that vertices of H1 are mapped to the set of vertices of H2.

On the other hand, vertices of G \ H1 are mapped to the set of vertices of
G \H2. Hence restriction of φ to H1 \ Z(H1) is a graph isomorphism from ΓH1

to ΓH2 , as claimed.
Theorem 4.5. Let H be a non-abelian subgroup of G such that Γ(H,G)

∼= ΓS
for some non-abelian finite simple group S. Then H = G ∼= S.

Proof. By [12], it is enough to show that H = G. Let H 6= G and g ∈ VG\H .
Assume that φ : VΓS

→ VΓ(H,G)
is a graph isomorphism such that φ(α) = g, where

α ∈ VΓS
. Thus deg(α) = deg(g) and we have

(2) |S| − |CS(α)| = |H| − |CG(H) ∪ CH(g)|.

But |G| − |CG(H)| = |S| − 1, so |G| − |CG(H)|+ 1 = |S| and by (2) we have

|G| − |CG(H)|+ 1− |CS(α)| = |H| − |CG(H)| − |CH(g)|+ |CG(H) ∩ CH(g)|

|G| − |CS(α)|+ 1 = |H| − |CH(g)|+ |CG(H) ∩ CH(g)| ≤ |G|
2
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=⇒ |CS(α)| − 1 ≥ |G|
2
≥ |S|

2
,

which is a contradiction. Hence H = G, as required.
Theorem 4.6. Let H be a non-abelian subgroup of G such that Γ(H,G)

∼= ΓSn.
Then H = G ∼= Sn.

Proof. By similar argument of previous Theorem we can show that H = G.
Hence by main Theorem of [9], H = G ∼= Sn.
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