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ABSTRACT
Estimation of suspended sediment load is one of the important topics in river engineering. Different 
methods are used for estimating the sediment rate. In recent years, different artificial intelligence (AI) 
methods, such as artificial neural network (ANN), have been used for the estimation of sediments in 
rivers. In this research, the suspended sediment load has been studied by using regression trees (RTs) 
and model trees (MTs). The study area has been located in Hyderabad watershed in west of Iran. The 
input data included the flow discharge, sum of three days discharge, sum of five days precipitation and 
the suspended sediment discharge were considered as output in the models. The numbers of total 
data of sediment discharge was 223 records. The obtained results were compared with ANN method 
(feed forward back propagation algorithm) and sediment rating curve (SRC). Results showed that RT 
and MT outperformed ANN method in the study area. The method of SRC had high accuracy for daily 
sediment discharge less than 100 ton per day in comparison with AI models, while the AI models had 
higher accuracy for high sediment discharge. Moreover, the combination of artificial intelligent models 
had high accuracy regarding to each model lonely.

1. Introduction

Estimation of sediment transport rate is one of the basic prob-
lems in river engineering. Several empirical methods have 
been developed to solve this problem. As these methods have 
been obtained based on climatic conditions of other parts of 
the world, they have high level of errors when are used in 
rivers of Iran. One of the common methods for estimating 
the suspended load in rivers is the rating curve method in 
which the relation between flow discharge and sediment dis-
charge is presented as a power equation. In recent years, the 
methods based on artificial intelligence (AI) and machine 
learning have been used for the estimation and prediction 
of different phenomena in river engineering. The artificial 
neural network (ANN) is one of these methods that were 
used by many scientists for estimating the sediment rates 
in rivers (Abrahart and White 2001; Jain 2001; Nagy et al. 
2002; Tayfur 2002; Merritt et al. 2003; Yitian and Gu 2003; 
Cigizoglu 2004; Kisi 2004; Agarwal et al. 2005; Cigizoglu and 
Alp 2006; Cigizoglu and Kisi 2006; Cigizoglu and Alp 2007; 
Dogan et al. 2007).

Decision trees (DT) are one of the other common and 
strong tools for prediction and classification. In contrast to 
ANN, DT produces the roles. This means that DT presents 
its prediction based on the role set, while in the procedure in 
ANN is not transparent and it is like a black box. Recently, 
application of regression trees (RTs) and model trees (MTs) 
have been presented in water resource engineering field. 
Mahjoobi and Etemad-Shahidi (2008) predicted the wave 
height due to wind in Lake Michigan using RT and apply-
ing classification and regression trees (CART) algorithm. 

Ayoubloo et al. (2010) investigated the regular wave scour 
around a circular pile using regression tress (CART algo-
rithm). Moreover, Etemad-Shahidi and Mahjoobi (2009) pre-
dicted the significant wave height in Lake Superior using MT 
model and applying the M5′ algorithm. MTs have also been 
applied in rainfall–runoff modeling (Solomatine and Dulal 
2003); flood forecasting (Solomatine and Yunpeng 2004); 
modeling water-level discharge relationship (Bhattacharya 
and Solomatine 2005), sediment transport (Bhattacharya 
et al. 2007), derivation of wave spectrum (Sakhare and Deo 
2009), estimation of wind speed from wave measurements 
(Daga and Deo 2009) and prediction of suspended sediment 
load in rivers. Reddy and Ghimire (2009) applied the M5 
MT and Gene Expression Programming to predict suspended 
sediment load. They also compared the obtained results with 
sediment rating curve (SRC) and multiple linear regressions 
(MLRs) and concluded that MT gives good performance 
as compared with other used models. Etemad-Shahidi and 
Ghaemi (2011) used MT method to predict pile groups 
scour due to waves. They presented new equations using MT 
method and demonstrated that the proposed equations were 
as accurate as other soft computing methods, such as ANN 
and SVM. Bonakdar and Etemad-Shahidi (2011), predicted 
wave run-up on rubble-mound structures using M5 MT. They 
stated that the main advantage of MTs, unlike the other soft 
computing tools, is their easier use and more importantly 
their understandable mathematical rules. They showed that 
the predictive accuracy of the MT approach was superior to 
that of Van der Meer and Stam’s empirical formula. Wolfs 
and Willems (2014) developed discharge-stage curves using 
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several various approaches, i.e., single rating curves, rating 
curves with dynamic correction, ANNs and M5′ MTs. They 
showed that all abovementioned methods outperformed the 
traditional rating curve. Abolfathi et al. (2016), used M5′ DT 
algorithm to predict the wave run-up using existing labora-
tory data. They demonstrated that the M5′ MT algorithm 
had high precision in predicting the wave run-up. They also 
showed that a good agreement existed between the proposed 
run-up formulae and existing empirical relations. Zounemat-
Kermani et al. (2016) used 8-year data series from hydromet-
ric stations located in Arkansas, Delaware and Idaho (USA), 
to assess the ability of ANN and support vector regression 
(SVR) models to forecast/estimate daily suspended sediment 
concentrations and to compare the results with traditional 
MLR and SRC models. They tested three different ANN model 
algorithms, along with four different SVR model kernels. They 
showed that ANN and SVR outperformed traditional meth-
ods. Shamaei and Kaedi (2016) introduced stacking method 
to predict the suspended sediment. They used linear genetic 
programming and neuro-fuzzy methods as two successful soft 
computing methods to predict the suspended sediment. Then, 
they increased the accuracy of prediction by combining their 
results with the meta-model of neural network based on cross 
validation. The obtained results demonstrated that the stack-
ing method greatly improved root mean square error (RMSE) 
and R2 statistics compared to use of linear genetic program-
ming or neuro-fuzzy solitarily. Makarynskyy et al. (2015) used 
two numerical current and wave models in addition to AI 
technique of neural networks (ANNs) to reproduce values of 
sediment concentrations observed at two sites. They showed 
that ANN method provides accurate results. Nourani et al. 
(2016) used a two-stage modeling strategy in order to han-
dle spatio-temporal variation of SSL. At temporal stage, they 
used support vector machine (SVM) to find the nonlinear 
relationship of SSL in time domain. In spatial modeling stage, 
they used semivariogram of monthly SSL data and then they 
fitted theoretical semivariogram model to the empirical var-
iogram. The obtained results showed that the hybrid of SVM 
and Spatial statistics methods could predict and simulate SSL 
appropriately by enjoying unique features of both approaches. 

Chen and Chau (2016) used a hybrid double feedforward 
neural network (HDFNN) model for daily SSL estimation, by 
combining fuzzy pattern-recognition and continuity equation 
into a structure of double neural networks. They showed that 
HDFNN is appropriate for modeling the sediment transport 
process with nonlinear, fuzzy and time-varying characteris-
tics. Shiau and Chen (2015) developed a probabilistic esti-
mation scheme for daily and annual suspended sediment 
loads using quantile regression. They used daily suspended 
sediment load and discharge data to construct quantile-de-
pendent SRCs. Their proposed approach was applied to the 
Laonung station located in southern Taiwan. The results indi-
cated that the proposed approach provided not only the prob-
abilistic description for daily and annual suspended sediment 
loads, but also the single estimations including the mean, 
median and mode of the derived probability distribution. 
The main purpose of this research is to apply the RT model 
(CART algorithm) and MTs (M5′ algorithm) for estimating 
the suspended sediment load in Hyderabad watershed, west 
Iran. In addition, the obtained results of these two methods 
will be compared with the SRC method and ANN model (feed 
forward back propagation algorithm).

2. Materials and methods

2.1. Study area and data

This research has been done on Hyderabad watershed in 
Kermanshah province in western part of Iran (Figure 1). The 
total area of watershed is 1719 km2, mean height is 1871 m, 
maximum height 3300 m and minimum height is 1325 m. This 
watershed has been located in 47° 04′–47° 52′ longitudes and 
34° 25′–34° 52′ latitude. The main river of the watershed is the 
Jamishan permanent river. The meteorological station of the 
watershed is Hyderabad station with 47° 27′ longitude and 34° 
42′ latitude (Figure 2). The precipitation regime of the study 
area is rainy-snowy and mean annual precipitation is 420 mm 
which is mostly occurred in winter and spring. The used data 
in this research involve precipitation, flow discharge and sed-
iment discharge. The length of data period is 21 years (from 

Figure 1. The position of the study area in Iran. source: The authors.
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1985 to 2006) with the total number of 223 samples. Eighty 
percent of these data have been used for training and 20% for 
testing and evaluating the models. One of the problems that 
occur during training process is called overfitting. The error on 
the training set is driven to a very small value, but when new 
data is presented to the network the error is large. The network 
has memorized the training examples, but it has not learned 
to generalize to new situations. One of the main ways to avoid 
overfitting (or recognize if occurs) is to separate data to training 
and test data sets. The training subset is composed of 60–80% 
of all the records. The remaining records are usually used as 
test data set. Gharagheizi (2007) showed that the percent of test 
set allocated from the main data set should be between 5% and 
35%. If this percent is lower than 5%, the accuracy of the model 
over the training set is much greater than the test set. Also, if 
the percent is greater than 40%, the obtained model cannot pre-
dict the test set as well as the training set. Each record should 
be randomly chosen from the data set and placed in one of the 
two subsets. Therefore, the data were separated to training and 
test data sets using a common random method. The ranges and 
average values of water and sediment discharge for training and 
testing have been shown in Table 1.

2.2. RTs (CART algorithm)

The CART method developed by Breiman et al. (1984) gen-
erates binary DTs. CART is a nonparametric statistical meth-
odology developed for analyzing classification issues either 
from categorical or continuous dependent variables. If the 
dependent variable is categorical, CART produces a clas-
sification tree. When the dependent variable is continuous, 
it produces a RT. The CART tree is constructed by splitting 
subsets of the data set using all predictor variables to create 
two child nodes repeatedly, beginning with the entire data 
set. The best predictor is chosen using a variety of impurity 

or diversity measures. The goal is to produce subsets of the 
data which are as homogeneous as possible with respect to 
the target variable. In CART algorithm for each split, each 
predictor is evaluated to find the best cut point (continuous 
predictors) or groupings of categories (nominal and ordinal 
predictors) based on improvement score or reduction in impu-
rity (Breiman et al. 1984). Then, the predictors are compared 
and the predictor with the best improvement is selected for the 
split. The process repeats recursively until one of the stopping 
rules is triggered. RT building centers on three major com-
ponents: (1) a set of questions of the form: is X ≤ d? where X 
is a variable and d is a constant. (2) Goodness of split criteria 
for choosing the best split on a variable and (3) the generation 
of summary statistics for terminal nodes. The least-squared 
deviation (LSD) impurity measure is used for splitting rules 
and goodness of fit criteria. The LSD measure R(t) is simply 
the weighted within node variance for node t, and it is equal 
to the resubstitution estimate of risk for the node (Breiman  
et al. 1984). It is defined as:
 

 

 

where NW(t) is the weighted number of records in node t, ωi 
is the value of the weighting field for record i (if any), fi is the 
value of the frequency field (if any), yi is the value of the target 
field, and ȳ(t) is the mean of the dependent variable (target 
field) at node t. The LSD criterion function for split s at node 
t is defined as follows:
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1
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Figure 2. drainage network and hydrometry station in hydrabad watershed. source: The authors.

Table 1. ranges and average values of different parameters in training and test data sets.

Parameters

Training data set Test data set

Minimum Maximum Average Minimum Maximum Average
Water discharge (m3/s) 0.04 285.41 17.95 0.25 188.67 23.35
suspended sediment discharge (ton/day) 0.0001 215.897 2027.66 0.397 68,107.35 2696.08
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calculated by averaging the absolute difference between the 
predicted value and the actual value for each of the training 
examples that reach that node. This results in underestima-
tion of the expected error outside the calibrating data. The 
expected error is multiplied by (n + v)/(n − v), where n is the 
number of training instances that reach the node and the v 
is the number of parameters in the model that represent the 
value at that node (Wang and Witten 1997). After pruning, 
the adjacent linear models will be sharply discontinuous at 
the leaves of the pruned tree. M5 applies smoothing process 
combining the model at a leaf with the models on the path to 
the root to form the final model that is placed at the leaf. In 
the smoothing process, the estimated value of the leaf model 
is filtered along the path back to the root. At each node, that 
value is combined with the value predicted by the linear model 
for that node as follows:

 

where P′ is the prediction passed up to the next higher node, 
p is the prediction passed to this node from the below, q is the 
value predicted by the model at this node, n is the number of 
training instances that reach the node below, and k is a constant 
(Wang and Witten 1997). Experiments of Wang and Witten, 
(1997) have showed that smoothing substantially increases the 
accuracy of predictions.

2.4. ANNs and SRC

ANNs are powerful nonlinear modeling approaches based 
on the function of human brain. They can identify and learn 
correlated patterns between input data sets and target values. 
Neural networks can be described as a network of simple pro-
cessing nodes or neurons, interconnected to each other in a 
specific order, performing simple numerical manipulations 
(See and Openshaw 1999). A three-layered neural network 
is consists of several elements namely nodes. These networks 
are made up of an input layer consisting of nodes representing 

(6)P� =
np + kq

n + k

 

where R(tR) is the sum of squares of the right child node and 
R(tL) is the sum of squares of the left child node. The split s is 
chosen to maximize the value of Q(s, t). Stopping rules con-
trol how the algorithm decides when to stop splitting nodes 
in the tree. Tree growth proceeds until every leaf node in the 
tree triggers at least one stopping rule. Any of the following 
conditions will prevent a node from being split:

(1)    All records in the node have the same value for all 
predictor fields used by the model.

(2)    The number of records in the node is less than the 
minimum parent node size (user defined).

(3)    If the number of records in any of the child nodes 
resulting from the node’s best split is less than the 
minimum child node size (user defined).

(4)    The best split for the node yields a decrease in 
impurity that is less than the minimum change in 
impurity (user defined).

In RTs, each terminal node’s predicted category is the 
weighted mean of the target values for records in the node 
(ȳ(t)).

2.3. MTs (M5′ algorithm)

MTs (Quinlan 1992) are an extension of RTs in the sense that 
they associate leaves with multivariate linear models. MTs 
are a technique for dealing with continuous class problems 
that provide a structural representation of the data and a 
piecewise linear fit of the class. They have a conventional 
DT structure but use linear function at the leaves instead of 
discrete class labels (Figure 3). M5 MTs were first introduced 
by Quinlan (1992), and then, the idea was reconstructed and 
improved in a system called M5′ by Wang and Witten, (1997). 
An M5′ MT is an effective learning method for predicting real 
values. M5′ MT algorithm first constructs a RT by recursively 
splitting the instance space. The splitting criterion is used 
to minimize the intrasubset variability in the values down 
from the root through the branch to the node. The variabil-
ity is measured by the standard deviation of the values that 
reach that node from the root through the branch with cal-
culating the expected reduction in error as a result of testing 
each attribute at that node. The attribute that maximizes the 
expected error reduction is chosen. The splitting stops if the 
values of all instances that reach a node vary slightly or only 
a few instances remain. The standard deviation reduction 
(SDR) is calculated by:
 

where T is the set of examples that reach the node, Ti is the 
sets that are resulted from splitting the node according to the 
chosen attribute and SD is the standard deviation (Wang and 
Witten 1997). After the tree has been grown, M5′ computes 
a linear multiple regression model for every interior node. 
The data associated with that node and only the attributes 
tested in the subtree rooted at that node are used in the regres-
sion. The attributes will be dropped one by one if they lower 
the estimated error. Then the tree is pruned from the leaves 
if that results in a lower expected estimated error. In Wang 
and Witten, (1997)’s implementation, the expected error is 

(4)Q(s, t) = R(t) − R(t
L
) − R(t

R
)

(5)SDR = sd(T) −
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||Ti
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Figure 3. MT used to split input space (Xi: inputs, lMi: linear model).



ISH JOURNAL OF HYDRAULIC ENGINEERING   5

difference with respect to mean observation. The best value 
for SR is zero.

3. Results and discussion

By using the training data (178 data), RT (CART algorithm) 
and MT (M5′ algorithm) were built. The used input data are 
including the water instantaneous discharge (related flow dis-
charge with sediment discharge), cumulative water discharge 
(3 days) and cumulative rainfall (5 days). The suspended sed-
iment has also been considered as the output data. The devel-
oped tree and produced laws by using M5′ algorithm are shown 
in Figure 4. As the figure shows, the produced branches and 
laws are only based on sediment discharge and cumulative 
3 days discharge. This means that the cumulative 5 days precip-
itation has the less important level. After applying the MT and 
RT, the obtained results have been compared with the results 
of ANN model (feed forward back propagation algorithm) and 
SRC. Deo et al. (2001) implied that any nonlinear mathemat-
ical dependency structure can be approximated using a three 
layered feed-forward neural network. To prevent overfitting 
during the training of the ANN, the number of nodes of the 
hidden layer was chosen using expression given by Huang and 
Foo (2002):
 

where M and Z are number of the nodes in hidden and input 
layers, respectively. The number of the neurons of the input and 
output layers were 3 and 1, respectively. One hidden layer with 
seven neurons was found to be the best topology.

Table 2 shows the values of statistical indices for the differ-
ent models. As can be seen, the RMSE, SI and MAE param-
eters in CART algorithm have the least values. This means 
that for estimating the suspended sediment load, the accuracy 
of RTs and MTs is more than ANN model. The least value 
of Dr is related to SRC. Although R value for ANN and MT 
is 0.99, but other error indices are high, the R index is not 
good criteria for judgment. It should be mentioned that the R 
value can be 1 with 100% error; for instance, if the obtained 
value of ANN is two times of observed values (100% error 
in prediction), the R value will also be 1. Figure 5 shows the 
SRC for training data. Using the obtained equation, the sed-
iment values for test data have been computed and have been 
compared with the observed data. These results are shown 
in Table 2.

The comparison of predicted and observed values of sus-
pended load in ANN, M5′ and CART models are shown in 
Figures 6–8, respectively. To evaluate the behavior of the used 
models in low and high values of sediment load, the error 
indices were computed for values less than 100, 100–1000 and 
more than 1000 ton/day. The obtained results are presented in  
Table 3. As can be seen in Figure 6, the CART algorithm under-
estimates the suspended load when this rate is more than 1000 
ton/day. For instance, the value of 68,107 ton/day has been esti-
mated equal to 17,383 ton/day (0.25 of real value). Moreover, 
this algorithm overestimates the suspended load when the 
value lies between 1000 and 10,000 ton/day as the observed 
value of 7476 ton/day has been estimated equal to 19,046 ton/
day (almost 2.5 times more). The sediment rate more than 
10,000 ton/day has been overestimated (two times more) by 
M5′ algorithm and ANN model. The SRC also underestimates 
the sediment rate more than 10,000 ton/day (0.4 times of real 

(13)M ≤ 2Z + 1

different input variables, the hidden layer consisting of many 
hidden nodes and an output layer consisting of output var-
iables (Haykin 1999). ANN is widely applied in hydrology 
and water resource studies as a forecasting tool. Feed-forward 
neural networks are applied successfully in many different 
problems. This network architecture and the corresponding 
learning algorithm can be viewed as a generalization of the 
popular least-mean-square algorithm (Haykin 1999). Several 
training algorithms, such as Gradient descent with momen-
tum and adaptive learning rate back-propagation (GDX), 
Levenberg–Marquardt (LM) and Bayesian regularization, 
were used in this study to train the networks. The associa-
tion between rate of sediment discharge and rate of water 
discharge at a cross section of a stream is frequently expressed 
by an average curve. This curve is the SRC. It has been widely 
used in the computation of average sediment discharge from 
water discharge for periods when sediment samples were not 
collected.

Equation (7) provides the power relationship between the 
sediment load Qs (t/d) and discharge Q (m3/s), where α is the 
rating coefficient (t sβd−1 m−3β) and β is the rating exponent 
(dimensionless).

 

The rating curve parameters, α and β, are each influenced by 
different physical processes; α represents an index of soil erod-
ibility (Horowitz 2003), while β is influenced by river erosive 
and transport power (Heng and Suetsugi 2014).

2.5. Evaluation criteria

For statistical comparison of predicted and observed values dis-
crepancy ratio (Dr), correlation coefficient (R), RMSE, scatter 
index (SI) and mean absolute error (MAE) were used. These 
statistical measures are defined as follows:
 

 

 

 

 

In all formulas, xi is an observed value, yi is a predicted value 
and n is the number of observations, finally, x̄ is the mean of 
x and ȳ is the mean of y. R can be between −1 and 1. Zero 
indicates no relationship. +1 indicates a perfect positive rela-
tionship and −1 indicates a perfect negative linear relationship. 
The best value for Dr is one. Higher and lower values show that 
the observed and estimated values are far from each other. The 
best value for MAE and RMSE is zero. The higher values show 
the higher amounts of error. It presents the amount of RMS 
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of tree model. The obtained results by computing the error 
parameters have been shown in Table 3. As it is shown, the 
accuracy of geometric average model is more than each model 
individually.

value). For example, the observed value of 68,107 has been 
estimated equal to 7990 ton/day (0.12 time of real value). As  
Table 3 shows, the SRC method has higher accuracy in com-
parison with the AI models for sediment discharge less than 
100 ton/day, and for sediment discharge more than 100 ton/
day, the CART algorithm has more accuracy than the other 
models (Figure 9).

To obtain the high accuracy, the geometric average of out-
puts of AI models (committee model) can be used as 
follows: 

where Oc is output of committee model, OANN is output of ANN 
model, ORT is the output of RT model and OMT is the output 

(14)O
c
=

3

√(
O

ANN
× O

RT
× O

MT

)

Q is the water instantaneous discharge (related flow discharge with sediment discharge)

Q* is cumulative water discharge (3 days)

LM number: 1 

LM number: 5

LM number: 1 

Suspended Sediment load = 66.0161

LM number: 2 

Suspended Sediment load = 613.6267

LM number: 3 

Suspended Sediment load = 3709.9866

LM number: 4 

Suspended Sediment load = 1202.3245

LM number: 5 

Suspended Sediment load = 1169.3744 × Q - 192.1979 × Q* - 39185.7346

Q (m3/s)

<=28.175 >28.175

>64.555<=64.555

LM number

<=111.05 >111.05

Q (m3/s)

/s)m3(*  Q

/s)3Q (m

LM number: 2 LM number: 3

<=32.98 >32.98

Figure 4. MT generated by M5′ algorithm, lM is linear model and Q is water discharge and Q* is sum of 3 days water discharge.
notes: Q is the water instantaneous discharge (related flow discharge with sediment discharge); Q* is cumulative water discharge (3 days).

Table 2. The statistical measures for the different methods (for test data set).

Method RMSE SI (%) R MAE D̄r

carT 7952 294.94 0.75 1958.3 4.44
MT 10,773.2 399.59 0.99 2545.3 37.43
ann 13,831 513.002 0.99 2929.3 37.5
src 9530.36 353.49 0.91 2227.48 2.3

Figure 5. The src for training data.
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SRC method underestimates the suspended sediment load. This 
means that AI models have high accuracy in comparison with 
SRC method for high discharges. Therefore, as in most problems 
in river engineering, the peak discharge has more importance; 
the AI models (like RT and MT) are more applicable. Moreover, 
results showed that by using the combination of outputs of AI 
models (geometric average of outputs); more accurate results 
can be obtained rather than each model separately.

Disclosure statement
No potential conflict of interest was reported by the authors.

4. Conclusions

In this research, the accuracy of RTs and MTs for predicting the 
suspended sediment load have been investigated in Hyderabad 
watershed in west of Iran (Jamishan river). The obtained results 
have compared with results of ANN model (feed forward back 
propagation algorithm) and SRC method. The results showed 
that the accuracy of RT and MT were more than the ANN 
model. Comparison of different methods of AI and SRC meth-
ods indicated that the SRC method has more accuracy for esti-
mating the sediment load when the sediment discharge is less 
than 100 ton/day, while for values more than 100 ton/day; the 

Figure 6.  comparison between observed and predicted suspended sediment 
load by carT model for test data set.

Figure 7.  comparison between observed and predicted suspended sediment 
load by MTs for test data set.

Figure 8.  comparison between observed and predicted suspended sediment 
load by ann model for test data set.

Figure 9.  comparison between observed and predicted suspended sediment 
load by src for test data set.

Table 3. Error statistics of suspended sediment load by carT, M5′, ann, src and committee algorithms in different suspended sediment load ranges.

Method Suspended sediment load ranges (qs) Number of data RMSE SI (%) MAE D̄r

carT algorithm 0 < qs ≤ 100 29 403.14 2671.36 131.7 6.11
100 < qs ≤ 1000 7 360.7 158 271 1.49
qs > 1000 9 17,763.6 134 9156.6 1.35

M5′ algorithm 0 < qs ≤ 100 29 305.4 2023.7 130.7 57.2
100 < qs ≤ 1000 7 289.9 127 232.9 1.42
qs > 1000 9 24,081.2 181.7 12,124.2 1.68

ann 0 < qs ≤ 100 29 370.18 2452.95 161.86 57.25
100 < qs ≤ 1000 7 240.2 105.2 183.68 2.03
qs > 1000 9 30,919.1 233.27 13,982 1.55

sediment rating curve 0 < qs ≤ 100 29 291.7 1933.29 91.59 3.01
100 < qs ≤ 1000 7 266.7 116.8 235.9 1.8
qs > 1000 9 21,302 160.7 10,658.8 0.4

committee model 0 < qs ≤ 100 29 318.4 2109.7 105.7 21.05
100 < qs ≤ 1000 7 196.2 85.96 136.3 1.3
qs > 1000 9 3885.4 29.3 2536.9 1.37



8   A. TALEBI ET AL.

Horowitz, A.J. (2003). “An evaluation of sediment rating curves for 
estimating suspended sediment concentrations for subsequent flux 
calculations.” Hydrol. Process, 17(17), 3387–3409.

Huang, W., and Foo, S. (2002). “Neural network modeling of salinity 
variation in Apalachicola river.” Water Res., 36, 356–362.

Jain, S.K. (2001). “Development of integrated sediment rating curves using 
ANNs.” J. Hydraul. Eng., 127(1), 30–37.

Kisi, O. (2004). “Multi-layer perceptrons with Levenberge–Marquardt 
training algorithm for suspended sediment concentration prediction 
and estimation.” Hydrol. Sci. J., 49(6), 1025–1040.

Mahjoobi, J., and Etemad-Shahidi, A. (2008). “An alternative approach for 
the prediction of significant wave heights based on classification and 
regression trees.” Appl. Ocean Res., 30, 172–177.

Makarynskyy, O., Makarynska, D., Rayson, M., and Langtry, S. (2015). 
“Combining deterministic modelling with artificial neural networks 
for suspended sediment estimates.” Appl. Soft Comput., 35, 247–256.

Merritt, W.S., Letcher, R.A., and Jakeman, A.J. (2003). “A review of erosion 
and sediment transport models.” Environ. Model. Softw., 18(8–9), 
761–799.

Nagy, H.M., Watanabe, K., and Hirano, M. (2002). “Prediction of sediment 
load concentration in rivers using artificial neural network model.” 
 J. Hydraul. Eng., 128(6), 588–595.

Nourani, V., Alizadeh, F., and Roushangar, K. (2016). “Evaluation of a  
two-stage SVM and spatial statistics methods for modeling  
monthly river suspended sediment load.” Water Resour. Manage., 30(1), 
393–407.

Quinlan, J.R. (1992). “Learning with continuous classes.” Proceedings of 
the Fifth Australian Joint Conference on Artificial Intelligence, World 
Scientific, Singapore, 343–348.

Reddy, M.J., and Ghimire, B.N.S. (2009). “Use of model tree and gene 
expression programming to predict the suspended sediment load in 
rivers.” J. Intell. Syst., 18(3), 211–227.

Sakhare, S., and Deo, M.C. (2009). “Derivation of wave spectrum using 
data driven methods.” Mar. Struct., 22, 594–609.

See, L., and Openshaw, S. (1999). “Applying soft computing approaches 
to river level forecasting.” Hydrol. Sci. J., 44, 763–778.

Shamaei, E., and Kaedi, M. (2016). “Suspended sediment concentration 
estimation by stacking the genetic programming and neuro-fuzzy 
predictions.” Appl. Soft Comput., 45, 187–196.

Shiau, J.T., and Chen, T.J. (2015). “Quantile regression-based probabilistic 
estimation scheme for daily and annual suspended sediment loads.” 
Water Resour. Manage., 29(8), 2805–2818.

Solomatine, D.P., and Dulal, K.N. (2003). “Model trees as an alternative to 
neural networks in rainfall – runoff modelling.” Hydrol. Sci. J., 48(3), 
399–411.

Solomatine, D.P., and Yunpeng, X. (2004). “M5 model trees and neural 
networks: application to flood forecasting in the upper reach of the 
Huai River in China.” J. Hydrol. Eng., 9(6), 491–501.

Tayfur, G. (2002). “Artificial neural networks for sheet sediment transport.” 
Hydrol. Sci. J., 47(6), 879–892.

Wang, Y., and Witten, I.H. (1997). “Induction of model trees for predicting 
continuous lasses.” Proceedings of the Poster Papers of the European 
Conference on Machine Learning, University of Economics, Faculty of 
Informatics and Statistics, Prague.

Wolfs, V., and Willems, P. (2014). “Development of discharge-stage curves 
affected by hysteresis using time varying models, model trees and 
neural networks.” Environ. Model. Softw., 55, 107–119.

Yitian, L., and Gu, R.R. (2003). “Modeling flow and sediment transport 
in a river system using an artificial neural network.” Environ. Manage., 
31(1), 122–134.

Zounemat-Kermani, M., Kişi, Ö., Adamowski, J., and Ramezani-
Charmahineh, A. (2016). “Evaluation of data driven models for river 
suspended sediment concentration modeling.” J. Hydrol., 535, 457–472.

References
Abolfathi, S., Yeganeh-Bakhtiary, A., Hamze-Ziabari, S.M., and Borzooei, 

S. (2016). “Wave runup prediction using M5′ model tree algorithm.” 
Ocean Eng., 112, 76–81.

Abrahart, R.J., and White, S.M. (2001). “Modelling sediment transfer in 
Malawi: comparing backpropagation neural network solutions against 
a multiple linear regression benchmark using small data sets.” Phys. 
Chem. Earth Part B, 26(1), 19–24.

Agarwal, A., Singh, R.D., Mishra, S.K., and Bhunya, P.K. (2005). “ANN-
based sediment yield models for Vamsadhara river basin (India).” 
Water SA, 31(1), 95–100.

Ayoubloo, M.K., Etemad-Shahidi, A., and Mahjoobi, J. (2010). “Evaluation 
of regular wave scour around a circular pile using data mining 
approaches.” Appl. Ocean Res., 32(1), 34–39.

Bhattacharya, B., Price, R.K., and Solomatine, D.P. (2007). “Machine 
learning approach to modeling sediment transport.” J. Hydraul. Eng., 
133(4), 440–450.

Bhattacharya, B., and Solomatine, D.P. (2005). “Neural networks and 
M5 model trees in modelling water level–discharge relationship.” 
Neurocomputing, 63, 381–396.

Bonakdar, L., and Etemad-Shahidi, A. (2011). “Predicting wave run-up 
on rubble-mound structures using M5 model tree.” Ocean Eng., 38, 
111–118.

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). 
“Classification and regression trees.” Wadsworth Statistical Press, 
Belmont, CA.

Chen, X.Y., and Chau, K.W. (2016). “A hybrid double feedforward neural 
network for suspended sediment load estimation.” Water Resour. 
Manage., 30(7), 2179–2194.

Cigizoglu, H.K. (2004). “Estimation and forecasting of daily suspended 
sediment data by multi-layer perceptrons.” Adv. Water Resour., 27, 
185–195.

Cigizoglu, H.K., and Alp, M. (2006). “Generalized regression neural 
network in modelling river sediment yield.” Adv. Eng. Softw., 37, 63–68.

Cigizoglu, H.K., and Alp, M. (2007). “Suspended sediment load simulation 
by two artificial neural network methods using hydro meteorological 
data.” Environ. Model. Softw., 22, 2–13.

Cigizoglu, H.K., and Kisi, O. (2006). “Methods to improve the neural 
network performance in suspended sediment estimation.” J. Hydrol., 
317, 221–238.

Daga, M., and Deo, M.C. (2009). “Alternative data-driven methods to 
estimate wind from waves by inverse modeling.” Nat. Hazards, 49, 
293–310.

Deo, M.C., Jha, A., and Chaphekar, A.S. (2001). “Neural networks for wave 
forecasting.” Ocean Eng., 28, 889–898.

Dogan, M., Yüksel, I., and Kisi, O. (2007). “Estimation of total sediment 
load concentration obtained by experimental study using artificial 
neural networks.” Environ. Fluid Mech., 7, 271–288.

Etemad-Shahidi, A., and Ghaemi, N. (2011). “Model tree approach for 
prediction of pile groups scour due to waves.” Ocean Eng., 38, 1522–
1527.

Etemad-Shahidi, A., and Mahjoobi, J. (2009). “Comparison between M5′ 
model tree and neural networks for prediction of significant wave 
height in Lake Superior.” Ocean Eng., 36(15–16), 1175–1181.

Gharagheizi, F. (2007). “QSPR analysis for intrinsic viscosity of polymer 
solutions by means of GA-MLR and RBFNN.” Comput. Mater. Sci., 
40, 159–167.

Haykin, S. (1999). Neural networks: a comprehensive foundation, 2nd edn. 
Prentice-Hall, Englewood Cliffs, NJ.

Heng, S., and Suetsugi, T. (2014). “Comparison of regionalization 
approaches in parameterizing sediment rating curve in ungauged 
catchments for subsequent instantaneous sediment yield prediction.” 
J. Hydrol., 512, 240–253.


	Abstract
	1. Introduction
	2. Materials and methods
	2.1. Study area and data
	2.2. RTs (CART algorithm)
	2.3. MTs (M5′ algorithm)
	2.4. ANNs and SRC
	2.5. Evaluation criteria

	3. Results and discussion
	4. Conclusions
	Disclosure statement
	References



