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Abstract. In this paper, a numerical solution of the Navier-Stokes equations is considered
using the Jameson method in the transonic ow regime over three air gun pellets. The
considered pellets have the same caliber of 4.5 mm, but di�erent nose shapes; they are
axisymmetric projectiles of three basic types, namely wadcutter, sharp pointed, and round-
nose. After these pellets have been modeled geometrically, the Navier-Stokes equations
as the governing equations of the ow �eld around the pellets are solved. Computed
aerodynamic results have been used in order to analyze the trajectories of the projectiles,
dynamically. The variation of the drag coe�cient by Mach number of the free stream ow,
which is a key point for the dynamic analysis of the projectile motion, has been obtained.
The dynamic analysis of the motion of pellets precisely describes the trajectory and how
the velocity of the pellet and the altitude slump with time and location. Relying on these
analyses, from both aerodynamic and dynamic points of view, the round-nose pellet in a
variable range of Mach numbers shows the best aerodynamic and dynamic behaviors in
comparison with other pellets.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

One of the most practical topics in aerodynamics is
the analysis of the motion of a projectile, which entails
calculating a variety of aerodynamic and dynamic
parameters. Having analyzed a reacting M864-base
bleed projectile using Navier-Stokes computations in
1995, Nietubicz and Gibeling investigated the impact
of the thrust force on velocity vectors in the wake
area at Mach numbers of less than 1 to about 3,
and eventually predicted the missile trajectory accu-
rately [1]. Silton used Navier-Stokes computations for a
spinning projectile from subsonic to supersonic speeds
in di�erent angles of attack in order to anticipate the
inuence of whirling on the uid ow [2]. Sahu blended
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the Computational Fluid Dynamics (CFD) with Rigid
Body Dynamics (RBD) and could successfully simulate
the trajectory of several projectiles and missiles with
and without rotational movements in unsteady condi-
tions [3]. Weinacht, who had already solved the Navier-
Stokes for predictions of pitch damping of axisymmetric
projectiles [4], cooperated with Siltonin to show the
e�ect of riing grooves on the performance of small-
caliber ammunition [5]. They further cooperated with
De Spirito in a numerical-experimental work using a
wind tunnel, which resulted in explaining how forces
and momentums due to the spinning of the projectile
a�ect its dynamic stability [6]. Some years later,
Sahu described a computational study undertaken to
compute the unsteady free ight aerodynamics of a
spinning projectile across the speed regime from sub-
sonic to supersonic speeds using an advanced coupled
CFD/RBD technique. The CFD part of his work used
an unstructured time-accurate Navier-Stokes compu-
tational technique. The coupled CFD/RBD method
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allowed time-accurate virtual y-out simulations of
projectiles and simultaneously predicted the aerody-
namics and ight dynamics in an integrated manner [7].
Then, Sahu and Heavey used both steady-state CFD
and coupled CFD/RBD techniques to compute the
aerodynamics associated with the free ight of the
�nned projectile both with and without the micro
aps. Navier-Stokes computations were performed and
steady-state solutions were obtained from subsonic to
supersonic speeds. Computed results of their work
showed that the micro aps were ine�ective at tran-
sonic speeds and e�ective at supersonic velocities [8].
Amitesh Kumar et al. numerically studied the ow
around a conical nose with rounded tail projectile for
subsonic, transonic, and supersonic ow regimes. It
was observed that rounded tail was a better option than
boat tail so far as drag force was concerned [9].

In this paper, the aerodynamic and dynamic
analysis of the three common projectiles of air guns,
which have not been reported before, has been carried
out numerically. The considered projectiles are of basic
types, namely a wadcutter, a sharp pointed, and a
round-nose pellet, respectively. To achieve this point,
after geometrically simulating the pellets, the Navier-
Stokes equations as the governing equations of the ow
�eld around the pellets were solved. The e�ect of
geometry of the pellets on parameters such as drag and
pressure was investigated. Furthermore, the obtained
results were used in the numerical solution of a system
of ordinary di�erential equations as the governing
dynamic equations of the motion of projectile. In this
way, the trajectory and the velocity of the pellets were
predicted.

2. Simulating the geometry of pellets

The �rst step of the analysis is to simulate the geometry
of the pellets. Here, the simulation process has been

Figure 1. The considered 4.5 mm-caliber: (a) Wadcutter;
(b) sharp pointed; and (c) round-nose.

Figure 2. Fitting curves to the geometry of the (a) 1st
pellet, (b) 2nd pellet, and (c) 3rd pellet.

carried out with the aid of a digital camera. Some
precise photographs have been taken using the super-
macro photographic mode of the camera in a bright
environment in order to increase the quality of the
taken photos (Figure 1). Afterwards, the geometry of
the pellets has been precisely �tted with some lines
and curves, which is indicated in Figure 2. Next, all
required coordinates specifying the pellet geometries
have been extracted with the aid of a digitizer software
application. Finally, the dimensions of the pellets
have been measured by a caliper with �0.01 mm of
resolution and the pellets have been weighed by a
digital weighing scale with an accuracy of �0.1 g to �nd
out the density of the pellets (Table 1). The resulting
plot of the pellets is depicted in Figure 3.

3. Meshing of the solution domain

One of the most common methods of grid generation
is the elliptic method. In this method, both physical
boundary of the pellet body and an outer boundary
including the pellet should be de�ned.

The outer boundary speci�es the region in which

Table 1. The physical measurements of the pellets.

Schematic Pellet Name Length
(mm)

Caliber
(mm)

Mass
(g)

1st pellet Wadcutter 5.00 4.50 0.5

2nd pellet Sharp pointed 7.00 4.50 0.6

3rd pellet Round-nose 6.50 4.50 0.5
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Figure 3. The plot of the (a) 1st pellet, (b) 2nd pellet, and (c) 3rd pellet.

Figure 4. Meshing of the solution domain.

the uid ow should be solved. This domain, as shown
here, is de�ned as a circular area around the body with
a radius 15 times larger than an imaginary radius of
the projectile including 377 by 60 grid points. Since
the uid ow is viscous, the cells which are close to
the body have been more compressed to capture the
boundary layer e�ect precisely. The generated grid
in the solution domain for the �rst pellet is shown in
Figure 4.

4. Governing aerodynamic equations

In order to analyze the pellets aerodynamically, two-
dimensional axisymmetric compressible Navier-Stokes
equations have been numerically solved in a cylindrical
coordinate system (x; r; �) using the explicit Jameson
method. This scheme uses central di�erencing which is
formally of second-order accuracy in space [10-12]. The
governing equations of the uid ow can be written as:

@W
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+Hv; (1)

W is a dependent variables; Ei and Fi are convective

ux vectors, and Hi is an inviscid source term; they
are de�ned as:
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In addition, Ev and Fv are viscous ux vectors, and Hv
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where � and P are the local dimensionless density and
pressure, respectively. �xx, �rr, and ��� are normal
stresses; �xr and �rx are shear stresses; and e is the
summation of internal and kinetic energy for the mass
unit of uid which can be obtained from the following
expression:

e =
P

�( � 1)
+

1
2

(u2 + v2); (9)

where  = Cp=Cv. Here, the terms CP and Cv are
the speci�c heat constants for constant pressure and
constant volume processes, respectively. Besides, the
dimensionless normal and shear stresses are:

�xx =
2
3

�
Re1

�
2
@u
@x
� @v
@r
� v
r

�
; (10)

�rr =
2
3

�
Re1

�
2
@v
@r
� @u
@x

+
v
r

�
; (11)

��� =
2
3

�
Re1

�
@u
@x

+
@v
@r
� 2

v
r

�
; (12)

�xr = �rx =
�

Re1

�
@u
@r

+
@v
@x

�
; (13)

where Re1 is Reynolds number of the free-stream ow
de�ned as follows:

Re1 =
�(M1C)D

�
; (14)

where M1 is the Mach number of free stream ow, C is
the speed of sound, and D is the diameter of the pellet
which equals its caliber. � is the dynamic viscosity of
ambient air, which with the assumption of the ideal
gas for surrounding air may be evaluated using the
Sutherland's formula [13]. Moreover, the dimensionless
heat uxes in Eqs. (4)-(6) and (4)-(7) are described as:

qx = � �
Re1( � 1)M21Pr

@T
@x

; (15)

qy = � �
Re1( � 1)M21Pr

@T
@r

; (16)

where Pr is the Prandtl number and T is the local
dimensionless temperature. The parameter T can be
expressed as:

T = M21
P
�
: (17)

The governing unsteady aerodynamic equations are
always hyperbolic regardless of the ow regime. There-
fore, the Jameson's time-marching technique has been
applied to the computations in order to achieve steady-
state solution for each ight Mach number as the input

boundary condition; beginning with guessed initial ow
distributions, the unsteady equations are integrated in
time until the solution becomes independent of time
and can be taken as the steady-state solution. Con-
sequently, the average rate of global change of density
residual throughout the calculation domain is used as
the convergence criterion of the numerical solution.
This is a commonly used criterion in computational
uid dynamics and is de�ned as:

Rerror =
1

Nnode�t

24sX
ij

(��2
ij)

35 ; (18)

where Nnode is the total number of nodes, and �� is
the change in density in two successive steps. The
calculation can be regarded as converged when Rerror <
0:01% [10,14,15]. The time spent for solving the
Navier-Stokes equations for a speci�c Mach number is
about �ve minutes using an Intel® CoreTM 2 Duo CPU
2.53 GHz.

5. Governing dynamic equations

The governing dynamic equations have been considered
for the purpose of obtaining the trajectory of the
pellets. These equations are derived using Newton's
second law of motion along the normal and tangent
directions of the trajectory path. The kinetic diagram
of the pellet motion is shown in Figure 5.

The position vector of the projectile can be
written as:

~r = x̂� + zk̂; (19)

where x and z are the horizontal and vertical compo-
nents of the position vector, respectively. Also, �̂ and k̂
are unit vectors along x and z directions in of the given
order. Two consecutive derivatives of ~r give velocity
and acceleration vectors as:

~v = ~_r = _x̂� + _zk̂; (20)

~a = ~�r = �x̂� + �zk̂: (21)

Figure 5. The kinetic diagram of the projectile's motion.
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Besides, the drag force ~FD is proportional to the
projectile velocity, but opposite to the direction of
motion. Therefore, it can be expressed as:

~FD = �
�

1
2
CD�1v2AP

�
êt; (22)

where CD is the drag coe�cient, �1 is the density of
free stream ow, v is the magnitude of velocity vector
~v, AP is the platform area of the projectile, and êt =
~vj~vj is the tangential unit vector. Applying Newton's
second law gives:

�mgk̂�CD�1v2AP
2

 
_x̂�+ _zk̂p
_x2+ _z2

!
=m

�
�x̂� + �zk̂

�
:
(23)

Thus:8<:m�x = �CD�1AP2 _x2
p

1 + ( _z= _x)2

m�z = �mg � CD�1AP
2 _x _z

p
1 + ( _z= _x)2;

(24)

wherem is the projectile mass and g is the gravitational
acceleration. The term ( _z= _x)2 has an in�nitesimal
value and hence is negligible. The following initial con-
ditions are assumed for the above system of di�erential
equations:8>>>>>><>>>>>>:

_x(0) = v0

_z(0) = 0

x(0) = 0

x(0) = 0

(25)

where v0 is the initial velocity of the air gun pellet.
In this paper, the system of di�erential equations

(Eqs. (5) and (6) has been solved using fourth-order
Runge-Kutta method [16]. As is evident, the system of
equations involves the drag coe�cient CD which itself is
a function of Mach number. A table of CD versus M1
values has been provided by solving the governing aero-
dynamic equations at various Mach numbers. Thus,
the dynamic analysis of the pellet motion at each time-
step essentially depends on the aerodynamic results;
however, since the drag coe�cient CD = CD(M1)
is not available as an explicit function, utilizing an
interpolation method, like linear regression, between
the available CD values from the above mentioned
CD �M1 table is inevitable.

6. The validation of numerical solution

Before proceeding further, the numerical solution
should be validated. Therefore, the uid ow over a
particular projectile has been solved using the Jameson
method and the obtained results have been compared

Figure 6. The validation of the numerical solution.

with both the numerical results of Pasandideh Fard
and Srinivas [17] and the experimental data reported
by Lin and Chieng [18]. Comparison of results is
illustrated in Figure 6. As can be clearly seen, there
is a proper agreement between the numerical solution
and the experimental data.

7. Aerodynamic results and discussions

In this section, the numerical solution of the Navier-
Stokes equations is elaborated, which includes the
analysis of the streamlines, the drag and pressure
coe�cients together with the Mach and pressure con-
tours.

The streamlines of the ow �eld over all pellets
at di�erent Mach numbers (M < 1;M = 1;M > 1)
are shown in Figure 7. The wake area, which is
generated in the downstream right behind the pellets,
is a low-pressure region. Since at a particular Mach
number, the wake area of the �rst, second, and third
pellets becomes smaller, these projectiles are respec-
tively subjected to a smaller pressure drag force during
their ight in a transonic ow. On the other hand,
as can be inferred from the �gure, the wake area
of a certain pellet decreases with increase in Mach
number; however, investigating uid ow parameters
reveals that the more the Mach numbers are, the less
the pressure values are in the wake area. Hence,
the pressure drag force increases as Mach number
rises, because the ow �eld experiences more pressure
di�erences between the upstream and downstream at
higher Mach numbers.

The drag coe�cient CD versus Mach number is
shown in Figure 8. Inasmuch as the acting drag force on
the pellet is de�ned as product of dynamic pressure and
the drag coe�cient, the CD diagram con�rms what was
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Figure 7. The streamlines at (a) M1 = 0:7, (b) M1 = 1:0, and (c) M1 = 1:3.

Figure 8. The drag coe�cient CD versus Mach number.

already concluded from the analysis of the reduction
e�ect of the wake area on the pellets.

The pressure coe�cient is de�ned as:

CP =
P � P1

�1(M1C)2AP =2
; (26)

where P and P1 are local and atmospheric pressure,
respectively. Also, �1 is the density of free stream
ow and C is the speed of sound. The diagram of
pressure coe�cient CP at di�erent Mach numbers is
shown in Figure 9. Since the dynamic pressure for all
pellets remains constant at a certain Mach number,

any changes in the CP diagram would be due to the
variation of the static pressure. Thus, the sudden
slump of the CP at the front side of the �rst pellet
in comparison with those of the other ones indicates
a signi�cant di�erence between P and P1 in this
area, which signi�es that the streamlines become close
together and cause a speed growth from the front
stagnation point to a maximum value at the edges.
Again, such a steep gradient veri�es that the �rst pellet
is faced with a situation at which the acting pressure
drag is more than those of the others. As a result,
a steep slope in front of a projectile causes noticeable
pressure drag.

Furthermore, CP has a positive value up to the
front stagnation point, where P is greater than P1,
causing the uid ow to stagnate at this region. In
contrast, the pressure gradient is reversed after the
stagnation point and the ow velocity increases up
to the minimum point of the CP diagram, where
the ow experiences its maximum velocity. This can
also be seen in Figure 10, indicating Mach number
contours at M1 = 0:7 around the �rst pellet. At
this Mach number, the minimum point of the CP
diagram occurs just before x = 0:4 mm, which is
coincident with the maximum velocity of the uid
ow as depicted in the �gure. In addition, Figure 7
illustrates the variation of the ow velocity too. As
can be noticed, the distance between streamlines is
considerably reduced just after the stagnation point,
which proves the previous analyses. Many number
contours around the pellets at M1 = 1:0 are shown
in Figure 11 to clarify more this issue.
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Figure 9. Pressure coe�cients at M1=0.7, 1.0, 1.3 for the (a) 1st pellet, (b) 2nd pellet, and (c) 3rd pellet.

Figure 10. The Mach number contours around the
maximum velocity point at M1 = 0:7.

Finally, the pressure contours shown in Figure 12
are considered. The wake area, as a low-pressure region
located behind the pellet, can be distinctly identi�ed.
As is evident, the minimum pressure contour level
occurs around the maximum velocity point.

8. Dynamic results and discussions

In this section, the solution of the system of di�erential
equations (Eqs. (5) and (6)) as the governing equations
of the motion of pellets, is considered for the �rst 25
meters of their path in order to examine the trajectory,
Mach reduction, momentum changes, and the time at
which the projectile travels a speci�c distance.

The trajectories of the �rst pellet at various initial
Mach numbers (M0) are shown in Figure 13. As

is expected, the deviation of the trajectory from a
horizontal line decreases with increase in M0. Here,
the altitude change is considered at three initial Mach
numbers of 0.7, 1.0, and 1.3 to cover the whole range
of the transonic ow. The altitude change amount
at M0 = 1:0 is taken as a reference value. As can
be seen, the di�erence between the reference value
and that of M0 = 0:7 is more than the di�erence in
case of M0 = 1:3, which suggests that the altitude
change would be more salient at lower initial Mach
numbers.

In addition, the velocity loss of the �rst pellet
at various initial Mach numbers in the �rst 25 meters
of trajectory is shown in Figure 14. As this diagram
illustrates, the distance is traveled faster at higher
initial Mach numbers. It is worthy of note that the
di�erence between initial and �nal velocities of the
pellet is quite more than those of the lower initial Mach
numbers. Obviously, this result is consequential where
the �nal momentum of the pellet is the point that we
are interested in.

The Mach reduction of all pellets during the �rst
25 m of their path is depicted in Figure 15. Although
the CD diagram of the pellets indicates that the third
pellet has the minimum amount of the drag coe�cient,
Figure 15 reveals that the minimum value of Mach
number reduction belongs to the second pellet. This
apparent contradiction is resolved by taking the mass of
the pellets into account. As it is shown in Table 1, the
second pellet is heavier than the other ones. Obviously,
to give the same initial velocity to two projectiles
having di�erent weights, the heavier one needs more
momentum. In fact, the additional momentum causes
the heavier projectile to experience less variation of
velocity.

Table 2 compares some dynamic parameters for
the pellets at three di�erent Mach numbers. Neglecting
the term ( _z= _x)2 of the governing dynamic equations
(Eqs. (5) and (6)) gives:
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Figure 11. The Mach number contours at M1 = 1:0 around the (a) 1st pellet, (b) 2nd pellet, and (c) 3rd pellet.

Figure 12. The pressure contours at M1 = 1:0 around: (a) 1st pellet, (b) 2nd pellet, and (c) 3rd pllet.

Figure 13. The trajectory of the �rst pellet at various
initial Mach numbers.8<:�x = �CD�1AP2m _x2

�z = ��g + CD�1AP
2m _x _z

� (27)

As it is clear, �x and �z are inversely proportional to the
mass of the projectiles. Consequently, if the second

Figure 14. The velocity loss with time in the �rst 25 m
of trajectory for the �rst pellet.

pellet had had the same weight as that of the other
pellets, its altitude change would have been more than
that of the third pellet. Hence, the dynamic results
for an imaginary pellet of the second type with a mass
of 0:5 g have been shown by an asterisk sign (�) in
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Table 2. Dynamic results for the �rst 25 m of trajectory.

Parameter 1st pellet 2nd pellet 3rd pellet 2nd pellet� M0

M1jx=25 0.5174527 0.5363535 0.5309474 0.5105108

0.7
m _xjx=0 (kg.m/s) 0.1215160 0.1458193 0.1215160 0.1215160
m _xjx=25 (kg.m/s) 0.0898269 0.1117295 0.0921695 0.0886218
tjx=25 (sec) 0.1211390 0.1182580 0.1187510 0.1214850
zjx=25 (cm) -0.0653380 -0.0628998 -0.0632158 -0.0653786

M1jx=25 0.6624271 0.7074020 0.7011701 0.6684675

1.0
m _xjx=0 (kg.m/s) 0.1735944 0.2083132 0.1735944 0.1735944
m _xjx=25 (kg.m/s) 0.1149936 0.1473612 0.1217192 0.1160422
tjx=25 (sec) 0.0905840 0.0872860 0.0879850 0.0901990
zjx=25 (cm) -0.0354590 -0.0335598 -0.0340626 -0.0352461

M1jx=25 0.7412338 0.7991596 0.7754770 0.7513526

1.3
m _xjx=0 (kg.m/s) 0.2256727 0.2708072 0.2256727 0.2256727
m _xjx=25 (kg.m/s) 0.1286740 0.1664755 0.1346184 0.1304306
tjx=25 (sec) 0.0783600 0.0743130 0.0765600 0.0774250
zjx=25 (cm) -0.0256575 -0.0234041 -0.0247747 -0.0250659

Figure 15. The Mach reduction with time for all pellets
in the �rst 25 m of trajectory.

Figure 15 and Table 2, which con�rm the foregoing
aerodynamic and dynamic analyses.

9. Conclusions

Relying on the aerodynamic analysis, the round-nose
pellet (the 3rd pellet) in a variable range of Mach
numbers shows the best aerodynamic behavior with
respect to the other pellets; however, the 2nd pellet
shows the best dynamic behaviors such as altitude loss
and �nal momentum viewpoints. Moreover, the 3rd
pellet indicates better dynamic results than the 1st
one. In addition, the superior projectile between the

1st and 2nd pellets based on the obtained aerodynamic
and dynamic results is the second one. On the other
hand, if the second pellet had had the same weight
as that of the other pellets (i.e., imaginary second
pellet), according to Table 2, the 3rd, 2nd, and 1st
pellets would have been preferred, respectively, from
aerodynamic and dynamic viewpoints.
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