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Duration of concrete pouring task is typically considered from the arrival time of the first Ready Mixed Concrete
(RMC) truck until the end of the pouring process of the last truck. In practice, the concrete pouring duration does
not only depend on site features. In fact, the duration is also affected by other parameters such as supply process,
location of the project and traffic conditions, particularly in cities with heavy traffic. This paper investigates im-
pacts of supply chain parameters on predicting concrete pouring duration that have been typically excluded from
such analyses. Unlike other studies which are limited to construction site parameters in predicting concrete
pouring duration, this study not only considers construction site factors at a general level but also investigates
the impact of supply related parameters. To test the effectiveness of considered variables a field dataset of an ac-
tive RMC in Adelaide, Australia with four batch plants and around 40 trucks is used. The dataset covers a period of
a month which includes 2658 deliveries to N500 locations. In terms of the modeling practice of this study, first a
preliminary linear regression is developed and then it is modified to satisfy crucial assumptions of
heteroscedasticity and residuals normality. Finally, a hazard-basedmodel where the assumption of residual nor-
mality is relaxed, is developed. The results show that severe bias occurswhen assumptions associatedwith linear
regression are overlooked. Moreover, in the developed models the supply parameters are found to have signifi-
cant impacts on concrete pouring duration.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Demand for concrete is globally increasing [1] such that the current
demand is forecasted to double by 2050 compared to 2002 [15]. Due to
space limitations at construction sites as well as technical obligations,
fresh concrete is frequently mixed at Ready Mixed Concrete (RMC)
batch plants, and then hauled to receiver sites by trucks. Therefore,
when predicting the perceived duration of concrete pouring, three
types of parameters should be accounted for; (i) parameters that can re-
flect traffic patterns, (ii) parameters that can reflect the supply condi-
tions (iii) and parameters reflecting receiver's conditions. There are a
few studies looking at predicting the duration of concrete pouring [5,
6,11,22,28,44]. However the findings of these studies are considerably
affected by the small size of the used data and ignoring traffic pattern
and receiver's attributes. Nonetheless, the impact of traffic conditions
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and supply chain process on the concrete placement process is not neg-
ligible, particularly in large cities and congested areas.

In the RMC literature the main focus has been devoted to the RMC
dispatching problem, which includes developing mathematical model-
ing formulations, or proposing meta-heuristic approaches to solve the
models [36]. The RMC dispatching problem is a complex assignment
problem which can be categorized as a generalized Vehicle Routing
Problem (VRP) [27,32]. Large scale RMC dispatching problems are
characterized as NP-hard problems for which obtaining the exact as-
signment solution with the existing computing facilities is computa-
tionally intractable [41,47,51,52]. To tackle this issue, a wide range of
heuristic methods have been implemented such as Genetic Algorithms
(GA) [3,8–10,19,31,33,38], Particle Swarm Optimization [17,23,50],
Ant Colony Optimization (ACO) [43], Bee Colony Optimization (BCO)
[45], Tabu Search (TS) [45], Variable Neighborhood Search (VNS) [2,
39], benders decomposition [24], column generation [25,26]. There are
also studies that only aim to provide more insight about the concrete
delivery process rather than proposing newmathematical formulations
[4,7,19,21,30,34,35,44,47,53]. Most recently [29] introduced a new
method that trains machine learning algorithms by observing experts'
decisions in RMC dispatching rooms. They showed that can match the
experts` decisions with a high accuracy but within a very short
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computing time. As it has been previously discussed, computing time is
themain practical obstacle for themajority of optimization basedmeth-
od in this context.

The research group at the University of Edinburghmodeled the con-
crete placing process with Discrete Event Simulation (DES) [44] and
evaluated their models with a field dataset (202 observations) that
were collected from three sites in Scotland. They conducted a statistical
analysis on the collected data to identify the key characteristics of con-
crete delivery and placement process [5,6]. Given their relatively small
sample, although this has been the largest sample examined in this do-
main, the transferability of their results can be questionable. There are a
few more papers that do not particularly focus on duration of concrete
pouring; nonetheless, they are related to fresh concrete supply process.
Tommelein and Li [46] discussed the concept of Just-in-Time in concrete
delivery context. They primarily attempted to provide more insights
about the concrete supply process by modeling two scenarios; (i) a
RMC supplier produces fresh concrete and hauls it to construction
sites, (ii) contractors deliver concrete to sites. Naso et al. [37] used a
meta-heuristic approach to provide quick response to any disruption
(e.g. delay or facility breakdown) in the RMC dispatching system. Liu
et al. [18] mathematically modeled the entire RMC process including
the production and delivery process and hired the GA method to mini-
mize the total costs.

However, supply chain parameters has not been accounted for in
RMC assignment problems yet, and the impact of transport network re-
lated parameters on concrete pouring duration needs to be further in-
vestigated. The importance of accurately estimating concrete pouring
duration and accounting for all of the influential factors on that comes
from the fact that the concrete pouring duration can significantly
change the final assignment solution in RMC dispatching problems.

To address this lacuna in the literature, this paper employs a large
scale dataset gathered from an active Ready Mixed Concrete (RMC) in
Adelaide (Australia). The size of data is considerably larger than the
size of datasets used in previously conducted studies. This data en-
hances the reliability of findings and the generalizability of the devel-
oped models. The data is analyzed using a linear regression
formulation, in which the aforementioned parameters are incorporated
as explanatory variables to accuratelymodel the concrete pouring dura-
tion. Then a hazard-based model is constructed to relax some of the re-
gression assumptions while capturing the stochasticity in the concrete
pouring duration.

Built environment variables and supply related variables have not
yet been included in themodeling process of concrete duration estima-
tion [6,12], although the significance of these variables on the duration
is quite obvious. For example, the duration of a concrete pouring task
in a project that is located in a city with dense traffic would be different
from a similar one in a small city with light traffic. Furthermore, travel
time varies during the day between rush hours and off peak hours. Trav-
el times from/to some locations during weekdays vary considerably
than weekends. The precise prediction is more important when con-
crete pumps and workers are around idle. Graham et al. [12] demon-
strated that 12% idleness of concrete pouring crew in a typical site
resulting in an additional 14% cost. Consequently, it is necessary to
have precise predictions for the duration of operation.

The contributions of this study are two-folded. First, this study ex-
amines the impact of supply related variables on concrete pouring dura-
tion. More specifically, this paper investigates the impact of exogenous
variables such as traffic condition on concrete pouring duration. Second,
this study utilizes Cox proportional hazard-basedmodels to introduce a
new way of capturing and interpreting the impact of exogenous vari-
ables on concrete pouring duration. The main advantage of hazard-
based models is relaxing the assumption on the distribution of the de-
pendent variable (e.g. concrete pouring duration in this study). In fact,
the application of the introduced hazard-based model is not limited
just to concrete pouring duration. As it is explained in details in the
methodology section, this hazard-based model specification does not
need any assumptions about the distribution of the dependent variable
(or its residuals) which possibly will provide a better fit to the data. The
hazard-based approach is aimed to take into account both construction
and supply parameters inmodeling concrete pouring duration. The out-
put of modeling practice in this paper can provide a chance to construc-
tion managers to effectively handle the concrete pouring process by
giving them more insight on precisely estimating concrete pouring
duration.

This paper consists of three main sections excluding the introduc-
tion. In the next section, the utilized dataset is described, then method-
ology is explained and finally the results will be discussed and
summarized.

2. Data structure

This paper aims at exploring the effectiveness of the operation and
supply chain parameters to model the concrete pouring duration. Typi-
cally, fresh concrete is hauled by trucks from batch plants to construc-
tion sites and then placed in frames to construct concrete elements. A
project might need several deliveries; therefore, required trucks must
arrive at the site consecutively. This paper considers both site (receiver
and provider) related parameters and traffic related parameters to ad-
dress concrete pouring duration. More specifically, the following vari-
ables are examined in modeling the duration of concrete pouring.

- “Weekday” is a binary variable indicating if the pouring is taking
place onweekday. Travel time in some regions is considerably differ-
ent betweenworking days andweekends. This binary variable is de-
fined to take into account the impact of different traffic condition
during weekdays.

- “Start” is a continuous variable representing the starting time of first
delivery. The impact of traffic condition on the duration of an opera-
tion would vary depending on whether it commences during rush
hours or not. In this regard, the time of arrival of the first truck to
the site is utilized as one of the explanatory variables for modeling.

- “TAOC” is a continuous variablewhich shows the total amount of or-
dered concrete. For each project the total amount of delivered con-
crete is extracted from the available database. This variable is one
of the construction site features that affect concrete pouring
duration.

- “NRD” is an integer variable indicating the number of required deliv-
eries. NRD can be considered as a construction site related feature, as
well as, a supply chain related variable. On one hand, it reflects the
size of the task, and on the other hand, it shows howmuch the con-
crete pouring duration is related to road network conditions.

- “Latitude and longitude of the site location” are two continuous
variables indicating the location of the site. Predicting travel time
cannot be approximated by solely using the distance between the
origin and destination because the speed of trucks on some routes
fluctuates during the course of a day. Moreover, some parts of met-
ropolitan areas have different traffic patterns during the day. It is be-
lieved that geo-location data that includes longitude and latitude can
indirectly provide this information. Each location (depots or pro-
jects) has unique coordinates that are extracted from the available
database with arithmetic precision of six digits.

- “TNROR” is an integer variable indicating total number of received
orders by RMC Supplier. This attribute becomes important when
an RMC accepts large number of deliveries in a day, specifically,
when available resources are not sufficient and demand is greater
than supply. In such situations, RMCs stretch the inter-arrival times
to balance demand and supply which makes it possible to supply
more deliveries. This variable can reflect how busy the RMC is.

- “TNADSD” is an integer variable indicating total number of assigned
deliveries to the source depot. The former attribute shows the densi-
ty of orders throughout the day; however, this attribute can reflect
the same issue but particularly for the allocated depot which is
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chosen to supply concrete to the project. Instead, the TNADSD attri-
bute is selected when, for instance, an RMC supplier has received
many orders but orders are not evenly distributed in the supply
area. In other words, a depot can provide service to many costumers
in some areas but very few orders to other areas; in such cases it is
expected that this attribute reflect some information, which is not
captured otherwise. For large projects with N30 deliveries, concrete
is normally supplied from more than one depot.

As it was stated earlier, the current study does not directly incorpo-
rate all the construction site features in themodel. For example: the pro-
posed model does not associate the pouring system (crane or pump) or
type of construction operation (wall, column or base) in the calculation,
while it focuses more on supply and traffic related parameters.

The proposed approach was tested with data collected from an RMC
in Adelaide (Australia). There are 4 active batch plants and around 40
trucks in this region. A minor portion of these records are deliveries to
regions other than Adelaide metropolitan region which have been ex-
cluded from the study as they are outside urban areas. To understand
the size of an RMC it can be noted that 27 days of operation includes
2658 deliveries supplied to the 980 unique locations. In around 70% of
instances, N5 trucks are included in the order. A preprocessing task
has been conducted to clean the dataset and make sure that there is
no missing values or duplication among the selected instances.

Table 1 presents descriptive statistics of the variables used in this
study. The top part of this table shows the mean, standard deviation,
minimumandmaximumvalues for the continuous variables. These var-
iables include pouring start time, TAOC, latitude and longitude of the
construction site, distance from depot to construction site, NRD,
TNADS, TNROR and the duration of concrete pouring task. The bottom
part of this table shows the details of the categorical variables, including
the dispatching depot and the day of the operation.

Fig. 1 depicts the correlation between concrete pouring duration and
the rest of the considered variables. According to this figure, TAOC and
NRD are positively correlated with the concrete pouring duration. In
Fig. 2, the distributions of explanatory variables are presented which
shows that depots 1 and 4 service more construction sites compared
to depots 2 and 3. Finally, the heatmap of customers' locations is
Table 1
Descriptive statistics of the available variables.

Numerical variables

Variable Mean Standard deviation Minimum Maximum

Start 9.26 2.18 0.00 16.27
TAOC (m3) 13.50 29.84 0.40 349.10
Latitude −34.88 0.13 −35.28 −34.36
Longitude 138.60 0.08 138.26 138.90
Distance (km) 13.53 7.41 1.25 55.51
NRD 2.70 4.40 1.00 53.00
TNADSD 32.14 18.57 4.00 87.00
TNROR 110.53 36.42 30.00 187.00
Duration (hr) 2.17 2.06 0.05 14.45

Categorical variables

Variable Classes Frequency Percent

dispatching depot Depot 1 331 33.74
Depot 2 179 18.25
Depot 3 168 17.13
Depot 4 303 30.89

Day Monday 118 12.03
Tuesday 184 18.76
Wednesday 170 17.33
Thursday 189 19.27
Friday 212 21.61
Saturday 108 11.01
shown in Fig. 3. This figure illustrate the regional distribution of the
site locations across the region.

3. Methodology

3.1. Linear regression

Regression is a core tool in econometric studies, and is vastly
employed to study the relationship between the dependent variables
and independent variables. Linear regression has been massively used
in the fields of engineering, physics, economics, management, life sci-
ence, biology, and social sciences both for estimation and prediction
purposes. Researchers and practitioners have tremendously employed
linear regression; however, testing the hypothesis behind linear regres-
sion is not always considered.

Eq. (1) shows the general format of a multivariable linear model. In
this equation yi is the value of the dependent variable for instance i, xij is
the value of independent variable j for instance i, and βj is the corre-
sponding parameter to independent variable j. β0 is the intercept of
the linear relationship and ϵi indicates the error of the model, which is
also referred to as residual. There are several methods to estimate the
model's parameters including Ordinary Least Square of errors (fOLS).
In OLS, it is assumed that ϵ has a normal distribution with expected
value of zero [13].

yi ¼ β0 þ
Xm

j¼1

β jxij þ ϵi;∀i ð1Þ

The goodness-of-fit for linear regression models is typically mea-
sured by R2 which reflect the ratio of deviation of the observed values
from the mean compared to what the model provides. In other words,
this statistic measures how close the model's prediction is to the ob-
served values. The decision on which variables to include into the
model is made based on a statistical test known as t-test jointly with
the contribution of the variable in the model and several other indica-
tors such collinearity. The t-test examines whether the corresponding
parameter of a variable is statistically different from zero or not.

Usually, when researchers and practitioners develop linear regres-
sion models they concentrate on increasing model's accuracy while in-
cluding statically significant independent variables. However, there
are some caveats in linear regression that if ignored, the result of regres-
sion would be unreliable and can be misleading. In general, there are
two major assumptions in linear regression that sometimes are
overlooked: normality of residuals, and heteroscedasticity.

3.1.1. Normality of residuals
When developing a linear regression, it is assumed that residuals are

normally distributed. This assumption is not essential in OLS but it is im-
portant for using the statistical tests such as t-test. If this assumption is
notmet, the t-test analysiswould not be valid; therefore, the conclusion
on a statistically significant relationship between independent variables
and the dependent variable in themodel would be questionable. Statis-
tical tests for normality are abundant. This study utilizes two well-
known test of Shapiro-Wilk test [42] and Kolmgrov Smirnov (fKS)
[13] for normality. KS is a non-parametric test of equality of continuous
probability distributions and testing normality is one of the specific ap-
plications of KS. Shapiro-Wilk on the other hand is specifically devel-
oped for normality test.

3.1.2. Homoscedasticity
Homoscedasticity is the assumption of constant variance for resid-

uals across the whole range of the independent variable. This is a basic
issue that can significantly affect the results of OLS. Similar to the as-
sumption of residuals normality, if homoscedasticity is not met, the es-
timated test-valueswould not be reliable. Note that, homoscedasticity is



Fig. 1. Correlations between the attributes and duration.
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not required for the unbiased estimations by OLS, nonetheless the esti-
mated parameters are no longer efficient. The commonly used statistical
test for homoscedasticity is White test [48]. The null hypothesis of
White test is that the variance of the residuals is homogenous.

3.2. Hazard-based model

Hazard-based models, also known as survival analysis, are largely
utilized in medicine, engineering, economics, and sociology fields to
model the time when an event occurs. Time to an event, which is also
referred to as failure time, represents the time at which an event occur-
ring or an instance changes its state. Some examples for events aremar-
riage, death, recovery, finding a job or changing residence. In this study,
the event is defined as finishing the concrete pouring process.

The main advantage of hazard-based models compared to linear re-
gression is their ability to handle dependent variables (time to an event)
which does not follow normal distribution. In fact survival analysis can
model the distribution of failure time and also examine the impact of in-
dependent variables on the failure time.

Survival analysis has three main functions that explain different as-
pects of an event: (1) failure function, (2) survival function and (3) haz-
ard function. Failure function is a cumulative density function indicating
the probability of the event occurring before a certain time. Eq. (2)
shows the definition of the failure function, F(t), where T is the time of
event occurrence and t is a random variable. The survival function
shows the probability of the event not occurring before a certain time.
The definition of the survival function and its relationship with failure
function is presented in Eq. (3) (For further discussion about hazard-
based models refer to [40]). When developing a hazard-based model,
the first derivative of the failure function, which represent the
probability of the event in an infinitesimal interval of time, also becomes
important. This function is a probability density function and is typically
shown with f(t). Eq. (4) shows the definition of f(t) and its relationship
with survival and failure functions.

F tð Þ ¼ Pr T ≤tð Þ ð2Þ

S tð Þ ¼ Pr T Ntð Þ ¼ 1−F tð Þ ð3Þ

f tð Þ ¼ lim
Δt→0

Pr t≤Tbt þ Δtð Þ
Δt

¼ ∂F tð Þ
∂t

¼ −
∂S tð Þ
∂t

ð4Þ

The third function, the hazard function, is the primary focus of sur-
vival analysis. The hazard function describes the conditional probability
of the event occurring at a certain time, conditional on the fact that it has
not event up to that time (Eq. (5)). This function shows the instanta-
neous rate of failure. In order to clarify the difference between probabil-
ity density function of failure with the hazard function, note that f(t)
shows the probability of failure at time t for all of the instances under
study; while, h(t) indicates the probability of failure at time t for those
instances that has not failed before t.

h tð Þ ¼ lim
Δt→0

Pr t≤Tbt þ Δtjt≤Tð Þ
Δt

¼ f tð Þ
S tð Þ ð5Þ

In the sharp contrast with linear regression, not only failure time in
hazard-based models can be assumed to have any parametric distribu-
tion, but also it can be considered as non-parametric distribution.

Independent variables are typically included in the hazard function to
capture the external impact of other covariates. To this point, all of the

Image of Fig. 1


Fig. 2. Distribution of the variables.

Fig. 3. Spatial distribution of orders to the RMC supplier in the AdelaideMetropolitanArea.
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function in survival analysis is defined as a function of time. For incorpo-
rating the impact of independent variables, any of the three functions can
bemodified. Note that, the other functions can be derived from themod-
ified function. There are several established techniques to incorporate in-
dependent variables in survival analysis, including Cox Proportional
Hazard. The hazard function for Cox proportional hazard model has the
form of Eq. (6). This equation shows the hazard function for instance i
with independent variables of xij. In this equation h0(t) is called the base-
line hazardwhich summarizes the pattern of duration dependence and is
assumed to be common to all instances. Themultiplicative term in Eq. (6)
is an instance specific non-negative function of the instance's indepen-
dent variables and its role is to scale the baseline hazard.

h t; xið Þ ¼ h0 tð Þ exp
XJ

j¼1

β jxij

0
@

1
A ð6Þ

When the hazard-basedmodel is set up as Eq. (6), the ratio of hazard
rates between two instances with fixed independent variables will stay
constant over time. Imagine instances i and i’with identical vector of in-
dependent variables except for variable m. The ratio of hazard function
of instance i over instance i’, both at time t, would be evaluated as shown
in Eq. (7). According to this equation, hazard rate is independent from
the baseline hazard, since the baseline hazard is common for all of the
instances. Besides, identical variables will cancel out.

h t; xij
� �

h t; xi0 j
� � ¼

exp
X J

j¼1
β jxij

� �

exp
X J

j¼1
β jxi0 j

� � ¼ βm xim−xi0mð Þ ð7Þ

Image of Fig. 2
Image of Fig. 3
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Hazard ratio is an appropriate way to interpret the impact of inde-
pendent variables. Imagine the difference between the dissimilar inde-
pendent variables in Eq. (7) is one unit. In this case, the hazard ratio
would be equal to βm which is the coefficient of the independent vari-
able. Therefore, the coefficients in a proportional hazard (PH) rate de-
termine the hazard escalation, when their corresponding variable
increases by one unite.

4. Results and discussion

This section presents a discussion on the conducted analysis on the
influence of the available independent variables on the concrete
pouring duration. Two linear regression models and one hazard-based
model are developed to predict the concrete pouring duration. In
selecting the independent variables, several combinations of variables
are examined and at the end, variables that are statistically significant
at the 85% confident level are included in the models.

4.1. Preliminary linear regression

For the first attempt the duration of concrete pouring ismodeled as a
linear function of the available independent variables. In this model,
which is called the preliminary linear regression model, the variables
are kept in their original format. The top part of Table 2 is devoted to
the estimated parameters in this model. According to Table 2, the fol-
lowing four independent variables are found to be significant in the
model.

• Total Amount of Ordered Concrete (TAOC)
• Number of required deliveries (NRD)
Table 2
Results of the regression models and the hazard-based model for concrete pouring duration.

Variable Parameter estimate Standard error

Preliminary regression model
Intercept 2.896 0.236
TAOC −0.111 0.011
NRD 1.019 0.074
TNADSD 0.006 0.003
TNROR 0.002 0.001

Improved regression model
Intercept 0.776 0.10
Ln(TAOC) 0.421 0.04
Average Load −0.047 0.02
NRD1 −0.707 0.05
Weekend −0.182 0.05
Midnight −0.158 0.11
CBD 0.107 0.07
DD1 0.009 0.00
D1 0.075 0.04
D2 −0.071 0.04

Non-parametric proportional hazard-based model

Parameter Parameter estimate Standard error Ch

TAOC −0.008 0.002 18.
D1 −0.200 0.074 7.3
NRD1 2.326 0.103 507
Average Load 0.166 0.023 50.
Weekend 0.176 0.116 2.3
CBD −0.434 0.141 9.4
DD1 −0.023 0.006 13.
TNROR −0.002 0.001 5.6
• Total Number of Assigned Deliveries to the Source Depot (TNADSD)
• Total Number of Received Orders by RMC Supplier (TNROR)).

Eq. (8) shows the preliminary linear regression model. The corre-
sponding t-test statistics and model's goodness-of-fit are presented in
the top part of Table 2.

T ¼ 2:896−0:111� TAOCþ 1:019� NRDþ 0:006� TNADSD
þ 0:002� TNROR ð8Þ

Although all variables in this model are statistically significant and
the model shows an acceptable goodness-of-fit (R2 = 0.60), this
model is not reliable because the normality of the residuals and
heteroscedasticity are not warranted. This issue is discussed in details
in the following section after presenting the improved linear regression
model.

4.2. Improved linear regression

In the second step, the preliminary linear regression model is im-
proved in three directions. First, the dependent variable is transformed
using a logarithm transformation. This transformation is implemented
to cope with the heteroscedasticity assumption. A logarithm transfor-
mation has the potential of damping the large variations of residuals
for large values of y. Second, as a classic technique to improve regression
models, the following variations of independent variables are intro-
duced to the model.

• “Average Load” is a continuous variable defined as TAOC divided by
NRD. This variable is an indicator of the size of concrete deliveries.

• “NRD1” is a binary variable which is equal to 1 if the project needs
T Statistic Pr(Statistic N Critical statistic)

12.27 b0.0001
−10.13 b0.0001
13.82 b0.0001
2.16 0.0311
1.63 0.1033
R Square 0.597
Adjusted R Square 0.594

7.41 b0.0001
11.21 b0.0001
−2.54 0.0111
−13.24 b0.0001
−3.71 0.0002
−1.43 0.1423
1.57 0.1176
3.14 0.0017
2.09 0.0369
−1.7 0.089
R Square 0.754
Adjusted R Square 0.751

i-Square Statistic Pr(Statistic N Critical statistic) Hazard ratio

651 b0.0001 0.99
26 0.0068 0.82
.010 b0.0001 10.23
718 b0.0001 0.85
00 0.1294 1.19
15 0.0022 0.65
191 0.0003 0.98
75 0.0172 1.00

LL −5213.567
AIC 10,445.131
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only one delivery.
• “Weekend” is a binary variable indicating if concrete pouring during
takes place during weekends.

• “Midnight” is a binary variable which is equal to 1 if the pouring is
take place between 12 AM to 6 AM.

• “CBD” is a binary variablewhich specifieswhether the project is locat-
ed in Central Business District (CBD) or not.

• “DD1” is a continuous variable showing the distance from depot 1 to
project site only if the delivery is supplied by depot 1. This variable
only takes non-zero values if the source of delivery is depot 1 where
it is equal to the distance between the project and depot 1.

• “D1” is a binary variable which indicates if the delivery is received
from depot number 1.

• “D2” is a binary variable which indicates if the delivery is received
from depot number 2.

As the third improvement, logarithmic transformation of TAOC
(Total Amount of Ordered Concrete) is included in the model. Logarith-
mic transformation is a beneficial technique dealing with residual nor-
mality assumptions in regression [13]. The emphasis of this study on
logarithmic transformation is to demonstrate the advantages of this
transformation in practice. Obviously, as the total amount of ordered
concrete increases the concrete pouring duration also increases. How-
ever the rate of increase is not constant. For large scale projects minor
increase in the amount of ordered concrete does not impact the pouring
duration as it does in small scale projects. In other words, the relation-
ship between TAOC and pouring duration is not linear; therefore TAOC
is transformed.

Eq. (9) shows the improved linear regression and the statistical de-
tails of this model are provided in the middle part of Table 2. Compared
to preliminary linear regression, thismodel has larger number of includ-
ed independent variables. Besides, the adjusted goodness-of-fit has im-
proved in this model. According to the result, the concrete pouring
duration is decreased if it takes place during weekends or at midnights.
(a) Residuals distribution in preliminary linear regression

(c) Q-Q plot for residuals in preliminary linear regression

Fig. 4. Graphical illustration of heteroscedasticity and n
In contrast, if the construction site is located in the CBD area, the con-
crete pouring duration increases.

Ln Tð Þ ¼ 0:776−0:421� Ln TAOCð Þ−0:047� AverageLoad−0:707�NRD1
−0:182�Weekend−0:158�Midnight þ 0:107� CBD
þ 0:009� DD1þ 0:075� D1−0:071� D2

ð9Þ

Fig. 4 compares preliminary and improved regressionmodels. Distri-
butions of residuals versus the predicted values for preliminary regres-
sion model are shown in Fig. 4(a). Heteroscedasticity requires the
variance of the residuals to be constant; thereby residuals are not ex-
pected to follow any specific pattern while plotted versus predicted
values. This assumption is clearly violated since the dispersion of resid-
uals around their average has an increasing pattern. In order to test the
normality assumption of residuals, the Q-Q plot (quantile-quantile plot)
of residuals versus a normal distribution for preliminary regression
model is plotted (Fig. 4(c)). In a Q-Q plot, the quantiles of two probabil-
ity distribution functions are plotted against each other. If the distribu-
tions are close enough, then the achieved plot would overlay y = x
line. But the Q-Q plot in Fig. 4(c) shows significant difference from
y= x. Hence, the preliminary regression model does not satisfy the re-
quired statistical assumptions and is not reliable.

The distribution of residuals versus the predicted values and also the
Q-Q plot versus a normal distribution for the improved linear regression
model are provided in Figure (b) and (d) respectively. According to
these two graphs, the assumptions of heteroscedasticity and normality
of residuals seem to be visually satisfactory, although it is statistically
confirmed as well. The White test on the results provides a statistic of
106.1 with a degree of freedom of 65 indicating that the hypothesis of
the variances not being homoscedastic cannot be rejected with a
99.9% confidence level. Moreover, the Shapiro-Wilk test suggests that
the hypothesis of the residuals being normally distributed can be ac-
cepted at a 0.001 level. The result for Kolmogorov-Smirnov test also sug-
gests that the hypothesis of normality cannot be rejected at a
0.001confidence level. In short, it can be concluded that the improved
(b) Residuals distribution in improved linear regression

(d) Q-Q plot for residuals in improved linear regression

ormality of residuals in linear regression models.

Image of Fig. 4
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linear regression model satisfies the major linear regression
assumptions.

Therefore, an acceptable model to measure the impact of indepen-
dent variables is achieved at this stage. However, the next part of the
paper which discusses the hazard-based modeling approach, illustrate
the advantages of hazard-based modeling compared to the developed
linear regression models.

4.3. Hazard-based model

As the third modeling approach, a Cox proportional hazard-based
model is developed using SAS statistical analysis software package ver-
sion 9.4. Similar to linear regressionmodeling, a large number of combi-
nations of independent variables are examined and the best model,
which has the highest likelihood value with statistically significant var-
iables, is reported. The result of this model is provided in the bottom
part of Table 2. The model is shown in Eq. (10).

h t; xð Þ ¼ h0 tð Þ � exp −0:008� TAOC−0:200� D1þ 2:326� NRD1þ 0:166ð
� AverageLoad þ 0:176�Weekend−0:434� CBD−0:023� DD1
−0:002� TNRORÞ

ð10Þ

In proportional hazard models, estimating the impact of the inde-
pendent variables does not depend on making any assumption on the
form of the baseline hazard function, h0(t), which can be left unspeci-
fied. Therefore, regardless of h0(t), the impact of independent variables
on hazard function is as shown in Eq. (10). The decision on the configu-
ration of independent variables in themodel can be supported by a non-
parametric overall survival experience such as Kaplan-Meier [16]. The
advantage of Non-parametric methods is that these methods do not re-
quire any assumptions about the shape of the survival function.

In order to examine the impact of an exogenous variable on survival
rate (e.g. the duration of concrete pouring in this study), different non-
parametric survival curves can be drawn for different values of any of
Fig. 5. Non-parametric survival functions for
the exogenous variables. If these survival curves are shown to be statis-
tically different, then it can be concluded that the considered exogenous
variable has some impact on the survival rate. Fig. 5 shows the non-
parametric survival curves for the concrete pouring duration when the
data is divided based on some of the available independent variables.
The shaded area around the survival curves represents the 95% confi-
dence band for each of the survival curves (refer to [14] for calculation
details). In Fig. 5(a) the observations are classified into four groups
based on the Average Load of the deliveries. Generally this graph con-
firms that by increasing the value of Average Load, duration also in-
creases. For instance there are only 3 observations with
AverageLoad b 2.2 that their duration took N5 h and this value for
2.2 b AverageLoad b 2.9, 2.9 b AverageLoad b 4.3 and 5 b AverageLoad respec-
tively are 10, 22 and 70 h. In Fig. 5(b) survival curves are separated for
the projects that are located in CBD showing that there is an acceptable
correlation with the pouring duration. Similarly, Fig. 5(d) distinguishes
between projects having one delivery andmore. Fig. 5(c) shows surviv-
al curves for the deliveries on weekends or weekdays. In this case, the
confidence boundaries for weekend projects is wider indicating higher
variations in concrete pouring duration for such deliveries. This bound-
ary covers theweekday survival curve whichmakes it difficult to derive
any clear conclusion which urges proper statistical tests.

In this study theWilcoxon test [49] is utilized to decide whether di-
viding the data based on each independent variable results in statistical-
ly different survival curves or not. TheWilcoxon test is utilized to select
a set of independent variables when a hazard-based model is devel-
oped. All independent variables that pass this test and are found to be
statistically influential are examined and are included in a Cox Propor-
tional Hazard-based model.

As it was noted in the modeling section, the results of the prelimi-
nary regression model are not reliable due to the non-normality issue
and the problem of heteroscedasticity; thereby they are excluded
from discussion on the relationship between concrete pouring duration
and the available independent variables. The variables that are found to
be significant in both the improved regression and PH model are
some of included independent variables.

Image of Fig. 5
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assumed to have a significant impact on the duration of concrete
pouring. These variables are categorized into two groups of road net-
work related variables and others. Although the direct information of
the road network is not available, the following variables can be consid-
ered as proxies for road network conditions.
• The estimated coefficient for “NRD1” is found to be significant while
modeling concrete pouring duration. Besides, the non-parametric sur-
vival test of Figure (d) clearly shows that projects withmore than one
delivery have a distinct survival curve. This observation also confirms
the assumption of significant effects of road attributes on concrete
pouring duration.

• The estimated coefficient for “Average Load” indicates as the size of
delivery increases the concrete pouring duration would decrease.
This is because as Average Load increases the required number of
trucks for a certain amount of concrete decreases; therefore, the con-
crete pouring process would be less dependent on the road network
situation. In otherwords, for twoprojectswith the sameamount of re-
quired concrete, the one with larger delivery batches would have
lower concrete pouring duration.

• “Weekend” has a decreasing effect on the concrete pouring duration
in both models which complies with the common expectations. This
variable is important from the transportation perspective, since the
road network is less congested during weekends.

• “Midnight”, similar to “weekend”, is a proxy of the congestion level
on the road network. Therefore it is expected that if the concrete
pouring process starts overnight, it reduces concrete pouring dura-
tion.

• The importance of “CBD” is the special impact of central business dis-
trict on the transportation system. Regularly the road network in CBD
is in congestion conditions. According to the results, if the project is lo-
cated in CBD, then higher concrete pouring duration is expected
which is quite expectable.

• Distance was examined in different ways while eventually only the
distance from depot 1 was found to be statistically significant in the
finalmodels (“DD1”). This is explained by the fact that this depot is lo-
cated close to the central part of the city and traffic condition has sig-
nificant impact on the deliveries from this depot.

Both model specifications confirm the fact that the network related
variables have relatively significant impact on concrete pouring dura-
tion. This argument is inferable from the statistically significant trans-
portation related variables in both model specifications. Moreover, the
relatively large hazard ratio of these variables in the hazard-based
model is an indicator of their high impact on concrete pouring duration.

The main benefit of the utilized non-parametric Cox proportional
hazard-based model is the ability to separate predicting the dependent
variable (concrete pouring time), from assessing the impact of indepen-
dent variables on the dependent variable. The hazard-basedmodel does
not restrict the baseline hazard, which represents the concrete pouring
time, but it is seeking to estimates the impact of external factors (such as
roadnetwork conditions) on the concrete pouringduration. This feature
differentiates the hazard-based approach from the regression models.
For instance, comparing concrete pouring duration for two identical
construction sites where only one is located in CBD. The modified re-
gression model says the logarithm of concrete pouring time results an
increase of 0.107 units for the CBD site. The hazard-basedmodel instead
provides insight on how locating in CBDwould affect the event of com-
pleting concrete pouring. According to the estimated hazard ratio in this
model, amultiplicative reduction factor of 0.65would apply to the prob-
ability of completing concrete pouring for the CBD site. In other words,
the hazard-based approach measures the impact of the exogenous var-
iables, regardless of the distribution of completing concrete pouring du-
ration (the baseline hazard).
5. Conclusion

Fresh concrete is typically mixed at batch plants and hauled by
trucks to construction sites where it is poured into the frame to form
concrete elements. Predicting the duration of concrete pouring process
is always crucial because the number of required crew size and required
facilities such as pumps are extremely costly. In the literature this issue
has been investigated by considering only the construction site param-
eters. In contrast, this study considers both construction site parameters
and supply chain features. Regarding the modeling practice, this paper
utilized linear regression models and hazard-based models to investi-
gate the impact of exogenous variables on the concrete pouring dura-
tion. In terms of dataset, a field dataset gathered from an active RMC
in Adelaide Australia that includes both attributes of the construction
site and supply process parameters are used in this study. First, a pre-
liminary linear regression is developed as the common practice which
includes five variables and achieving an R2 of 0.6. Second, this linear re-
gression model was modified by transforming dependent variables
using a logarithm transformation function, and introducing new varia-
tions of the available independent variables led to achieving an R2 of
0.75. The main advantage of the improved linear regression over the
preliminary model was satisfying the assumption of linear regression
model which was violated in the preliminary model. Finally a hazard-
based model was constructed to relax the assumption of residuals nor-
mality. The main advantage of the hazard-based model was its capabil-
ity in precisely capturing the impact of exogenous variables on concrete
pouring time, while it does not require any assumption on the concrete
pouring duration distribution.

As the main finding, this study showed that the supply related vari-
ables are not negligible while modeling concrete pouring duration, as
variables such as number of required deliveries, average load per
truck, delivers being on weekend and midnight and CBD located pro-
jects were found to be significant in the final model. Moreover, the haz-
ard ratios were found be significant for supply related variables. The
other important contribution of this study was utilizing hazard-based
approach to introduce an example of modeling concrete pouring pro-
ductivitywith an analytical approach,where the time is treated as a sto-
chastic variable. In general, this study provides decision makers with a
practical tool to improve concrete pouring productivity. One of the ben-
efits of the developed model is to approximate the duration of concrete
pouring as while considering both supply chain and construction site
features. Having such approximations about the project duration en-
ables the company to manage the daily operation based on transporta-
tion cost, on time delivery benefits, late delivery costs and many other
factors. This paper focused on introducing the merits of a hazard-
based modeling approach for predicting concrete pouring duration as
one of the human intensive jobs in construction projects. During the
modeling process, it was aimed to select generalizable parameters and
it has been avoided fromproviding any generalized conclusions because
the model was built on a field dataset limited to a specific region.

The limitations of this study can be categorized in two groups of data
related limitations and transferability related limitations. Regarding the
data related limitations, even though one of the main purposes of this
study was to investigate the impact of supply chain related variables
on the concrete pouring duration; the investigated variables for this
purpose are not direct measurements from road networks. Utilizing di-
rect estimations of travel time fromdepots to sites can reflect the impact
of supply chain variables on concrete pouring durationmore accurately.
For example considering travel time, reliability of travel time on road
networks possibly can improve the developed hazard-based model to
more precisely predicting the concrete pouring duration. This issue
also can be complemented by other factors such as build form informa-
tion of where customers are located. But on the other hand, data gather-
ing practice for such a study would be time consuming and costly. In
terms of transferability limitations, the modeling outcome of this
study might be applicable to other metropolitan regions, but this issue
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needs further investigation and data collection which is beyond the
scope of this paper. However, the used methodology can be applied
on similar databases collected from different locations.
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