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Ready Mixed Concrete (RMC) suffers from a lack of practical solutions for automatic resource allocation. Under
these circumstances, RMC dispatching systems are mostly handled by experts. This paper attempts to introduce
a machine learning based method to automatically match experts' decisions in RMC. For this purpose, seven
machine learning techniques with their boosted algorithms were selected. A set of attributes was extracted
from the collected field data. Eleven metrics were used to assess the performance of the selected techniques
using different approaches. Due to concerns about randomness, significant testing was performed to assist in
finding the best algorithm for this purpose. Results show that Random-Forest with 85% accuracy outperforms
the other selected techniques. One of the most interesting achieved results is related to the computing time.
The results show that all the selected algorithms can solve large-scale depot allocationswith a very short comput-
ing time. This is possibly because amodel built by amachine learning algorithmonly needs to be testedwith new
instances, which does not need an extensive computation effort. This provides us with a chance tomove toward
automation in Ready Mixed Concrete Dispatching Problems (RMCDPs), especially for those RMCs with dynamic
environments where resource allocation might need to be quickly recalculated during the RMC process due to
changes in the system.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

As was extensively discussed in [1], in an RMC batch plant, based
on orders, the specifications of concrete mix are designed and raw
materials are mixed together. Then fresh concrete is loaded into a
truck. The loaded truckhauls the concrete and pours it at thedestination
and then returns to the batch plant. In practice, the mixing part is
performed automatically; however, the rest of the process is handled
by human experts. In detail, dispatchers decide to send a truck from a
batch plant at a specific time to a project. This job becomes more
complicated when a dispatcher needs to make calculated decisions for
supplying concrete for a certain project that is located between two or
more batch plants. The dispatcher needs to consider many parameters
that can be categorized into three types of information: (i) specification
of each order, (ii) travel of truck(s), and (iii) batch plant limitations.
Moreover, a Ready Mixed Concrete Dispatching Problem (RMCDP) can
be modeled as a network where customers and depots are its nodes
and deliveries are the arches between depots and customers. The amount
mental Engineering, Faculty of
SW), Kensington, NSW 2052,
5; fax: +61 2 9385 6139.
i).
of concrete ordered by different customers is distinct. The number of
required deliveries is calculated for each project, based on the ordered
amounts.

In the last twenty years, researchers have investigated a variety of
approaches to improve the efficiency of RMCDP. However, despite
substantial developments in this area, RMCDP still suffers from a lack
of practical solutions [2–4] and this process continues to be mostly
handled by experts [3,5]. The first drawback of such a human intensive
system is its dependence on the human resources, regardless of the
quality of the experts' decisions. The second potential problem is the
unavailability of experts in some geographical regions. The third risk is
related to human error, which does not allow experts to achieve better
results. In current methods of RMCDP, human error is an inevitable
problem and it becomes more crucial when there is no controlling
system for the experts' decisions [3]. The last and also main threat for
RMCDP is the lack of automated processes. This can be critical when
the demand for concrete, regardless of geographical location, is increas-
ing throughout the world [6–12]. Current Portland cement production
throughout the world will nearly double by 2050 [13]. In this paper,
we introduce an automated RMCDP method at the tactical level by
looking at this problem from a new angle. As has been mentioned,
experts are handling RMCDP and we are attempting to match their de-
cisions by using ensemble machine learning algorithms. Also, the size
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and amount of data that is used in this study is much greater than the
datasets that have been used in similar research in the literature. The
richness of the data helps the authors to draw their conclusions more
confidently and introduce more generalized models. In this paper, first
the context of RMCDP and the related literature are discussed. Second,
in the Methodology section, the selected attributes are explained and
the selected machine learning techniques are presented. In the third
section, the features of the dataset acquired from the field are studied.
Finally, the proposed idea is tested with field data and the results pre-
sented; the outcomes are discussed by comparing the selected machine
learning techniques from a different perspective.

2. Related works

A text mining based study was performed on the body of literature
that was devoted to “Ready Mixed Concrete” [14]. They showed that
only in a few works the RMCDP were considered while concrete
technology is the main core of research in this area. Moreover, as has
been briefly stated, despite significant progress on RMC dispatching in
the last two decades, many scholars have indicated the inefficiency of
RMC dispatching and its dependence on human expertise [2,3,5,15]. A
considerable amount of RMCDP literature has been published onmath-
ematically modeling the RMCDP and solving the models heuristically. It
has been proven that the RMCDP is an NP-hard problem [16–21]. This
means that with available computing facilities we cannot solve large-
scale RMCDP in polynomial time. A wide range of heuristic approaches
have been implemented to address this issue and Genetic Algorithm
(GA) has received more attention in the literature in comparison to
other evolutionary methods [2,4,18,22–25]. Apart from GA, other
methods include Particle Swarm Optimization (PSO) [26,27], Ant
Colony Optimization (ACO) [28], Bee Colony Optimization (BCO) [29]
and Tabu Search (TS) [29]. Although the different methods have been
implemented, the discrete solution structure remains fairly much the
same in most of the methods which consist of two merged parts: the
first part defines the sources of deliveries and the second part expresses
the priorities of customers. In thementioned studies, the twomost crit-
ical challenges are the number of infeasible allocations that exist in the
initial solutions and computing time; this is because RMCDP has many
side constraints that must be checked at each iteration, and it is also
due to the random search behavior of the evolutionary methods.
These methods mostly need a post-computing process to find feasible
alternatives for infeasible allocations among the initial solutions. To
overcome this issue Maghrebi, Waller and Sammut [18] presented an
evolutionary based method which can solve the RMCDP without
needing any additional algorithm and they developed a sequential
meta-heuristicmethodwhich is 10 times faster than their previousmeth-
od and rather than direct travel costs can also minimize the number of
fleets [30]. More recently, Liu et al. [31] introduced an integrated frame-
work for solving both production and delivery of RMC. Chou and
Ongkowijoyo [32] present a decision aid model for selecting the on-site
RMC type based on a reliability assessment process. Zhang et al. [33] inte-
grated an intelligentmonitoring systemwith a hybrid heuristic algorithm
tomore effectively reschedule RMCDPwhen customers' demands are as-
sumed to be dynamic. Kinable et al. [34] introduced a new formulation
similar to [16] but solved using constraint programming.

Beyond the heuristic approaches, other methods should be men-
tioned, such as Yan, Lai and Chen [21] who introduced a numerical
method for solving the RMC optimization problem by cutting the
solution space and incorporating the branch and bound technique and
the linear programmingmethod. Yan, Lin and Jiang [35] used decompo-
sition and relaxation techniques coupled with a mathematical solver.
Variable Neighborhood Search (VNS) was applied in RMCDP by Payr
and Schmid [36]. More recently, Maghrebi et al. [17] implemented a
Column Generation (CG) method which is amenable to Dantzig–
Wolfe reformulation for solving large scale models which available
computing facilities cannot optimally solve in polynomial time and
this approach later on was compared with a heuristic method [37].
Similarly Benders decomposition was hired to near optimally solve
RMCDP within a practical time [38]. Exploring experts' decisions in
RMC dispatching centers was considered by [39].

The critical issue here is why the RMCDP is still being handled by ex-
perts. The reason behind the lack of success of themathematically based
models of RMC dispatching has been discussed in [3]. They found (i) the
large number of variables and (ii) dealing with uncertain and dynamic
data to be the two main obstacles in the models that attempt to solve
the RMCDP optimally or near optimally. In this paper, we attempt to
solve the RMCDP automatically. To this end, a wide range of machine
learning techniques are used to match human decisions.

For these purposes, we intend to rely on experts' decisions in the
RMC dispatching room and use their decisions for training the machine
learning algorithm. A valid concern about this approach is the quality of
the experts' decisions. Assessing the quality of experts' decisions is a
cumbersome job. This is because:firstly, the quality of experts' decisions
for large instances cannot be assessed due to the unavailability of the
optimum solution for large instances; and secondly, RMC owners are
pleased with the performances of experts because RMC dispatching
jobs are still handled by experts who are able to find feasible solutions
for day-to-day RMCDP [3]. This issue was extensively studied in
[40,41] for relatively large instances (around 200 deliveries per day)
by using high-performance computing facilities. They modeled
RMCDP with soft time window (mixed-integer programming) and
solid time window (integer programming) and tested these optimiza-
tion models with different sizes of field data belonging to an active
RMC. The optimization results were used as a benchmark and then
compared with experts' decisions. The results show that in terms of
cost, experts' decisions are around 90% accurate and are also more
flexible in the event of an unexpected change in the system. They also
argued that the experts' approach is totally different from the optimiza-
tion models. In optimization, finding a feasible solution at the least cost
is desirable, but in reality it is expected that experts supply all customers
with the available resources and keep all the customers satisfied.

3. Methodology

In this paper we aim to introduce a method that can match experts'
decisions automatically. In other words, we are looking for an alterna-
tive way of doing what is already done by experts in RMC dispatching
rooms. To implement this idea, a wide range of supervised machine
learning techniques are used. The training data includes the RMC mon-
itoring data which covers all the information provided to the experts as
well as the decisions that the experts have made. In particular, the
dataset shows the experts' decisions in several circumstances. There-
fore, it is expected that the selected machine learning techniques will
match experts' decisions in any circumstances. In the attribute selection
process, two issues have been taken into account: (i) the conducted re-
search in this area such as [2,3,15,42–45]; and (ii) a consideration of the
data that is already provided in practice to the expertswhichwas deter-
mined after carefully observing the experts' behaviors in several RMC
dispatching rooms. Then, the following parameters have been selected
to construct the training and test datasets.

y ¼ f xð Þ ð1Þ

y experts' decisions about a selected depot for each delivery
(decision variable)

f machine learning technique (classifier)
x input attributes set includes (parameters):
DOW day of delivery in the week (Monday, Tuesday, …, Sunday)
VOD volume of delivery (m3)
EAT expected arrival time at customer (hh:mm)
LON longitude of customer
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LAT latitude of customer
TNO total number of received orders in day
NCC number of close customers to each customer

For example in a delivery, y shows the source of the delivery or partic-
ularly a depot's ID that an expert picked for this delivery and consists of a
number of values that listed in Eq. (1) including the day of delivery (e.g.
Monday), volume of delivery (e.g. 5.8 m3), expected arrival time (e.g.
10:15 am), longitude (e.g. 151.231436), latitude (e.g. −33.915630),
total number of received orders by the RMC (e.g. 160) and number of
close customers to this customer in this day (e.g. 95).

LON and LAT follow the geographic coordinate system. For calculat-
ing NCC, in a day the number of customers for whom Di is their nearest
source is counted. This value is assigned toNCC for those instanceswhen
Di is their closest depot. For example, the nearest depot to customer i is
depot j when for another n customers depot j is also the nearest depot,
so in this case NCC is equal to n which reflects the level of demand
around each depot and also shows the density of customers around a
customer in a day. The training set that includes {x,y} is constructed
from a real database whose features are studied below.

3.1. Selected machine learning techniques

Sevenmachine learning techniqueswere selected to test the proposed
ideawith the available dataset. The selected techniques are Decision Tree,
Random-Forest, Rules, ArtificialNeuralNetwork, SupportVectorMachine,
K-Nearest Neighbors and Naive Bayes. In addition to the selected tech-
niques, an ensemble versionof eachof thesehas beenused and the results
of all 14 techniques are reported in the section showing the results.

3.1.1. Decision Tree
Decision Tree ismost likely theworkhorse ofmachine learning tech-

niques due to its wide use in practice [46]. Among Decision Tree induc-
tion techniques, the J48was selected since theoretically it is very similar
to C4.5, which was developed by Quinlan [47]. It uses a “divide-and-
conquer” approach for building its structure, which consists of nodes,
branches and leaves. A node tests a particular attribute and, based on
the possible values for the attribute, some branches are added to the
node. A leaf represents a class and when an instance reaches a leaf,
the leaf's class will be assigned to the instance. The pruning process,
which is mostly applied after building a Decision Tree, can prevent the
technique from over-fitting problems and assists in interpreting the
structure of the Decision Tree [47]. In building a Decision Tree, the
first decision must be to select an attribute (as a node) and then divide
it (branching). The concept of entropy [48] is used for attribute selection
and for calculating the information provided by each attribute on a
sample of training examples (s).

Entropy sð Þ ¼ entropy P1; P2;…; Pcð Þ ≡
Xc
i¼1

−Pi log2Pi ð2Þ

where c is the number of values that the final class can take and Pi is the
proportion of S that belongs to i≤c. Then informationGain is calculated
for attribute A, when values(A) is the set of values of A and Sv∈S when
the value of A is v.

Gain S;Að Þ ¼ Entropy sð Þ ¼
X

v∈values Að Þ

Svj j
Sj j Entropy Svð Þ ð3Þ

Themain danger of any induction algorithm is overfittingwhich can
happen if noise is present in the training set and the algorithm attempts
to model the noisy examples. In other words, hypothesis h∈S overfits
the data if h⁎∈S and errorD are errors in the entire data:

errortrain hð Þ b errortrain h�ð Þ ð4Þ
errorD hð Þ b errorD h�ð Þ: ð5Þ

To avoid overfitting, GainRation can be used as a new metric.

SplitInformation S;Að Þ ≡−
Xc
i¼1

Sij j
Sj j log2

Sij j
Sj j ð6Þ

GainRation S;Að Þ ≡ �Gain S;Að Þ
SplitInformation S;Að Þ ð7Þ

Moreover, reduced error pruningwhichwas introduced by [49] tries
to avoid overfitting. This technique allows the algorithm to grow the
tree and then prunes the tree. It replaces a sub-tree on a leaf and assigns
the most common class to that leaf. Then the pruned tree is tested by
unseen instances. If the accuracy has not decreased then the prune is
accepted. This process is iteratively applied to all sub-trees.

3.1.2. Random-Forest
Random-Forest can be categorized as ensemble learning. This

technique grows many classification trees which are based on the
random sampled instance. The class for each instance is chosen by vot-
ing among the constructed trees [50]. This is a powerful technique for
dealingwith noisy data, and is also a competitive algorithm for boosting
adaptive bagging algorithms [51]. Random-Forests builds K tree-based
learners h1(x) ,h2(x) ,… ,hk(x) and is trained with pair (x;y) instances.
x consists of independent attributes and y is the class label which can
take c, a different class label. p(yi) is the probability of the class yi and
p(yi | vi ,k) is the probability of class yi conditioned by the attribute Ai

having value vk. Each tree is trained with n instances that are selected
randomly with replacements. For splitting, a subset of attributes is se-
lected randomly and the attributewith the highestGini index is selected
in that node. The constructed trees are not pruned and the final class
label for an instance is obtained by voting from all individual trees. Ok

and Q(x ,yi) are defined respectively as out-of-bag instances and out-
of-bag proportion of class yi votes, and also I(.) is defined as an indicator
function.

Q x; yið Þ ¼ ∑K
k¼1 I hk xð Þ ¼ yi; x; yð Þ ∈Okð Þ
∑K

k¼1 I hk xð Þ; x; yð Þ ∈Okð Þ
ð8Þ

The margin function, which measures the gap between the average
vote for right class y and the average vote for all other classes, is defined
as follows.

mr x; yð Þ ¼ Pðh xð Þ ¼ yÞ � maxcj¼1; j≠y Pðh xð Þ ¼ yiÞ ð9Þ

Strength s is also defined as the expectedmargin and is calculated by
measuring the average over the training set.

s ¼ 1
n

Xn
i¼1

Q xi; yð Þ−maxcj¼1; j≠yQ xi; yið Þ
� �

ð10Þ

The variance of themargin over the square of the standard deviation
of the series k trees is used for computing the average correlation as fol-
lows:

p ¼ var mrð Þ
sd hð Þ2

¼
1
n
∑
n

i¼1
Q xi; yð Þ � maxcj¼1; j≠y Q xi; yið Þ
� �2

� s2

1
k∑

K
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk þ bpk þ pk � bpk� �2q� �2 ð11Þ

where pk is an out-of-bag estimate of P(hk(x) =y) and bpk is an out-of-
bag estimate PðhkðxÞ ¼ byiÞ and byi is an estimate for every training
instance x with Q(x,yi).
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3.1.2. Rules
From rule-based techniques, the PART [52] has been selected. This

“separate-and-conquer” approach uses partial C4.5 in each interaction.
The main difference between Decision Tree and rule based techniques
is that Decision Tree can pick several attributes at each node but the
rules based technique only focuses on one class at a time [53]. PART
does not need any global optimization unlike C4.5 and RIPPER [54],
and can learn one rule at a time. It uses a Decision Tree for creating
the rules and then removes the instances thatwere covered. After build-
ing a tree, the most converged leaf is selected for generating a rule. This
process is repeated until no instances are left. Simplicity is the main
advantage of PART in comparison to other similar rules schemes,
while its performance is compatible to other C4.5 and RIPPER.
Fig. 1. Distribution of customer
3.1.3. Multilayer Perceptron
The Multilayer Perceptron (MLP) is a feed-forward artificial neural

network model which uses back-propagation for training its network
[55]. The network consists of input nodes which are training attributes,
internal nodes or a hidden layer, and output nodeswhich in this case are
the decision classes and the perceptrons between them. A perceptron
attempts to find a hyperplane to classify in high dimensional space
[56]. MLP is very adaptive for learning, which means it is capable of
learning how to find a relationship between inputs and outputs [57].

3.1.4. Support Vector Machine
A Support Vector Machine (SVM) is a statistical learning method

that was developed by [58,59]. In a simple binary classification problem
s in the metropolitan area.



Fig. 2. Categorizing customers based on the assigned depot.
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with (x,y) dataset where y∈ {-1,+1} it can separate two classes as
follows using an hyperplane where w is weight vector and b is bias:

w; xið Þ þ bh i≥ þ 1 if yi ¼ þ1 ð12Þ

w; xið Þ þ bh i≥ � 1 if yi ¼ �1 ð13Þ

which can be summarized as:

yi w; xið Þ þ bh i≥ þ 1 ð14Þ

the distance between a point xi and the classifier hyperplane is

w; xið Þ þ bh ij j
wj jj j ð15Þ

and with margin p then

yi w; xið Þ þ bh ij j
wj jj j ≥p ð16Þ

for the canonical hyperplane numerator is equal to one, and the distance
of training instances which are closest to the hyperplane so-called
support vectors is calculated as follows:

r ¼ 1
wj jj j ð17Þ

p ¼ 2r ¼ 2
wj jj j : ð18Þ

Thus, for finding the maximum margin the ||w || needs to be mini-
mized.

minimize
1
2

					 wj jj2 ð19Þ

Subject to:

yi w; xið Þ þ bh i≥ þ 1 i ¼ 1;…;n: ð20Þ
This model can be transformed into the dual space by using

Lagrangian [60]

L w; b;αð Þ ¼ 1
2

wk k2−
Xn
i¼1

αi yi w; xið Þ þ bh ið Þ−1ð Þ ð21Þ

∂L w; b;αð Þ
∂w

¼ 0⇒w
Xn
i¼1

αiyixi ð22Þ

∂L w; b;αð Þ
∂b

¼ 0⇒w
Xn
i¼1

αiyi ¼ 0 ð23Þ

and therefore can be considered as a dual optimization problem.

maximize
Xn
i¼1

αi−
1
2

Xn
i

Xn
j¼1

αiα jyiy j xi ;x jh i ð24Þ

Subject to:

Xn
i¼1

αiyi ¼ 0 ð25Þ

αi≥0 i ¼ 1;…;n ð26Þ
αi so-called support vectors which follow the Karush–Kuhn–Tucker
[61] theorem.

αi yi w; xih i þ bð Þ � 1½ � ¼ 0 i ¼ 1;…;n ð27Þ

αi≥0⟹ yi w; xih i þ bð Þ � 1 ¼ 0 ð28Þ

αi ¼ 0⟹ yi w; xih i þ bð Þ � 1≥0 ð29Þ

Thus, only support vectorswhich have non-zeroαi and xi′swithαi=0
are beyond separating hyperplanes [62]. Also, the similarly model soft
margin in SVM (Eq. (30)) is valid for all misclassified instances.

yi w; xih i þ bð Þ≥1� ξi ð30Þ

Thus ξi≥1 must be minimized.

minimize
1
2

wk k2 þ C
Xn
i¼1

ξi ð31Þ

Subject to:

yi w; xih i þ bð Þ≥1� ξi i ¼ 1;…;n ð32Þ

ξi≥0 i ¼ 1;…;n ð33Þ

C≥αi ≥0 i ¼ 1;…;n ð34Þ
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Among the SVM techniques, we picked SMO (Sequential Minimal
Optimization) which was developed by Microsoft [63]. This is an SVM
and is fast in solving large quadratic programming (QP) problems. It
splits the QP problems into a series of simpler possible QP problems
and then solves these small components analytically. SMO is able to
deal with a huge number of attributes in training sets and is also flexible
in avoiding overfitting bymaximizing themargin around its hyperplane
[64].
3.1.5. Naive Bayes
Among the probabilistic learning approaches, we selected the Naïve

Bayes (NB) [65]. This is a combination of Bayes' theoremand naïve inde-
pendence assumptions. It is based on an independent featuremodel and
always prefers the simple things first. It also assumes that attributes are
completely independent. Therefore, if inevitably there are dependencies
between the attributes, the performance of NB will be affected.
3.1.6. Lazy (KNN)
From instance-based learning techniques, which are also called Lazy

techniques, the KNN (K-Nearest Neighbors) methods are very widely
used. From these techniques we selected the IBK [66] technique,
which for every new testing instance only stores the training data
based on neighbors and attempts to find similarities and the best
class. IBK uses the distance weighting method to decrease the effects
of far neighbors. Since the solution is local, the data will not be lost in
generalization [67].
Fig. 3. Categorizing customers based
3.1.7. Ensemble technique
Ensemblemethods are designed tomultiple algorithms and obtain a

better performance from any of the constituent models. Among the
ensemble learningmethodswe selected theAdaBoostwhichwas devel-
oped by Freund and Schapire [68]. AdaBoost works by repeatedly
running a classifier over the training data and increasing the weight of
misclassified instances after each run. The class of an instance is
determined by voting among the built classifiers. This method forces
the classifier to focus on the most difficult instances. For a simple
problem h :X→Y with the training set (x1,y1) ,… , (xm,ym) where
xi ∈X ,yi∈Y={-1,+1}.AdaBoost calls a learning scheme (called a
weak algorithm) and repeats it T times. At run t , t≤T the weight of in-
stance i is denoted byDt(i) which initially for all instances is set equally;
however, after each run the weight of misclassified instances increases.
This forces the learning scheme to focus on difficult instances.

Dtþ1 ið Þ ¼ Dt ið Þ
Zt

� e−αt if ht xið Þ ¼ yi
eαt if ht xið Þ ≠ yi



Dtþ1 ið Þ ¼ Dt ið Þe−αt yiht xið Þ

Zt

ð35Þ

when

αt ¼ 1
2

ln
1� εt
εt

ð36Þ
on assigned depots in a 3D view.



Table 1
Summary of results.

Algorithm ID ACC FSC APR PRC RMSE CVMS MSP AUC SAR Building time (s) Testing time (s)

J48 1 83.244 0.239 0.85 0.03 0.826 0.85 0.837 0.948 0.847 0.219 0.002
Random-Forest 2 83.592 0.221 0.868 0.03 0.83 0.868 0.848 0.968 0.861 0.496 0.005
PART 3 81.577 0.247 0.833 0.03 0.823 0.833 0.828 0.942 0.837 1.83 0.012
ANN 4 77.883 0.259 0.781 0.032 0.808 0.781 0.793 0.962 0.827 20.482 0.004
SVM 5 76.664 0.328 0.722 0.024 0.839 0.722 0.775 0.921 0.786 4.249 0.005
NB 6 75.233 0.274 0.73 0.026 0.824 0.73 0.774 0.942 0.807 0.013 0.011
KNN 7 73.964 0.273 0.683 0.019 0.861 0.683 0.761 0.949 0.805 0.001 0.338
Boosted-J48 8 83.48 0.244 0.85 0.027 0.842 0.85 0.846 0.972 0.854 2.472 0.011
Boosted Random-Forest 9 84.015 0.249 0.853 0.029 0.83 0.853 0.841 0.966 0.852 4.856 0.065
Boosted PART 10 83.779 0.244 0.841 0.026 0.847 0.841 0.843 0.97 0.855 29.334 0.148
Boosted ANN 11 77.883 0.28 0.781 0.032 0.808 0.781 0.793 0.942 0.813 124.624 0.016
Boosted SVM 12 76.664 0.304 0.722 0.024 0.839 0.722 0.775 0.845 0.769 18.577 0.005
Boosted NB 13 75.233 0.311 0.73 0.026 0.824 0.73 0.774 0.88 0.774 0.772 0.037
Boosted KNN 14 73.964 0.303 0.683 0.019 0.861 0.683 0.761 0.87 0.769 22.282 1.065

ACC = accuracy.
FSC = F-score.
APR = average precision.
PRC = precision.
RMSE = root mean square error.
CVMS= cross-validation mean sensitivity.
MSP = mean specificity.
AUC = area under the ROC (receiver operating characteristic).

SAR = ACCþAUCþð1�RMSEÞ
3 .
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where Zt is the normalization constant and εt is the error of ht. The final
output is calculated by voting.

Hfinal xð Þ ¼ sign
X
t

αtht xð Þ
 !

4. Field data

As was mentioned, the size and amount of data that is used in this
study is much greater than the datasets that have been used in similar
research in the literature. The richness of the data helps the authors to
draw their conclusions more confidently and introduce more general-
ized models. The proposed approach is tested with a field dataset
belonging to an active RMC which belongs to one of the largest RMC
companies in Australia. For the collected datasetwe particularly focused
on the Adelaide metropolitan area. The available database covers
4 months in 2012 of the RMC which has 4 batch plants and around 40
trucks. In Fig. 1, the distribution of projects across the metropolitan
Table 2
Results of paired t-test (P values).

Random
–Forest PART ANN SVM NB KNN

10
 fo

ld

J48 0.54676 0.06843 2.8E–06 4.6623E–08 3.7113E–09 1.0667E–10

Random–Forest 0.01901 6.1E–07 1.0156E–08 7.7589E–10 2.2751E–11

PART 7.0E–05 6.9759E–07 2.7162E–08 5.0552E–10

ANN 0.08676506 0.00142665 1.326E–05

SVM 0.0461836 0.00036912

NB 0.06054278

KNN

Boosted–J48

Boosted–
Random–Forest

Boosted–PART

Boosted–ANN

Boosted–SVM

Boosted–NB
area is illustrated, which supports the premise that customers' locations
do not follow a uniform pattern.

It alsomight be assumed that customers in a particular area are sup-
plied from a nearby depot, but in practice this is not always true. Figs. 2
and 3 show the complexity of depot allocation for each delivery. Fig. 2
illustrates the allocated depot for each customer by assigning different
colors in order to plot customers, where each of the four colors belongs
to a depot. Fig. 3 plots each color in a separate 3D plate to show the huge
number of duplications in different geographical locations. This figure
disproves the abovementioned assumption. The huge number of
overlaps between the supply areas provides proof that probably other
attributes rather than simply the location of customers are being
taken into account by experts when assigning a depot to a customer.
5. Results and discussion

5.1. Evaluation

The selected learning schemes are tested with the available dataset.
10 fold cross-validation is used for evaluating the selected algorithms,
Boosted 
J48

Boosted
Random–

Forest

Boosted
PART

Boosted
ANN

Boosted
SVM

Boosted
NB

Boosted
KNN

0.64152805 0.43063309 0.4090856 0.00012295 4.6623E–08 3.7113E–09 1.0667E–10

0.40818081 0.82709411 0.8194608 2.8831E–05 1.0156E–08 7.7589E–10 2.2751E–11

0.54745121 0.01483109 0.01147406 0.00187305 6.9759E–07 2.7162E–08 5.0552E–10

0.00205116 6.9216E–07 4.037E–07 0.67841977 0.08676506 0.00142665 1.326E–05

0.00015722 1.3647E–08 6.9329E–09 0.07708727 1 0.0461836 0.00036912

1.3243E–05 1.0806E–09 5.5837E–10 0.00287098 0.0461836 1 0.06054278

1.116E–06 3.6654E–11 1.6858E–11 7.58E–05 0.00036912 0.06054278 1

0.34698716 0.34015198 0.00780035 0.00015722 1.3243E–05 1.116E–06

0.99973213 2.6592E–05 1.3647E–08 1.0806E–09 3.6654E–11

1.9775E–05 6.9329E–09 5.5837E–10 1.6858E–11

0.07708727 0.00287098 7.58E–05

0.0461836 0.00036912

0.06054278



Fig. 4. Distribution of accuracies obtained from 10 fold cross-validation.
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with 10 fold cross-validation being the standard way of assessing a
learning scheme on a particular dataset [46]. In this evaluation method,
the datasets are divided into 10 fold, with around 9 fold used for training
and the remaining 10% of the data being used for testing.

5.2. Assessing metrics

Eleven metrics have been selected for assessing the performance of
the selected algorithms from different perspectives which are listed in
Table 1. From a general perspective, accuracy (ACC) is the most impor-
tant featurewhen comparing two ormore algorithms because it reflects
the ability of each learning scheme to identify the correct class, which
also is the main job of a classifier. In terms of accuracy, Boosted-
Random-Forest, Boosted PART, Random-Forest, Boosted J48, J48 and
PART achieved the ranks 1 to 6 respectively, with KNN being the last.
The achieved results for ANN, SVMandNB and their boosted algorithms
are exactly same, while in other metrics there are slight differences,
particularly in time.

5.3. Algorithms ranking

As is evident in (Table 1), the accuracy rates of most of the algo-
rithms are similar. In instances where algorithms are slightly different
due to randomness concerns, those algorithms which outperform
others based only on accuracy cannot be identified [69–71]. Moreover,
the best algorithm in one feature may not necessarily be the best in
other performance metrics. In similar cases, the significance test is rec-
ommended. The t-test is a common significance test for machine learn-
ing, and is used for comparing machine learning algorithms in one
domain [43,72]. The t-test investigates the meaningful difference
between a pair of algorithms. There are two hypotheses in a t-test: H0

for equality and H1 for inequality at α level of significance. The Ρ value
is calculated through a t-test. If it is lower thanα then H1will be accept-
ed. Otherwise, H0 is true. This indicates that there is no significant differ-
ence between the two algorithms. The calculated error values for each
algorithmwere used in a paired t-test withα=0.01 or at the significant
level of 99%; the derived results are shown in (Table 2). In this table, the
significant differences are highlighted and it is obvious that most of the
learning schemes are significantly different. The average of 10 times cal-
culating accuracy obtained from 10 fold cross-validation for most of the
selected algorithms are very similar. However, because their standard
deviations are very small, most of the algorithms are significantly differ-
ent.We have attempted to illustrate this issue in Fig. 4. According to the
results in (Tables 1 and 2), we can drop Boosted J48, J48 and PART from
the shortlist of the top 6 algorithms because there are significant differ-
ences between those and Boosted Random-Forest (rank 1) and
Random-Forest (rank 2). However, there is no significant difference
between ranks 1 to 3. Under these circumstances, and considering the
elapsed time, out of the top 3 algorithms Random-Forest qualifies for
further studies.

One of the most interesting of the achieved results is related to the
computing time. This result shows that all of the selected algorithms
can solve depot allocation for around 800 customers in less than a sec-
ond. In the case of using updatable learning algorithms in which the
relearning process is being done with a new instance, the computing
time also is very small. This ability of machine learning provides us
with an opportunity to move toward automation in RMCDP especially
when the system is changed and re-allocation must be done. Moreover,
from these results it can clearly be seen that the machine learning ap-
proach can match experts' decisions with an accuracy of around 85%.
The issue that must be considered here is human error. It is expected
from the qualified machine learning algorithms that any human error
will be detected and a better solution can be provided. So, perhaps the
misclassified instances which are counted as errors are not truly bad
decisions. Another possibility is that under some circumstances the
experts are free to choose a depot from a list of available depots, and
their decisions are mostly arbitrary. This means that another choice
from the list of available depots can be an acceptable decision. This
topic needs an extensive coding process to investigate the feasibility of
misclassified instances by the qualified machine learning scheme
(Random-Forest) that can be considered as future work.

6. Conclusion

Experts generally handle Ready Mixed Concrete Dispatching
Problems (RMCDPs) manually by taking into account the real data
that is mostly supplied for them automatically. This paper has intro-
duced a new approach for the automatic allocation of the resource at
the tactical level of RMC dispatching. To do so, the depot assignment
task was formulated as a supervised machine learning problem (classi-
fication) which can be trained by observing experts' decisions in RMC
dispatching rooms. For this purpose, sevenmachine learning techniques
with their boosted algorithms were selected and compared with each
other. A set of attributes was extracted from a field dataset to construct
thedataset. This databasewas gathered for a period of 4months froman
active batch plant in Adelaide, Australia which has 4 depots and around
40 trucks. Eleven metrics were used to deeply investigating the perfor-
mance of the selectedmachine learning techniques from different prac-
tical prospective. The significant testwas conducted becausemost of the
algorithms achieved similar results. Random-Forest with 85% accuracy
outperformed other techniques by considering the t-test results and
elapsed time. One of the most interesting achieved results is related to
the computing time. The results show that all the selected algorithms
can solve large-scale depot allocation with a very short computing
time. This is possible because a model built by a machine learning algo-
rithm only needs to be tested with new instances, which does not need
an extensive computation effort. This provides uswith a chance tomove
toward automation in RMCDP, especially for RMC with dynamic
environments (e.g. order cancellation, road traffic, truck breakdown,
depot breakdown) where resource allocation might need to be quickly
recalculated during the RMC process due to changes in the system.
Under these circumstances and when on-time decisions are required,
the introduced machine learning based method can be considered as a
practical decision support tool due to its short computing time as well
as the ability of matching experts' decisions with a high accuracy.

In this paper, automatically solving RMCDP at a tactical level
was studied using machine learning algorithms trained by experts'
decisions. For future work, potential enhancement of the introduced
method with operation research methodology is a consideration. For
instance, there is a valid concern regarding about the feasibility of
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misclassified solutions (i.e., the machine learning approach might have
rejected a particular solution even though it could have been made to
work). Solution feasibility can be difficult to address within a pure ma-
chine learning context but a combined methodology (mixing machine
learningwith optimization tools) could yield advantages in terms of re-
ducing the quantity and impact of misclassified solutions.
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