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The pavement performance model is a basic part of the pavement 
management system. The prediction accuracy of the model depends 
on the number of effective variables and the type of mathematical 
method that is used for modeling the pavement performance. In this 
paper, the capability of the support vector machine (SVM) method 
is analyzed for predicting the future of the pavement condition. Five 
kernel types of SVM algorithm are formed and nine input variables 
of the proposed models are extracted from the range of effective vari-
ables on the pavement condition. The international roughness index 
is used as the pavement performance index. The results show that 
the Pearson VII Universal kernel can accurately predict pavement 
performance in its life cycle.

The pavement management system (PMS) concept was conceived 
in the mid-1960s to organize and coordinate the activities involved 
in achieving the best value possible for the available funds (1, 2). 
The American Public Works Association defines pavement manage-
ment as a systematic method for the routine collection, storage, and 
retrieval of the kind of decision-making information needed to make 
maximum use of a limited maintenance budget (3). The pavement 
performance model is one of the critical parts of pavement man-
agement, and predicting the performance of a pavement affects the 
budget allocation for its maintenance in the future. Therefore, the 
accuracy of the pavement performance model should be at a signifi-
cant level. Predicting the performance of a pavement with respect to 
estimating and simulating the deterioration process is very difficult, 
and the process is strongly connected to the assessment of pavement 
condition and serviceability level (4, 5). Pavement performance is 
affected by various parameters and an accurate model must take all of 
them into consideration. In this way, mathematical methods are used to 
find relationships between pavement performance and the parameters 
that affect it. Thus it is important to find a better mathematical method 
to predict the future of the pavement condition.

In this paper, a data set consisting of nine effective variables on 
pavement condition is collected and modeled using a support vector 
machine (SVM) for regression. SVM offers the following advantages 
over conventional statistical learning algorithms (i.e., decision tree 
learning, maximum entropy method): (a) high generalization perfor-
mance even with high-dimension feature vectors and (b) the ability 
to manage kernel functions that map input data to higher-dimensional 
space without increasing computational complexity (6).

The Long-Term Pavement Performance (LTPP) program is used 
to prepare data points for modeling and to investigate the accuracy 
of the examined model. The prepared data are used as training data 
to construct five types of SVM algorithms for the modeling of pave-
ment performance. The results are then compared to indicate the 
capability of each proposed model.

The paper is structured in the following sections: pavement perfor-
mance models and effective variables on pavement condition, speci-
fications of the SVM method, an explanation of how the required data 
were collected, and results of the examined model for the prediction 
of pavement performance.

Pavement Performance models

The PMS consists of several parts. The evaluation of pavement con-
dition or performance and the prediction models that forecast its 
condition in the future are two of the main parts of the PMS (7, 8).  
A road pavement continuously deteriorates as a result of the combined 
actions of traffic loading and the environment. The ability of the 
road to satisfy the demands of traffic and the environment over its 
design life is known as performance (9). Attoh-Okine mentioned the 
importance of the pavement performance model (10). Without per-
formance models, deferring maintenance would have no technical 
or economic consequences. The first comprehensive effort to estab-
lish an object indicator of pavement performance was made in the 
late 1950s. Until that time, inadequate attention had been paid to the 
evaluation of pavement performance; a pavement was considered to 
be merely either satisfactory or unsatisfactory (9, 11).

In general, there are two types of pavement performance. One 
refers to the structure of the pavement and includes such things as 
fatigue, while the other expresses the function of the pavement and 
includes riding quality. Various indexes have been used to describe 
the pavement performance as it relates to structural or functional 
condition. For example, the present serviceability index, pavement 
condition rating, pavement condition index, international roughness 
index (IRI), and riding comfort index are common indexes used to 
describe the condition of a pavement. With current pavement condi-
tion assessments, agencies are equipped with the information needed 
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to predict the future condition of a segment. In pavement manage-
ment, conditions are predicted with respect to performance models 
that estimate the average rate of pavement deterioration each year. In 
addition to forecasting future conditions, these performance models 
assist with the following activities (4, 12):

•	 Identifying the appropriate timing for pavement maintenance 
and the rehabilitation of each segment;
•	 Identifying the most cost-effective treatment strategy for the 

pavement segments in the network;
•	 Estimating pavement needs and associated budgets required 

to address agency-specified goals, objectives, and constraints; and
•	 Demonstrating the consequences of different pavement invest-

ment strategies.

Many models for the prediction of pavement performance are 
already available but, given the same input data, they tend to produce 
different predictions. Pavement performance models should be based 
on fundamentally correct standard engineering principles to be reli-
able and acceptable. It is also important that these models are easily 
adjustable to the available historical data and the engineer’s knowl-
edge of local materials, environmental effects, construction and 
maintenance practices, and so forth (13). Because making accurate 
predictions is important, the methods for predicting pavement per-
formance should not be selected arbitrarily. Mistakes or a random 
selection of methods for performance prediction can be costly to 
the highway system (10). However, it is difficult to find a complete 
model that involves all properties; as Molenaar mentioned, in spite 
of the enormous efforts that have been made in the pavement engi-
neering field, it still is not possible to make accurate and precise 
predictions of pavement life (14). Nonetheless, researchers have 
developed many methods, including regression models (15–19), 
Markovian approaches (20–22), neural network methods (23–25), 
fuzzy logic models (1, 4), and hybrid techniques (26). Each model 
contains distinct specifications about the mathematical approach 
used for modeling and the number of effective variables on pave-
ment performance considered in the modeling. Thus the reasonable 
accuracy of the model is related to these two elements. Each of 
these models forecasts the effect of change in the effective variables 
on pavement condition. Each mentioned model has its own specific 
advantage and disadvantage and also exhibits different prediction 
accuracies.

A mathematical approach is used to find the relationships between 
pavement condition and the effective variables on it. Therefore, it is 
important to examine the various mathematical methods to find the 
best one for expressing the relationships between input and output 
factors of the pavement performance model. To date, modeling of 
pavement performance has been extremely complicated since no 
PMS can consider more than a few of the parameters (27).

The pavement deterioration process is influenced by many inter-
acting parameters, including, but not limited to, pavement design, 
layer thicknesses, properties of materials, construction quality, under-
lying soil characteristics, climate changes, traffic loading, and main-
tenance activities (28). The interactions of these parameters result in 
a complex system. There is also a large variation in the characteristics 
of pavement materials and structures.

Moreover, the available performance prediction models have 
several limitations in that most of them involve large simplifications 
and some contain input factors that are difficult to quantify and do 
not consider all the effective factors. Each model used has specific 
advantages and disadvantages related to the type of applied model 

and the type of effective variable. For example, regression models  
are simple to understand and use in a PMS, but these are not adaptable 
to a wide range of road properties. Furthermore, heuristic methods, 
such as an artificial neural network, are able to model a complex sys-
tem like pavement performance but they require historical data that 
are not always available for all types of roads. Some models con-
centrate on material properties, and others focus on traffic loadings  
or pavement structure. To date, the modeling of pavement perfor-
mance has been extremely complicated since no PMS can consider 
more than a few of the parameters (10). The prediction accuracy of the 
models needs to be analyzed during the duration of a pavement life 
cycle because the prediction model may show a range of accuracies 
in the pavement life cycle (23). Thus, it is important for PMS users to 
identify the reliability of the models in both the short and long terms of 
the pavement life cycle for appropriate budget allocation to be made.

Machine learning techniques have been widely used in the litera-
ture to solve civil engineering predictions and classification problems 
(29–36). Also, some researchers used this technique in pavement 
evaluation (37–41). In this paper, SVM is used to predict pavement 
performance in an attempt to use more effective input variables of 
the prediction model. In addition, the accuracy of the proposed SVM 
models is analyzed in the short and long term.

suPPort vector machine for regression

SVM is a statistical learning method that was developed by Boser 
et al. (42). Maximizing the margin between the separating hyper-
plane and data rather than minimizing the trading error is one of the 
main advantages of SVM in comparison with traditional learning 
schemes. SVM was initially developed to solve classification prob-
lems in a simple binary classification problem with (x, y) data set 
where y ∈ {−1, +1}; it can separate two classes as follows by using 
a hyperplane where w is weight vector and b is bias:

, 1 if 1 (1)w x b yi i( ) + ≥ + = +

w x b yi i, 1 if 1 (2)( ) + ≥ − = −

which can be summarized as

, 1 (3)y w x bi i( ) + ≥ +

The distance between point xi and the classifier hyperplane is

w x b

w
i,

(4)
( ) +

and with margin p then

,
(5)

y w x b

w
pi i( ) +

≥

for the canonical hyperplane numerator is equal to 1, and the distance 
of training instances that are closest to the hyperplane so-called 
support vectors is calculated as follows:

1
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w
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Thus, for finding the maximum margin, the ⎜⎜w ⎜⎜ needs to be 
minimized:

minimize
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2
(8)
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This model can be transformed into the dual space by using the 
Lagrangian function (43):
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It therefore can be considered as a dual optimization problem:
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where αi are so-called support vectors that follow the Karush–Kuhn–
Tucker (44) theorem.

, 1 0 1, . . . , (16)y w x b i ni i i[ ]( )α + − = =

y w x bi i i0 , 1 0 (17)( )α ≥ ⇒ + − =

y w x bi i i0 , 1 0 (18)( )α = ⇒ + − ≥

Thus only support vectors that have nonzero αi and xi’s with αi = 0 
are beyond separating hyperplanes (45). Also, the similarly modeled 
soft margin in SVM (Equation 31) is valid for all misclassified 
instances.

y w x bi i i, 1 (19)( )+ ≥ − ξ

Thus ξi ≥ 1 must be minimized:
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Cortes and Vapnik introduced SVM for regression by considering 
the regression as a single classification problem with a training set 
of N sample: (x1, t1), (x2, t2), . . . , (xN, tN) and ε-insensitive error 
function (46).
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The error then needed to be minimized is as follows:
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Among the SVM techniques for regression, the authors selected 
SMO (sequential minimal optimization), which was originally devel-
oped by Microsoft (47) for classification. SMO regression is fast in 
solving large quadratic programming (QP) problems. It splits the 
QP problems into a series of simpler possible QP problems and then 
solves these small components analytically. SMO regression is able 
to deal with a huge number of attributes in training sets and is also 
flexible in avoiding overfitting by maximizing the margin around 
its hyperplane (48).

Kernels are used in SVM to deal with nonlinear classification and 
regression problems by reducing the complexity of the calculations 
(49). A kernel calculation is easy, but it reduces the complexity of 
feature vectors by providing an opportunity to linearly solve non-
linear functions in high-dimensional spaces. In this research, the 
authors used three nonlinear kernels as follows:

1. Polynomial (dth degree)

K x y x y d, 1 , (26)( )( ) ( )= +

2. Radial basis function (C is constant)

, exp (27)
2

K x y
x y

C
( ) = −

−





3. Pearson VII Universal (50)
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+
− −
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where ω and σ are constant and control the half-width and tailing 
factor of peak in the Pearson VII function (51).
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data collection

The effective implementation and utilization of PMSs in generating 
and evaluating various alternative strategies based on engineering 
and economic principles is largely dependent on the ability to pre-
dict the future condition of pavement (13). The accurate prediction 
of pavement performance is very important for the efficient man-
agement of the road infrastructure. By reducing the prediction error 
of pavement deterioration, agencies can achieve significant budget 
savings through timely intervention and accurate planning (52). The 
accuracy prediction of the pavement performance model depends  
on the mathematical method and the number of effective variables 
used for modeling. The pavement deterioration process is influenced 
by many interacting parameters, including, but not limited to, pave-
ment design, layer thicknesses, properties of materials, construction 
quality, underlying soil characteristics, climate changes, traffic loading, 
and maintenance activities (28).

In this research, the main effective variables on pavement perfor-
mance were studied and the effective factors gathered from groups 
of pavement structure, climate changes, and traffic loadings. Each 
effective group consists of some factors that affect pavement perfor-
mance directly or indirectly. There are some unknown factors that 
affect the pavement deterioration and also it is difficult to quantify 
some available factors. For example, the pavement structure group 
consists of several factors, such as surface thickness, base and sub-
base layers, percentage of asphalt content, percentage of air void of 
hot-mix asphalt, unit weight of hot-mix asphalt, percentage passing 
No. 200 and No. 4 sieves, and plasticity index of base, subbase, and 
subgrade (24). In this way, nine factors that affect pavement con-
dition are extracted from the main effective groups. For the purpose 
of this paper, surface thickness and pavement thickness, including 
surface, base, and subbase, were selected from a group of pavement  
materials and structure. Equivalent single-axle load, annual average 
daily traffic, annual average daily truck traffic, annual average precip-
itation, annual average temperature, and annual average freeze index 
were selected from the traffic condition group and climate changes 
group, respectively. Pavement age (number of years since construc-
tion) is another effective factor. Each of the elements is measured 
annually in the pavement life cycle (23).

Several indexes have been invented to indicate pavement condition 
or deterioration. The most common indexes of pavement performance 
are fatigue, cracking, surface rutting, riding quality, and skid resistance 
(9). In this research, IRI was used as the pavement condition index. 
The IRI is a summary statistic of the surface profile of the road and 
is computed from the surface elevation. It is defined as the average 
rectified suspension motion to the traveled distance obtained from a 
mechanical model of a standard quarter-car traveling over the road 
profile at 80 km/h (9, 53). IRI value is raised by increasing pavement 
age and also by the effect of deterioration elements. In this paper, 
the proposed models predict the change of the IRI characteristic 
versus pavement operation time.

LTPP was used to provide the required data for modeling and 
analyzing the accuracy of the models. This LTPP program is primar-
ily designed to provide state-of-the-art information to state highway 
agencies so they can build and maintain longer-lasting pavements 
(54). The accuracy of the LTPP database is acceptable and is used in 
different research. The LTPP data set is composed of a categorized set 
of data from various pavement types. The data set contains detailed 
information on pavement materials, environmental conditions, traffic, 
and maintenance and rehabilitation (24).

In this research, asphalt concrete pavement on a granular base was 
chosen as the study pavement and was selected from various types of 
pavement. The pavements without rehabilitation or reconstruction 
in their life cycle were used to show continuous change in IRI versus 
the age of the pavement. The type of the subgrade is limited to one 
type, so the effect of this factor is permanent in the modeling; it is also 
assumed that standard materials were used in the pavement construc-
tion. However, analyzing the effect of material properties is not the 
goal of this paper. To avoid a lack of data in a wide range of properties, 
the sections without any annual average daily traffic greater than 1,000 
or annual average freeze index greater than 100 in their life cycles 
were not selected. The linear interpolation was used to determine the 
missing data. Thus 26 sections, including 205 observations of annual 
data, were extracted. The following list shows the specifications of the 
data from the general and specific pavement studies in LTPP for the 
prediction model of pavement performance:

•	 Type of surface layer: hot-mix asphalt concrete
•	 Type of base layer: granular
•	 Age: up to 17 years
•	 Annual average precipitation: 131.4 to 1,786.7 mm
•	 Annual average temperature: 3.9°C to 17.5°C
•	 Annual average freeze index: up to 1,360°C-day
•	 Annual average daily traffic: 225 to 14,629 (some sections have 

less than 1,000 in some years of the life cycle, but not in all years 
of the life cycle)
•	 Annual average daily truck traffic: 14 to 5,336
•	 18-kip equivalent single-axle load: 8 to 1,128
•	 Pavement thickness: 9.52 to 40.9 in.
•	 Surface thickness: 1.4 to 11.7 in.
•	 IRI: 0.586 to 4.005 m/km

results and discussion

This section reports and discusses the achieved results. As mentioned 
in the previous section support vector regression (SVR) with three 
different kernels (polynomial, Pearson VII Universal, and radial 
basis function) was used for predicting IRI. All learning schemes 
are trained and tested with one data set, which was described above. 
Parameter selection is a critical stage when SVR with different 
kernels is used (55–58). In this study, polynomial kernels with Degree 1 
to 3 were tested to ensure the maximum capacity of polynomial 
kernels has been utilized. Therefore, SVR with five different kernels 
as numbered in Table 1 was used to predict asphalt IRI. A 10-fold 
cross validation was used for evaluating the selected algorithms, 
with 10-fold cross validation being the standard way of assessing 
a learning scheme on a particular data set (59). In this evaluation 
method, the data sets are divided into 10 folds, with around nine folds 
used for training; the remaining 10% of the data is used for testing. 
To assess the performance of the selected algorithms, three metrics 
of mean absolute error (MAE), root mean square error (RMSE), and 
correlation coefficient were used. The equations related to these 
performance criteria are presented in Equations 29 to 31.
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where

 N = number of test instances,
 IRIact = actual value of IRI, and
 IRIpred = value of IRI predicted by the model.

A lower value of RMSE and MAE and a higher value of correlation 
coefficient close to 1 indicate better model performance.

In Table 1, the summary of 10-fold cross validation is reported 
using three different metrics (MAE, RMSE, and correlation coef-
ficient). For SVR with polynomial kernels, increasing the degree  
(d in Equation 26) does not necessarily lead to an improvement in 

the accuracy, and from the results one can see that the degree of 2 
outperformed other polynomial degrees. However, in general, SVR 
with Pearson VII Universal kernel outperformed other algorithms 
by achieving better values in all three metrics.

In Table 1, the average of the metrics achieved from 10-fold cross 
validation is reported but does not show the variation in predictions. In 
Figures 1 to 3, respectively, the variations of MAE, RMSE, and corre-
lation coefficient achieved from 10-fold cross validation are depicted. 
It is clear that Algorithm 4 (SVR with Pearson VII Universal kernel) is 
the most stable learner and radial basis function is the worst.

To achieve a better understanding of the performances of the 
selected algorithms, the predictions are investigated in detail to 
reveal the strengths and weaknesses of each algorithm. In Figure 4,  
the predicted values versus the actual IRI values are illustrated. The 
blue line represents the desired situation when predictions and actual 
values are exactly the same. This figure indicates that the performance 
of SVR with polynomial kernels is very similar when Algorithm 1  
(d = 1) slightly underestimates Algorithm 2 (d = 2) and Algorithm 3  
(d = 3) but is not worse than Algorithm 5 (radial basis function).  
However, as expected, Algorithm 4 clearly achieves a better result.

For a deeper study, in Figure 5 the absolute residual of predictions 
versus actual IRI values is depicted. In this figure, the most desired 
situation is when the dots are overlain on a horizontal axis. This 
figure shows that for algorithms, with the exception of Algorithm 4,  
by increasing the IRI values the absolute residuals also increase. 
Similarly, in Figure 6 the sign of residuals is illustrated, and all 
algorithms, with the exception of Algorithm 4, have underestimated 
the IRIs between 0 and 1.5 and have mostly overestimated the IRIs 
over 1.5. Because of the dots overlapping, the only issue that cannot 
be perceived from Figures 4 to 6 is the distribution of errors for each 
algorithm. This issue has been investigated in Figure 7. Although this 
figure indirectly supports Figures 4 to 6, it also shows that Algorithm 3 
and Algorithm 4 have obtained the highest number of relatively zero 
error predictions.

TABLE 1  Tenfold Cross Validation Results of SVR  
with Different Kernels

Kernel Algorithm ID MAE RMSE
Correlation 
Coefficient

Polynomial
 Degree = 1 1 0.341 0.4925 .5874
 Degree = 1 2 0.25 0.3922 .7555
 Degree = 1 3 0.2645 0.4245 .7499

Pearson VII Universal 
  kernel

4 0.1489 0.2259 .9169 

Radial basis function 5 0.3858 0.5787 .5592
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FIGURE 1  Variations of mean absolute error achieved from 10-fold cross validation.
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FIGURE 4  Correlation between actual IRI and predicted IRI.
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FIGURE 5 (continued)  Correlation between actual IRI and absolute residuals of predictions.
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According to the concept of IRI, the IRI value rises by increasing 
pavement age because of the effects of deterioration factors (24), 
so the IRI value is low in the short term and is increased in the 
long term. As seen in Figures 4 to 6, all types of the SVM models, 
except Algorithm 4, demonstrate unacceptable errors in the short 
and long terms combined. For example, Algorithm 5 depicts a high 
correlation and low error in the short term while it depicts high 
data scattering around the correlation line and high error in the long 
term. Algorithm 4 exhibits good distribution of data points around 
the correlation line and a reasonable rate of error in the short and 
long terms combined.

It is essential for a tuned model to meet all performance criteria 
for having a reliable model. In this study SVM with Pearson VII 
Universal kernel predicted pavement performance when it was 
trained and tested with a field data set consisting of nine effective 
variables. The qualified SVM method obtained a correlation coef-
ficient of .916 and MAE of 0.148 (equal to 14.8% error, which is  
accepted) and RMSE of 0.225, which is reasonable. So it can be 
concluded that in this context SVM with Pearson VII Universal ker-

nel can predict pavement performance in the PMS with acceptable 
accuracy.

conclusion

The accurate prediction of pavement performance directly affects 
budget allocation for the maintenance and rehabilitation of the PMS. 
In this paper, the SVM method was applied to predict the future 
of pavement performance. To this end, nine effective variables on 
pavement deterioration were considered and used in five types of 
SVM algorithm. The results show that the Pearson VII Universal 
kernel of SVM is capable of predicting pavement performance in 
the short and long terms of the pavement life cycle. Some other types 
of SVM, such as the radial basis function kernel of SVM, exhibit  
a reasonable accuracy of prediction but only in the short term. In 
general, the SVM method by Pearson VII Universal kernel and the 
nine effective variables could be proposed as a pavement perfor-
mance model in the PMS. Further research could examine more 
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FIGURE 7  Histograms of prediction errors.
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effective variables and other mathematical methods for the modeling 
of pavement performance.
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