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Abstract: Ready mix concrete (RMC) dispatching forms
a critical component of the construction supply chain.
However, optimization approaches within the RMC dis-
patching continue to evolve due to the specific size,
constraints, and objectives required of the application
domain. In this article, we develop a column genera-
tion algorithm for vehicle routing problems (VRPs) with
time window constraints as applied to RMC dispatching
problems and examine the performance of the approach
for this specific application domain. The objective of the
problem is to find the minimum cost routes for a fleet of
capacitated vehicles serving concrete to customers with
known demand from depots within the allowable time
window. The VRP is specified to cover the concrete deliv-
ery problem by adding additional constraints that reflect
real situations. The introduced model is amenable to the
Dantzig–Wolfe reformulation for solving pricing prob-
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lems using a two-staged methodology as proposed in this
article. Further, under the mild assumption of homogene-
ity of the vehicles, the pricing sub-problem can be viewed
as a minimum-cost multi-commodity flow problem and
solved in polynomial time using efficient network sim-
plex method implementations. A large-scale field collect
data set is used for evaluating the model and the pro-
posed solution method, with and without time window
constraints. In addition, the method is compared with the
exact solution found via enumeration. The results show
that on average the proposed methodology attains near
optimal solutions for many of the large sized models but
is 10 times faster than branch-and-cut.

1 INTRODUCTION

Although ready mix concrete (RMC) dispatching is a
common practical need within the construction indus-
try, optimization methods continue to evolve within
the application domain. Often, the previously proposed
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optimization approaches have pursued either: (i) inte-
ger programming (IP) and mixed-integer programming
(MIP) approaches, which have difficulty with large
problem sizes or (ii) meta-heuristic approaches which
can solve larger problems but tend to lack optimality or,
at the least, bounding properties. This article examines
the specific vehicle routing problem (VRP) variation
defined by the RMC dispatching industry, develops
a tailored solution method via column generation
(CG) with bounding properties, and examines the
performance of this method within the application
domain on field data. Specifically, the RMC dispatching
problem consists of delivering a specified amount of
concrete to customers from depots using capacitated
trucks. At each location in the transportation network,
the trucks are expected to start and leave within the
specified time window that is required to load and
unload the concrete. Further, a penalty is incurred for
not delivering concrete to a customer. In addition, the
model presents the added constraints of ensuring that
at most one of the customers is served by the trucks
from at most one of the depots. Different trucks incur
the same travelling time between depots and customers.
However, there could be different travel times between
the start and depot locations and between customer and
finish locations. Moreover, the time window constraints
are a function of the location rather than the vehicles,
with each vehicle incurring the same service times at a
given location. Assuming all the vehicles can fulfill the
demand at a customer location, the fleet of vehicles can
be considered homogenous.

A tour of a truck is the sequence of locations it visits
from the start to the finish. A minimally traversing tour
consists of a start, a depot, a customer, and a finish loca-
tion. A single truck could also serve multiple customers
from multiple depots. A set of tours of the trucks in the
network is feasible, however only when the following
conditions are met: (i) all locations visited by a truck are
in sequence, (ii) at most one of the customers is served,
(iii) at most one of the depots is used in the delivery,
and (iv) the time window requirements at all locations
are satisfied.

Acquiring a near optimum solution for RMC dis-
patching problems is a challenging supply chain issue.
In large-scale metropolitan areas, the RMC dispatch-
ing problems cannot be solved optimally due to the
intractability of the VRP given the aforementioned
constraints and considerations. In other words, the
optimum solution of the problem in a polynomial
time is computationally intractable. To overcome this
issue within the domain of RMC, this article employs
the CG mathematical technique. CG creates solution
iteratively, and then forms convex combinations to
achieve feasibility. The proposed method facilitates

the examination of RMC dispatching problems in an
optimization setting which has not previously been
possible for this particular domain.

This article consists of four sections. In the first
section, the relevant literature in this area is reviewed.
Section 2 covers CG and reformulating steps. In section
3, the results with the field data set are presented and
the proposed method is compared in practice with the
results from branch-and-cut and in the last section the
achieved results are discussed and conclusions drawn.

2 LITERATURE SURVEY

Several attempts have been made to model the dis-
patching and particularly RMC dispatching effectively.
Feng and Wu (2000) introduced a single depot model
by focusing on minimizing idle times. The developed
model was solved heuristically. Feng and Wu intro-
duced a more advanced model in 2006 (Feng and Wu,
2006). Naso et al. (2007) introduced one of the most ad-
vanced RMC models so far. It can cover a multi-depots
RMC but with a homogeneous fleet by considering
multi-objectives. Their model can take into account
the hired trucks as well as the out-sourced deliveries.
This model deals with deliveries to a customer and the
assigned truck/s and depot/s for each delivery. The only
drawback of this model is the large number of decision
variables as well as the number of side constraints. All
the decision variables are binary; therefore, computing
time is a challenge in this model when the optimum
solution is desirable. Yan et al. (2008) presented a new
formulation for a single depot with a homogeneous
fleet; similar to Naso et al. (2007), it splits a customer
depending on the number of required deliveries. A wide
variant of RMC formulation was introduced by Yan
and his colleagues; such as when the overtime is con-
sidered (Yan and Lai, 2007), or covering the incidents
(Yan et al., 2012) and also associating stochastic travel
times (Yan et al., 2012). Lin et al. (2010) presented a
new model by focusing on minimizing the waiting time
when there is uncertainty in demand. They assumed
RMC dispatching as a job shop problem when the
construction site represents a job and trucks correspond
with a workstation. This model can be used for a single
depot with a heterogeneous fleet. Another model in
this context was presented by Schmid et al. (2009) for
a single depot with a heterogeneous fleet. Their model
forces MIP to avoid unsupplied customers by penalizing
the unsatisfied customers in the objective function; later
on a new version of this model was introduced in 2010
(Schmid et al., 2010). Asbach et al. (2009) introduced
a novel model whose structure is much simpler than
that of other introduced models and which can be used



RMC dispatching problem: column generation solution 147

for modeling multi-depots and a heterogeneous fleet.
It has been proved that an RMC optimization problem
is an NP-hard problem (Yan et al., 2008; Asbach
et al., 2009). Therefore, to deal with this problem,
heuristic methods have been widely used in the liter-
ature such as Cao et al. (2004), Feng and Wu (2006),
Garcia et al. (2002), Maghrebi et al. (2013b), Maghrebi
et al. (2014d), and Srichandum and Rujirayanyong
(2010). Despite developments in this area, the solution
structure among most introduced methods is quite
similar, especially in the genetic algorithm (GA)-based
method where the chromosome structure consists of
two merged parts: the first part defines the sources of
deliveries; the second part expresses the priorities of
customers. In the literature, in addition to GA other
approaches have also been studied that will be dis-
cussed briefly in the text that follows. Yan et al. (2008)
introduced a numerical method for solving the RMC
optimization problem by cutting the solution space and
incorporating the branch and bound technique and the
linear programming method. Yan et al. (2012) used de-
composition and relaxation techniques coupled with a
mathematical solver to solve the problem, and Payr and
Schmid (2009) applied variable neighborhood search to
deal with RMC optimization problems. Asbach et al.
(2009) made the mathematical modeling much simpler
by dividing the depots and customers into sub-depots
and sub-customers and most recently Benders Decom-
position (Maghrebi et al., 2014a), Machine learning
approach (Maghrebi and Waller, 2014; Maghrebi et al.,
2013a; Maghrebi et al., 2015a,c), assessing experts’
decisions in RMC dispatching room (Maghrebi et al.,
2014c), new formulation (Maghrebi et al., 2014b), and
Lagrangian approach were applied (Narayanan et al.,
2015) to achieve solutions with a slight optimality gap
but within a practical time. Most recently, Maghrebi
et al. (2015b) assessed the optimality gap of experts’
decision in RMC by comparing their decisions with
IP/MIP and two heuristic methods.

However, CG techniques have not been used par-
ticularly when it is coupled with Dantzig–Wolfe. Since
the time Dantzig and Wolfe (Dantzig and Wolfe, 1960)
proposed the principles of the decomposition of linear
programs, the method has been applied to a variety
of combinatorial integer programs with great success.
Many of the models found in various applications are
amenable to the Dantzig–Wolfe reformulation. In par-
ticular, CG has been successfully applied to different
types of VRPs. Liberatore et al. (2011) apply CG and
branch and price algorithms for VRP problems in the
presence of soft time window constraints. The pricing
problem in their model is a resource-constrained
shortest path problem which is an NP-hard problem
and a bi-directional dynamic programming algorithm

was used to solve it optimally. Goel and Gruhn (2008)
present a CG heuristic for general heterogeneous VRP
problems with time windows. Their model consists of
vehicles with different capacities and incurs different
travel times between locations.

Several authors discuss methods for obtaining re-
duced costs in the context of the Dantzig–Wolfe refor-
mulation of the master problem. Irnich et al. (2010)
proposed a method to derive the reduced cost of the
arcs from a path-based reformulation of the Dantzig–
Wolfe master problem. In this method, the reduced cost
of an arc is computed as the minimum reduced cost of
the path the arc uses. The path’s reduced cost can be
computed efficiently using a bi-directional search tech-
nique. Walker (1969) proposed a method where the
dual variables for the linear relaxation of the compact
formulation can be derived starting from the duals cor-
responding to the last simplex iteration of the master
problem and the pricing sub-problems that are solved
subsequently in the same iteration. The dual variables
thus obtained are feasible and optimal to the linear re-
laxation of compact formulation as well. Dantzig–Wolfe
reformulation also has been used in transportation par-
ticularly for dynamic assessment of traffic such as in Lin
et al. (2011a), Lin et al. (2011b), and Chang et al. (2001),
but in this article we only focus on VRP-based prob-
lems.

3 METHODOLOGY

Column generation is a common method for solving
large-scale integer problems. First, it must be estab-
lished that CG is applicable to RMC dispatching prob-
lems specifically. To examine the applicability of CG
to RMC dispatching, we can consider two principles of
CG. First, a major proportion of the variables are non-
basic at the optimal solution, hence it is required to gen-
erate only those columns whose reduced costs are nega-
tive. In other words, CG deals only with those columns
that are associated with providing the best improvement
of the objective. Second, by applying branch-and-cut
to the reduced problem, CG will lead to achieving im-
provements on the computing performance compared
to applying branch-and-cut to the original problem.

In CG, a sequence of master and pricing problems
are solved. The master problems are the continuous re-
laxation of the original problem and consist of only a
subset of columns to start with. They are also called re-
stricted master problems. The pricing problem is the
minimization of the reduced costs. The RMC prob-
lem can be viewed as a set of tours made by each
truck. In each iteration, the tours that have the most
negative reduced costs are selected and added to the
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Table 1
List of symbols

Symbol Description

C Set of customers
Ck Set of customers visited by a truck k
D Set of depots
Dk Set of depots visited by truck k
K Set of vehicles
us Set of starting points
vf Set of ending points
su Service time at the depot u
tuvk Travel time between u and v with vehicle k
qk Maximum capacity of vehicle k
qc Demand of customer c
wu Time at node u
βc Penalty of unsatisfying the customer c
M A large constant
ϒ Maximum time to haul the concrete
λk Tour of truck k
λ

p
k Path p in tour of truck k

xuvk 1 if route between u and v with vehicle k is
selected, 0 otherwise

yc 1 if total demand of customer c is supplied,
0 otherwise

zuvk Cost of travel between u and v with vehicle
k

zk Cost of truck k in λk

z p
k Cost of truck k in λ

p
k

fuv Flow of a commodity along edge (u, v)

restricted master problems. This process is repeated un-
til no more columns can be generated or until any of the
termination criteria is met. Then the branch-and-cut is
applied to the original problem with only the generated
columns.

In this section, the RMC dispatching problem is refor-
mulated via the CG technique and introduces a method
for formulating RMC dispatching problems. The ter-
minology used in this article for modeling the original
RMC formulation is similar to that of Asbach et al.
(2009).

The original RMC formulation assumes the dispatch-
ing problem is a graph in which depots and customers
are nodes and a delivery is depicted by an arc between
a depot and a customer. To retain the unity throughout
the formulation and the algorithm, all required param-
eters are defined in Table 1.

Minimize
∑

u

∑
v

∑
k

zuvk xuvk −
∑

c

βc yc (1)

Subject to :∑
u∈us

∑
v

xuvk = 1 ∀ k ∈ K (2)

∑
u

∑
v∈v f

xuvk = 1 ∀ k ∈ K (3)

∑
u

xuvk −
∑

j

xv jk = 0 ∀ k ∈ K , v ∈ C ∪ D (4)

∑
u∈D

∑
k

xuvk ≤ 1 ∀v ∈ C (5)

∑
v∈C

∑
k

xuvk ≤ 1 ∀u ∈ D (6)

∑
u∈D

∑
k

qk xuvk ≥ qc yc ∀c, v ∈ C (7)

−M (1 − xuvk) + su + tuvk ≤ wv − wu

∀ (u, v, k) ∈ E
(8)

M (1 − xuvk) + γ + su ≥ wv − wu

∀ (u, v, k) ∈ E
(9)

xuvk ∈ {0, 1} and yc ∈ {0, 1} (10)

The objective function (Equation (1)) forces opti-
mization to find feasible solutions for all customers and
penalizes if a feasible solution for customer c cannot be
found by applying zero to yc. Therefore, due to the large
value of βc, optimization attempts to avoid unsupplied
customers. Equation (2) ensures that a truck at the start
of the day leaves once from its base and similarly Equa-
tion (3) necessitates return of a truck to the depot/its
home at the end of the day. In reality, a truck arrives at
either a depot or a customer then leaves that node after
loading/unloading. This concept is called conservation
of flow and Equation (4) ensures this issue if u ∈ C then
(v ∈ D and j ∈ C) but if u ∈ D then (v ∈ C and j ∈ Dvf).
In this formulation, a depot is divided into a set of sub-
depots based on the number of possible loadings. Sim-
ilarly, a customer is divided into a set of sub-customers
according to the number of required deliveries. To sim-
plify the text, from here on a depot means a sub-depot
which can load a truck only at a specific time and simi-
larly a customer means a sub-customer that requires a
delivery only at a specific time. Therefore, Equations
(5) and (6), respectively, certify sending a truck only
to a customer and a depot only supplies a customer.
Equation (7) checks demand satisfaction for customers.
Equations (8) and (9) are designed to control timing
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issues. Equation (8) ensures that concrete will be sup-
plied to customers within the specified time, and simi-
larly Equation (9) ensures that the travel time for each
customer will not exceed the permitted time for delivery
(γ ) because fresh concrete is a perishable material and
it is not possible to haul it more than (γ ) which varies
according to the type of concrete.

3.1 Master problem

The Dantzig–Wolfe decomposition as applied to in-
teger programs is generally known to provide strong
dual bounds as the feasible region of the master prob-
lem is a tighter formulation compared to that of lin-
ear relaxation. It is a well-known result in network flow
theory that an extreme point xuvk ∈ X is also a path
p ∈ P in the network. The natural choice for network
flow problems is to consider a path-based reformula-
tion of the Dantzig–Wolfe master problem. Vacca and
Salani (2009) consider a reformulation of the master
problem for VRP in which multiple vehicles are aggre-
gated into a single problem with an extreme point rep-
resenting a feasible route any vehicle could cover. In
our reformulation framework, we retain the routes cov-
ered by individual vehicles. An extreme point in our
model consists of truck tours and is a unique traversal
in the network as governed by the constraints 5 and 6
which ensure that at most one of the depots and cus-
tomers is served in the path. Thus, the compact formu-
lation is decomposable by truck tours. Constraints 2, 3,
4, 8, and 9 have block diagonal structures with respect
to trucks whereas constraints 5, 6, and 7 are the cou-
pling constraints with variables associated with all the
trucks. Each truck tour can be equivalently expressed
as follows:

λk ≤
∑

u

∑
v

xuvk (11)

The cost coefficient of each truck tour is defined as the
duration of the truck’s tour in the network path and is
expressed as:

zk =
∑

u

∑
v

zuvk xuvk −
∑
c∈Ck

βc (12)

To achieve the Dantzig–Wolfe restricted master formu-
lation, the compact formulation can then be reformu-
lated in terms of truck tours as:

Minimize
∑

k

∑
p

z p
k λ

p
k (13)

Subject to :∑
u∈us

∑
v

xuvk = 1 ∀ k ∈ K (14)

∑
kεDk

∑
p

λ
p
k ≤ 1 ∀ Dk ∈ D (15)

∑
kεCk

∑
p

qk λ
p
k ≥ qc ∀ Ck ∈ C (16)

∑
p

λ
p
k = 1 ∀ k ∈ K (17)

λP
k ≥ 0 ∀ k ∈ K , p ∈ P (18)

The above formulation is also called the extensive
formulation. Each truck tour xuvk ∈ P can be repre-
sented as the convex combination of truck tours through
the convexity constraints 17. In the presence of the link-
ing constraints 11 between λ

p
k and xuvk, the optimal so-

lution of the Dantzig–Wolfe restricted master problem
λ

p∗

k can be used to recover the solution to the compact
formulation when λ

p
k ∈ {0, 1}. However, when the link-

ing constraints are removed and λ
p
k is relaxed, the op-

timal solution of the Dantzig–Wolfe restricted master
problem forms the primal bound for the compact for-
mulation. From each solution of the pricing problem,
an extreme point is added to the extensive formulation
which is indexed as p. We let the duals corresponding to
the constraints 14, 15, and 16 to be π and the dual cor-
responding to the convexity constraint of truck k to be
σk.

3.2 Computation of reduced costs

As discussed in the literature review, there have been
a few studies related to computing the reduced costs
of the variables in the compact formulation when the
Dantzig–Wolfe decomposition is applied. For instance,
de Aragao and Uchoa (2003) propose a method to for-
mulate an explicit Dantzig–Wolfe master called Explicit
Master that retains the linking constraints 11 between
the λ

p
k and xuvk.

From each solution of Explicit Master to optimality,
the reduced costs for the variables in the compact for-
mulation can be directly obtained from the optimal du-
als corresponding to the constraints 14, 15, and 16.

In our CG methodology, the pricing problem is solved
in two stages with the stage 1 formulation being a linear
program at a reduced dimension relative to the compact
formulation and the stage 2 formulation being a mixed
integer program. We obtain a dual vector of the com-
pact formulation from the optimal dual solutions of the
Dantzig–Wolfe restricted master problem and from the
linear relaxation of a newly formulated problem called
the auxiliary restricted master problem.
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The auxiliary restricted master problem formulation
is identical to that of the compact formulation but con-
sists of only the generated variables until that point and
thus forms the dual bound to the compact formulation.
The duals corresponding to the constraints 2, 3, 4, 8,
9, and 10 obtained from the auxiliary restricted master
problem are denoted by μ. If A1 is the constraint co-
efficient matrix of the auxiliary restricted master prob-
lem and A2 is the constraint coefficient matrix of the
Dantzig–Wolfe restricted master problem, then the re-
duced cost of a variable of the compact formulation is
computed as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rcuvk = zuvk − A1μ ∀ u ∈ us , v ∈ D, k ∈ K

rcuvk = zuvk − A1μ ∀ u ∈ C, v ∈ v f , k ∈ K

rcuvk = zuvk − A1μ ∀ u ∈ C, v ∈ D, k ∈ K

rcuvk = zuvk − A1μ − A2π ∀ u ∈ D, v ∈ C, k ∈ K

rcc = βc − A2π ∀ c ∈ C

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(19)

3.3 Pricing problem

The pricing problem is solved in two stages. In stage
1, the sum of the reduced costs of a transformed prob-
lem is minimized and in stage 2, the optimal assignments
corresponding to the original problem are obtained. A
small RMC network is depicted in Figure 1. The RMC
model can be considered homogenous with all of the
trucks incurring the same time to travel between depots
and customers. The stage 1 network consists of start
nodes, depot nodes, customer nodes, and finish nodes.
The network is constructed with the source node con-
necting to all start nodes, the start nodes connecting to
all depot nodes, the depot nodes connecting to all cus-
tomer nodes, the customer nodes connecting to all de-
pot nodes, and the depot nodes connecting to all finish
nodes. Finally, all finish nodes are connected to a sink
(Figure 1).

The dummy nodes at the depots (DD) ensure that
at most one of the depots is assigned and the dummy
nodes at the customers (DC) ensure that at most one
of the customers is assigned, satisfying constraints 5 and
6 of the compact formulation. The supply at the source
and demand at the sink is set to the number of trucks
in the network. The lower bound and upper bounds on
the arcs connecting the nodes are set to 0 and 1, re-
spectively. The time feasibility at various nodes is main-
tained by changing the capacity on the arcs connect-
ing the nodes. If any of the time constraints are not
satisfied on an arc, then the upper bound on the arc’s
capacity is set to 0. The cost on the arc is set to the
minimum of the reduced costs of different trucks that
use the arc. Thus, the stage 1 pricing problem can be
viewed as a minimum-cost multi-commodity flow prob-
lem (MMCF) where the objective is to find the optimal

routes for identical trucks in the network that satisfy the
flow and demand requirements such that the sum of the
minimum of reduced costs is minimized.

3.4 Stage 1 formulation

The MMCF pricing problem can be formally stated
as follows. Given a flow network G(V, E), where
edge (u, v) ∈ E has capacity Cuv, there are k identical
commodities, defined by K = (s, t, d) where s and t are
the source and sink of commodity and d is the demand.
The flow of a commodity along edge (u, v) is fuv.

Minimize
∑auv

fuv (20)

Subject to :

fuv ≤ cuv ∀u,v

(21)

fuv −
∑
w∈V

fwu = 0 ∀u ∈ V, v ∈ V, (u, v) /∈ s, t (22)

∑
wεV

fuv =
∑
w∈V

fwt = d (23)

cuv = 1 ∀ u ∈ V, v ∈ V, u /∈ s, v /∈ t (24)

cuv = 0

∀ u ∈ V, v ∈ V and i f E (u, v) is not f easible
(25)

auv = M I N︸ ︷︷ ︸
k∈K

rcuvk (26)

asw = awt = 0 ∀w ∈ V (27)

In network flow problems, the basic solutions are
computed without any multiplication or division and the
following theorem arises from this property. The theo-
rem states that for flow problems with integer supplies
and demand, every basic feasible solution and every ba-
sic optimal solution assigns integer flow to every arc
(Vanderbei, 2008). If the objective function of a mini-
mum cost flow problem is bounded from below on the
feasible region, the problem has a feasible solution, and
if the vectors b, l and u are integers, then the problem
has at least one integer optimum solution.

Minimize {cx : Ax = b, l ≤ x ≤ u} (28)

Since the demand and the lower and upper bound on
the capacity of the arcs in the MMCF network are in-
tegers, the solution from the MMCF pricing problem is
also integer. The MMCF pricing problem is solved us-
ing the primal network simplex method. Efficient im-
plementation of the network simplex method is known
to have polynomial time complexity. If m is the number
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Fig. 1. Network graph.

of arcs in the network, n is the number of nodes in the
network, C is the maximum cost on the arcs in the net-
work, and U is the maximum capacity on the arcs in the
network, then the time complexity of a generic imple-
mentation of the network simplex method (Kelly and
ONeill, 1991) is given by ((m + n)mnC2U). The time
complexity of the MMCF problem as applied to the
RMC network is given by ((m + n)mnC2). Table 3 lists
average solution times of the pricing problem across dif-
ferent instances.

3.5 Stage 2 formulation

The solution obtained from the MMCF pricing problem
(C∗, D∗) is transformed to the original problem dimen-
sion by solving a mixed integer program that optimizes
the assignments across different trucks. Although the
MMCF pricing problem may result in tours that are in-
feasible with respect to the demand constraints 7 in par-
ticular, the stage 2 pricing formulation ensures that the
final tours are feasible with respect to all the constraints
of the compact formulation. Each feasible solution thus
obtained from the stage 2 pricing problem forms an ex-
treme point to the compact formulation.

Minimize
∑

u

∑
v

∑
k

rcuvk xuvk +
∑
c∈C

rcc yc

+
∑
k∈K

σk (29)

Subject to :∑
u∈us

∑
v

xuvk = 1 ∀ k ∈ K (30)

∑
u

∑
v∈v f

xuvk = 1 ∀ k ∈ K (31)

∑
u

xuvk −
∑

j

xv jk = 0 ∀ k ∈ K , v ∈ C ∪ D (32)

∑
u∈D

∑
k

xuvk ≤ 1 ∀v ∈ C (33)

∑
v∈C

∑
k

xuvk ≤ 1 ∀u ∈ D (34)

∑
u∈D

∑
k

qk xuvk ≥ qc yc ∀c, v ∈ C (35)

− M (1 − xuvk) + su + tuvk ≤ wv

−wu ∀ (u, v, k) ∈ E (36)

M (1 − xuvk) + γ + su ≥ wv

−wu ∀ (u, v, k) ∈ E (37)

xuvk ∈ {0, 1} and yc ∈ {0, 1} (38)

0 ≤ xuvk ≤ 1, ∀u ∈ D∗, v ∈ C∗, k ∈ K (39)

0 ≤ xuvk ≤ 1, ∀u ∈ C∗, v ∈ D∗, k ∈ K (40)

0 ≤ xuvk ≤ 1, ∀u ∈ us, v ∈ D∗, k ∈ K (41)

0 ≤ xuvk ≤ 1, ∀u ∈ C∗, v ∈ v f , k ∈ K (42)

0 ≤ xuvk ≤ 0, otherwise (43)
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3.6 Multiple column generation

The CG scheme we adopt generates many columns in
each solution of the master and pricing problems. Tra-
ditionally, the approach has been to generate and add
a single column with the most negative reduced cost to
the restricted master problems. de Aragao and Uchoa
(2003) discuss a scenario of multiple CGs when the con-
straints of the master problem are nicely structured.
The constraints 14, 15, and 16 of our master problem
are consistent with the multiple CG approach. Our mo-
tivation behind this scheme is also to ensure that the
columns that are generated form feasible truck tours.
This can be viewed as generating the best cost improv-
ing truck tours out of many possible ones. From each
pricing problem solution, truck tours with a column that
satisfies the minimum reduced cost threshold are gen-
erated in addition to including an extreme point to the
Dantzig–Wolfe restricted master problem. This scheme
also has the added advantage of exploiting many of
the solution improving heuristics that are available with
most of the modern branch-and-cut solutions. Some
of these heuristics employ methods which make minor
changes to the solution vector to attain vastly improved
solutions in a short time. This is especially effective in
routing problems where a swap of nodes between the
routes could result in a better solution.

The master problems are again solved to optimality
whose duals are used in the next pricing problem solu-
tion. This process is continued until no more negative
reduced cost tours can be generated or when any of
the termination criteria is met. Due to the potentially
long time required to reach the zero reduced cost
threshold for larger models, the CG phase is terminated
within the specified number of iterations. The CG
is also terminated when the optimal solution of the
Dantzig–Wolfe restricted master problem (the primal
bound) is within the specified tolerance of the optimal
solution of the auxiliary restricted master problem
(the dual bound). In the final phase, branch-and-cut is
applied to the original problem with only the generated
columns from the CG phase.

4 RESULTS

The proposed CG algorithm was tested on actual field
instances of wide ranging transportation networks de-
livering to up to 197 customers per day. Note, smaller
networks were used to test the theoretical convergence
properties. The field data that were used here belong to
an active RMC network in Adelaide (Australia). Nine
instances were selected randomly from the available
database which characterizes the selected instances as

given in Table 2. The algorithm was developed in C++
and tested on a RedHat R© CentOS R©5.9 Linux server
with 8 3.60GHz Intel R© Xeon R© CPUs and a 188 GB
physical memory. The IBM CPLEX TM version 12.5.0.0
with parallel optimizers using up to 8 threads was used
in the study. We found the solution polishing heuristics
(Rothberg, 2007) available with the CPLEX mixed inte-
ger optimizer to be particularly effective in finding im-
proved solutions for larger sized models with time win-
dow constraints. The heuristic was applied to the best
solution attained from branch-and-cut which was termi-
nated when the EP gap of 1% was achieved or when the
time limit was reached. The EP gap was calculated ac-
cording to Equation (44) where ε is empirically defined
10−10 solutions in a short time. This is especially effec-
tive in routing problems where a swap of nodes between
the routes could result in a better solution.

The master problems are again solved to optimality
whose duals are used in the next pricing problem solu-
tion. This process is continued until no more negative
reduced cost tours can be generated or when any of the
termination criteria is met. Due to the potentially long
time required to reach the zero reduced cost threshold
for larger models, the CG phase is terminated within
the specified number of iterations. The CG is also termi-
nated when the optimal solution of the Dantzig–Wolfe
restricted master problem (the primal bound) is within
the specified tolerance of the optimal solution of the
auxiliary restricted master problem (the dual bound). In
the final phase, branch-and-cut is applied to the original
problem with only the generated columns from the CG
phase.

E P Gap = |Best I nteger Solution − Best Dual Bound|
ε + |Best I nteger Solution|

(44)

“Barrier/Dual” (Bixby and Saltzman, 1994) is se-
lected to solve the Dantzig–Wolfe restricted master
problem and auxiliary master problem for models
with and without a time window. “Barrier/Dual” is the
hybrid optimizer with barrier as the primary LP solver
with dual simplex used for crossover. “Barrier” is the
LP solver without crossover. “Primal” is the primal
simplex LP solver. CG is terminated when: (i) no more
tours with negative reduced cost column are found or
(ii) the difference between the primal and dual bound
is within the tolerance or (iii) the maximum number
of iterations is reached. The termination criteria for
branch-and-cut (B&C) of the compact formulation
with generated columns and IP/MIP is E-06. In addi-
tion, the starting criteria for polishing in B&C of the
compact formulation with generated columns and MIP
is 1.00E-2 which is applied to instances with more than
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Table 2
Problem data attributes

Instance ID Variables Constraints # K
# Us and

# Vf # D # C
Start to
depot

Depot to
customer and

customer to depot
Customer to

finish

Ade 30 138,486 199,108 17 9 114 30 17,442 58,140 4,590
Ade 40 166,684 241,280 17 9 106 40 16,218 72,080 6,120
Ade 47 367,168 535,188 20 9 174 47 31,320 163,560 8,460
Ade 53 480,924 702,564 24 9 170 53 36,720 216,240 11,448
Ade 63 917,249 1,346,014 29 9 230 63 60,030 420,210 16,443
Ade 93 1,499,846 2,212,774 32 9 236 93 67,968 702,336 26,784
Ade 112 2,343,152 3,467,646 31 9 320 112 89,280 1,111,040 31,248
Ade 153 3,299,695 4,895,476 33 9 313 153 92,961 1,580,337 45,441
Ade 197 5,790,391 8,607,378 41 9 346 197 127,674 2,794,642 72,693
Average 1,667,066 2,467,492 27 9 223 88 59,957 790,954 24,803

Table 3
Pricing problem solution times

Input Models with time window constraints Models without time window constraints

Instance
ID Nodes Arcs

Avg stage
1 time

Avg stage
2 time

Avg sub
time

Avg CG
time

Avg stage
1 time

Avg stage
2 time

Avg sub
time

Avg CG
time

Ade 30 308 8,298 0.0031 0.3618 0.3903 0.7802 0.0020 0.3476 0.3814 0.6794
Ade 40 312 9,958 0.0035 0.4892 0.5294 1.1178 0.0032 0.4630 0.4993 0.8961
Ade 47 462 18,584 0.0098 1.1017 1.1956 2.4127 0.0072 1.0166 1.1164 2.0816
Ade 53 466 20,268 0.0114 1.4766 1.6044 3.1379 0.0085 1.3554 1.4912 2.8073
Ade 63 606 31,928 0.0143 2.8369 3.0992 6.0958 0.0214 2.6540 2.9642 5.5371
Ade 93 678 47,204 0.0229 4.8751 5.4913 10.5457 0.0241 4.4460 5.1397 9.5846
Ade 112 884 76,018 0.0345 7.8112 8.8719 16.4542 0.0253 7.0829 8.5075 15.0253
Ade 153 952 100,456 0.0792 12.0451 14.1816 25.7412 0.0561 10.7590 14.7229 23.3018
Ade 197 1,106 141,772 0.1436 26.1087 32.7445 59.6305 0.1021 17.7377 21.8480 42.4430
Average 641 50,498 0.0358 6.3451 7.5676 13.9907 0.0278 5.0958 6.2967 11.3729

Notes: Nodes – Number of nodes in the MMCF network; Arcs – Number of arcs in the MMCF network; Avg stage 1 time – Average time in
seconds for a network simplex method solve of stage 1; Avg stage 2 time – Average time in seconds for a MIP solve of stage 2; Avg stage sub time
– Average time in seconds for a sub-problem solve including stage 1, stage 2, and data processing; Avg CG time – Average time in seconds for a
column generation iteration including master problems solve, pricing problems solve, and data processing.

100 deliveries. Table 3 compares the solution times of
the stage 1 and stage 2 pricing sub-problems for models
with and without time window constraints.

In Table 4 the achieved results from the proposed CG
model are compared with MIP when the time window
is allowed. Similarly Table 5 shows this when the time
window is not permitted. Ade 197, which is the largest
instance with MIP, is not solvable with the given compu-
tational resources; therefore the relevant cells in Table 4
are filled by NA (Not Applicable). From the evaluation
data, it was found that the compact formulation consists
of demand constraints and there were situations where
the tours that were generated from the stage 2 pricing
problem were infeasible with respect to demand con-
straints. A reformulation of the master problems that

eliminated variables Yc was found to be effective in
pricing tours that are feasible with respect to demand
constraints. In addition, out of all the instances evalu-
ated, the assumption of homogeneity of vehicles held
well for the majority of them. To cite one particular test
case (Ade 53), the model consisted of two customer lo-
cations (c11 and c12) with a demand of 11 tonnes each
and could only be served by one truck (t23) of capacity
11 tonnes. The algorithm was successful in pricing a tour
that served both these customers using the same truck,
thus leading toward the optimal solution.

The performance of the algorithm is evaluated
according to the solution times and the quality of the
final solution attained in the branch-and-cut phase.
The metrics compared the branch-and-cut on the
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Table 6
Various bounds attained at different phases of the algorithm

With time window constraints Without time window constraints

Instance
ID

Primal
bound

Dual
bound

CG
B&C
dual

bound

CG
B&C
solu-
tion

MIP
B&C
dual

bound

MIP
B&C
solu-
tion

Primal
bound

Dual
bound

CG
B&C
Dual

bound

CG
B&C
solu-
tion

IP B&C
dual

bound

IP B&C
solu-
tion

Ade 30 17.8130 17.6620 17.6620 17.6620 17.6620 17.6620 18.2462 18.2462 18.2462 18.2462 18.2462 18.2462
Ade 40 27.0236 27.0120 27.0120 27.0181 27.0120 27.0181 27.1373 27.1373 27.1373 27.1373 27.1373 27.1373
Ade 47 40.7398 40.7340 40.7340 40.7340 40.7340 40.7340 40.9427 40.9427 40.9427 40.9427 40.9427 40.9427
Ade 53 62.4347 62.2695 62.3228 62.3993 62.3094 62.3993 62.6176 62.5777 62.5777 62.5777 62.5777 62.5777
Ade 63 36.8697 36.7817 36.7817 36.7817 36.7817 36.7817 37.1570 37.1570 37.1570 37.1570 37.1570 37.1570
Ade 93 119.7501 119.2700 119.2964 119.6218 119.1943 119.5757 119.9270 119.9103 119.9103 119.9103 119.9103 119.9103
Ade 112 62.7580 62.3258 62.3258 62.4368 62.3458 62.3458 62.8381 62.8297 62.8297 62.8297 62.8297 62.8297
Ade 153 91.2683 89.9499 89.9499 90.1075 90.0811 90.1275 90.7945 90.6363 90.6363 90.6363 90.6363 90.6363
Ade 197 169.9613 162.2319 162.4866 167.8724 NA NA 172.5371 169.5308 169.5308 169.5308 169.5308 169.5308
Average 69.8465 68.6930 68.7301 69.4037 57.0150 57.0805 70.2442 69.8853 69.8853 69.8853 69.8853 69.8853

Notes: Primal bound – Optimal solution to the Dantzig–Wolfe restricted master problem; Dual bound – Optimal solution to the auxiliary restricted
master problem; CG B&C dual bound – Final best dual bound inclusive of cuts from B&C of the compact formulation with generated columns;
CG B&C solution – Optimal solution from B&C within the specified tolerance of the compact formulation with generated columns; MIP B&C
dual bound – Final best dual bound inclusive of cuts from B&C of the compact formulation with original columns for models with time window
constraints; MIP B&C solution – Optimal solution from B&C within the specified tolerance of the compact formulation with original columns for
models with time window constraints; IP B&C dual bound – Final best dual bound inclusive of cuts from B&C of the compact formulation with
original columns for models without time window constraints; IP B&C solution – Optimal solution from B&C within the specified tolerance of the
compact formulation with original columns for models without time window constraints.

Table 7
Comparing the CG model with IP and MIP models

Without time window With time window

Column generation versus IP Column generation versus MIP

Instance ID Cost improvement Time improvement Cost improvement Time improvement

Ade 30 0.0000% –3,380% 0.0000% –1,536%
Ade 40 0.0000% –1,767% 0.0000% –39%
Ade 47 0.0000% –2,508% 0.0000% –32%
Ade 53 0.0000% –3,088% 0.0000% +47%
Ade 63 0.0000% –1,452% 0.0000% +45%
Ade 93 0.0000% –1,180% –0.0456% +87%
Ade 112 0.0000% –301% –0.1460% +84%
Ade 153 0.0000% –27% –0.0293% +93%
Ade 197 0.0000% +55% NA NA

compact formulation with the generated columns and
branch-and-cut. Both of these were run with identical
parameter settings to the solver. In addition to com-
paring the final primal solution attained between the
runs, the final dual bounds (inclusive of the cutting
planes generated on the linear relaxation of the branch-
and-cut tree) were compared between the runs. The
bound attained from IP/MIP (B&C dual bound, B&C
solution) and CG (B&C dual bound, B&C solution) are
almost the same with minor variations. These dissimilar-

ities are embedded in Table 6. The summary of results is
in Table 7. This table shows the time and cost (distance)
improvements when the proposed CG method is used
by comparing the CG model against the IP and MIP
model. The proposed algorithm attains a true optimum
for many of the smaller sized networks. For the models
with time window constraints, the primal bound (the
objective of the Dantzig–Wolfe master problem) was
within 0.94% of the dual bound (the objective of the
auxiliary restricted master problem). In a few instances,
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Fig. 2. Behavior of the proposed column generation method when a time window is not allowed. The horizontal axis is number
of iterations and the vertical axis is cost.

Fig. 3. The behavior of the proposed column generation method when a time window is allowed. The horizontal axis is number
of iterations and the vertical axis is cost.

the algorithm terminated when the primal bound was
within a tolerance of E-05 of the dual bound, where the
optimal solution to the model was equal to the primal
and the dual bounds. Through empirical experiments
that were based on the tailing-off effect of the duals,
an iteration limit of 250 was found to be effective in

pricing a sufficient number of columns and was chosen
for many of the instances. On average, for models
with time window constraints, the algorithm generated
about 1.77% of columns and achieved solutions within
0.03% of those of the branch-and-cut solvers. With
respect to solves times, the algorithm achieved up
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to 15.15 times improvement over the branch-and-cut
solvers. On average, for models without time window
constraints, the algorithm generated about 1.12%
of columns and achieved solutions within 0.00% of
those of the branch-and-cut solvers. With respect to
solve times, the algorithm achieved up to 2.21 times
improvement over the branch-and-cut solvers.

Figures 2 and 3 reflect a deeper investigation into
the behavior of the proposed model over iterations.
Figure 2 plots the primal bound and dual bound for all
instances when a time window is not permitted; simi-
larly, Figure 3 does the exact same job as Figure 2 but
for a model with a time window. In Figure 2, and for
models 30, 40, 47, and 63, the primal bound at termina-
tion was within 0.0% of the dual bound; this value for
models 53, 93, 112, and 153 is within 1.17% of the dual
bound, and for model 197 the primal bound at termina-
tion was within 1.74% of the dual bound. Moreover, for
models 53 and 197, dual stabilization techniques were
employed to counter the heading-in effect of duals com-
monly observed in CG.

The terminations of models with a time window can
be perceived from Figure 3 where for models 30, 40, 47,
53, and 63, the primal bound at termination was within
0.85% of the dual bound, and for models 93, 112, and
153 where it was within 1.44% of the dual bound, and
for the largest instance (Ade 197) where the primal
bound at termination was within 4.55% of the dual
bound.

5 CONCLUSIONS

This article proposed a mathematical model based on
the CG technique to solve RMC dispatching problem
with and without a time window. The Dantzig–Wolfe
method was used for reformulating the problem and
then to provide solutions within a two-stage proce-
dure. The proposed method was compared with IP
and MIP. For evaluation, a real database belonging
to an active RMC was used, and from the available
data nine instances of different sizes were chosen
randomly. The number of unassigned customers by the
proposed method in situations both with and without
time window is zero. Moreover, when a time window
is not allowed, the distances acquired by the proposed
method and IP are exactly the same; however, on
average, CG converges 30% more quickly than IP.
The MIP solution for large-scale instances (such as
Ade-197) is intractable when the proposed method
converges. Despite this issue, among the instances
in which the MIP solution exists, on average the CG
method attained results around 10 times faster than
MIP with around 1% increase in distance.
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