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Abstract- Software fault tolerance is an important issue when 

using software systems in safety-critical applications. In such 

systems, software robustness is an essential requirement for 

improving software fault tolerance. Since an operating system 

(OS) is a major part of a safety-critical system, its robustness has 

considerable influence on the system's overall robustness. In 

recent years, researchers have emphasized the importance of 

considering the OS state in robustness testing. OS state is 

determined by analysis of the interactions between OS 

components. In this paper, an approach, named TIMEOUT, is 

proposed for robustness testing of embedded real-time OSs. This 

approach reveals the impact of time delays, i.e. inputs with invalid 

timing delay, on the OS kernel functionality. TIMEOUT takes the 

OS state into account and improves the existing robustness testing 

methods. The proposed approach has been implemented and the 

experiments have been performed on Linux PREEMPT-RT, 

which is an embedded real-time implementation of Linux 

operating system. The results show that OS state can influence the 

OS behavior with respect to fault tolerance, in the presence of time 

delays. Based on the results of this approach, system developers 

can identify criticality of OS states and improve robustness of OS 

in th ose states. 
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I. INTRODUCTION 

Software is responsible for overall functionality of a 
computer system. Correct and dependable behavior is a critical 
required property for software systems. Because producing an 
error-free software, theoretically and empirically, is still not 
possible [1], software fault tolerance is being applied as an 
acceptable assurance of computer system's functionality. Fault 
tolerance is especially important when it comes to computer 
systems applied in safety-critical applications. Components of a 
safety-critical system, including software and hardware, are 
expected to be fault-tolerant. Since the OS is the interface 
between software and hardware, it has a major role in the system, 
and application level software relies on its correct behavior [1]. 
This means that a failure in OS may lead to the failure of the 
whole system. As a result, improving OS fault-tolerance has 
positive impact on the whole system fault-tolerance [2]. 

Since using robust software systems is a fault tolerance 
technique [3], for improving OS fault tolerance, robustness 
testing is worthwhile. In robustness testing, robust behavior of a 
software module in the presence of exceptional inputs is 
assessed. The goal of robustness testing is to activate those faults 
or vulnerabilities in the system that result in incorrect operation 
[4]. Exceptional inputs fall into four categories [1, 5, 6]: 
I) Invalid and unexpected value or 2) timing of an input, 
3) invalid input sequence and 4) unexpected input format. 
Invalid inputs are given to the system interface using fault 
injection, which is a common technique in robustness testing and 
highly recommended in safety standards like DO-I78C [7]. 

In the literature, the majority of researches like [8-10] have 
injected an invalid value as an exceptional input to OS interface 
(e.g. API or device driver). A proposed tool in [11] has been 
employed to inject inputs with invalid timing into the OS kernel. 
These approaches are not state-aware and as a result, number of 
required test cases is considerable. Subsequently, due to 
considerable number of test cases, it is possible that not all of the 
system states are covered during the test. The SABRINE 
approach [12] evaluates the robust behavior of the OS under 
different states. But this approach has not considered any of the 
exceptional inputs that mentioned earlier, and has tested OS 
robustness against service failure of a component. Furthermore, 
SABRlNE is based on a running workload that could affect its 
results. 

In this paper, an approach for robustness testing of embedded 
real-time OS, called TIMEOUT, is proposed that reveals the 
impact of time delays on the OS kernel functionality. 
Concerning importance of timing in such OSs, TIMEOUT 
injects inputs with invalid timing into the OS kernel. In this 
approach, fault injections are state-aware that results in 
improving the effectiveness of fault injection process. We apply 
SABRINE approach for extracting state models, but unlike 
SABRINE, TIMEOUT focuses on OS kernel operation and does 
not depend on a running workload. To evaluate the approach, 
Mibench [13] as a popular benchmark in safety-critical 
applications is used as the workload. The results of executing the 
workload are processed to extract the OS model. We evaluate 
TIMEOUT on an embedded real-time Linux-based OS. The 
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results show that erroneous delays in the kernel operations 
greatly affect the deadline violation of application level 
software. Results also can be used to identify OS critical states 
in the presence of time delays. 

The outline of this paper is as follows: Section II provides an 
overview of the most important related works. The proposed 
approach (TIMEOUT) is introduced in Section TIT, and we 
evaluate the proposed approach on a case study in Section IV. 
Finally, Section V concludes the paper. 

IT. RELATED WORK 

Due to the importance of OS in overall system functionality, 
OS robustness testing has been of interest to researchers for 
many years, such that in the literature, robustness testing is 
mainly focused on operating systems [14]. In [15] an approach 
is proposed for testing the robustness of a real-time operating 
system. In order to evaluate the ability of commercial OSs to 
handle errors generated by user-space applications, the invalid 
input values have been presented to system call interface. This 
approach has improved the efficiency of robustness testing by 
using data-type based error injection. 

Proposed tool in [16] has used a grammar-based description 
of the system's input to generate random and syntactically valid 
but anomalous input. The tests have been performed on the 
Windows NT platform, and the robustness failures observed are 
mainly memory access violation exceptions, privileged 
instruction exceptions and illegal instruction exceptions. 

BALLlSTA [8, 17] has extended the approach of [15] with 
the goal of testing and benchmarking of commercial OSs. Each 
robustness test consists of a system call invocation with a 
combination of both valid and invalid parameters. Despite the 
large number of test cases, these studies have found severe 
robustness vulnerabilities in several commercial OSs. 

A profiling framework is proposed in [18] that assists in 
finding possible error propagation paths from drivers through 
the OS to the applications. The aim of the profiling framework 
is to find effective location of OS wrappers to handle driver 
errors and estimate the impacts of errors on the services provided 
by applications. The framework has helped to enhance the OS 
with selective robustness hardening capabilities like wrappers. 

The presented work in [19] concerns OS robustness testing 
with respect to device driver interface and focuses on testing the 
Driver Programming Interface (DPI). DPI is a set of kernel core 
functions that implements a way device drivers interact with the 
kernel. To characterize the robustness of OSs relating to faulty 
drivers, faults have been injected on the parameters of these 
kernel core functions. The results show the negative impact of 
faulty drivers on responsiveness of the kernel, safety of the 
workload and availability. Sarbu et.al. in [20] have proposed a 
state model for testing device drivers, using communications on 
device driver interface, therefore this work has characterized 
run-time behavior of device driver. They have found that the use 
of a state model can reduce number of test cases. 
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Johansson et al. [21] have introduced the concept of call 
blocks to take into account the state of the OS in robustness 
testing. The usage profile of a device driver is split into disjoint 
call blocks. Call blocks, i.e. recurring sequences of function 
calls, guide injections into different system states. The results 
have shown that controlling the time of injection has significant 
impact on the robustness evaluation. 

In [2] the goal is also to enhance the traditional approaches 
by considering the OS state in test case definition. Since state of 
the OS components has a significant influence on the OS correct 
behavior, it is necessary to take the states of the component 
under test into account. A component is a subsystem of the OS 
that is responsible for managing a resource or for providing a set 
of services, such as memory management and process 
scheduling. Since OSs are complex and stateful systems, 
executing a given robustness test case in different states 
increases the probability to explore those parts of the code most 
rarely reached during the execution, i.e., it increases the final 
coverage [12]. 

Based on this view, test plan has been expressed through two 
dimensions: the exceptional inputs and the states. Inputs are 
selected as usual (e.g. through boundary value analysis), while 
the state varies in S = {S1, S2 ... Sn}, where Si is a set of component 
attribute values. In order to execute a test case, state setter takes 
component to one of the predefmed states in S. Then, test driver 
injects invalid inputs to component interface [2]. This approach 
is extended by SABRlNE in 5 phases: 

1) Behavioral Data Collection: Before performing 
robustness testing, the system is executed and profiled under 
fault-free conditions. This phase collects data about the OS 
behavior, in terms of interactions between OS components at 
run-time and records them in a log file. 

2) Pattern Identification: Log file that includes target 
component interactions is converted to a set of sequences. Each 
sequence is a set of events. Sequences of a particular call are 
grouped together, and represented as a pattern. 

3) Pattern Clustering: Identified patterns in previous phase, 
are further grouped together, in a cluster. To perform clustering, 
the similarity among all pairs of patterns is measured based on a 
similarity function. 

4) State Model and Test Suite Generation: For each cluster, 
a behavioral model in form of a Finite State Automata (FSA) is 
generated. Injectable interactions are identified and robustness 
test cases are generated for each of them. 

5) Test Execution: Robustness test cases are translated in test 
programs that are then executed to inject faults in the different 
states of the OS. Each test executes the system under the same 
working condition of the first phase. During execution, 
behavioral data is collected and analyzed at run-time, and a fault 
is injected when the OS reaches a given state of the behavioral 
model. 



Research in the recent years has been emphasized the 
significance of OS state in robustness testing. In addition, the 
importance of time in a real-time OS illustrates the necessity of 
OS robustness testing in the presence of inputs with invalid 
timing. Moreover, timeliness is one of the vital embedded 
software systems' characteristic that influences the correctness 
of the embedded systems' behavior [14]. Nevertheless, 
investigating the impact of inputs with invalid timing in each OS 
state and resulting delays in workload runtime is an open issue, 
not considered in existing works. The goal of this paper is to 
address this issue by injecting time delays in the kernel and 
investigating the impact of inputs with invalid timing delay on 
OS kernel functionality. 

Ill. PROPOSED ApPROACH 

For a system in safety-critical applications, time delays are 
serious. Tn these systems, there are timing deadlines, such that if 
the deadline misses, the answer will be unacceptable. Tn this 
paper, for stateful robustness testing of an embedded real-time 
OS, time delays are injected to the OS kernel and the impact of 
them on application level software is investigated. We extract 
the OS states based on SABRlNE approach. One advantage of 
this approach is considering OS state in robustness testing other 
than exceptional inputs. The state can affect how an event 
impacts on the OS and the ability of the OS to robustly handle 
its occurrence [12]. In this section, the TIMEOUT approach is 
explained. It consists of 4 phases: 

1) Workload Execution. This is needed to extract behavioral 
data of target component. This phase is independent of the 
running workload and focuses on OS kernel functionality. 

During the workload execution, we log component input (the 
target component may be invoked by another component) and 
output (the target component may invoke another component) 
interactions. Moreover, start and end times of every interaction 
is recorded in the log file based on a predefined time unit. It 
should be noted that some factors such as different execution 
paths can affect interactions. For this reason, the execution of 
workload is repeated several times during this phase. 

2) Pattern Identification. At this point, there is a log file 
containing a set of sequences. Given that evaluating the 
functionality of the OS kernel in general (and not by running a 
particular workload) has been considered, we define a sequence 
as a set of events that have happened during the execution of an 
individual kernel function call. Two executions of a particular 
kernel function call will not necessarily lead to identical 
sequences. The sequences of a function call are grouped 

together, and represent a pattern. Due to the different execution 
paths in functions, sequences of a pattern will vary. For this 
reason, patterns are clustered. 

3) Behavioral Modeling. Given that the relative start and 
end times of interactions are recorded, we infer a behavioral 
model in the form of a Timed Automata [22] from each cluster. 
This behavioral model consists of a set of states that are 
connected with events which have defined timing. 

4) Test Case Generation and Test Execution. The model 
has more than one transition in some states, because patterns in 
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a particular cluster are different. This process is repeated for 
every cluster. Each injectable transition in the model generates 
one or more test cases. The result of test case execution can help 
to identity critical states about time delays and their criticality. 

IV. EVALUATION 

The TIMEOUT approach described in the previous section 
has been implemented, and to evaluate it, different experiments 
have been performed. As a case study, we have selected Linux 
PREEMPT-RT, a real-time Linux implementation which is used 
in embedded applications [23]. Due to the importance of 
memory in real-time embedded systems [24], memory 
management is selected as the component under test. 

The execution of workload is essential, such that the target 
component interacts with other components and calls kernel 
functions. As a workload, Mibench [13] is selected which is a 
representative benchmark for embedded programs. More 
specifically, automotive category of Mibench is intended for 
safety-critical applications and from this category, we have used 
Qsort as our workload program running on the Linux 
PREEMPT-RT. 

To record interactions between the target and other 
components, and to produce a log file, SystemTap [25] tool has 
been utilized. System Tap allows to investigate the behavior of 
the kernel. It uses a dynamic method of monitoring and tracing 
the operation of a running Linux kernel. Also, SystemTap has 
been applied in test execution phase to perform fault injection 
experiments. 

In the TIMEOUT approach, worst execution time for a 
particular function call that has been recorded in log file is 
considered as its deadline. Since the target OS is a real-time OS, 
by giving priority to workload, we can be sure that execution 
time does not include interrupts or OS scheduling. 

The four mentioned phases of the TIMEOUT approach have 
been performed and the timed automata model for 
genericjile _ aio Jead call (generic read routine to read 
filesystem) is shown in Figure 1. The generic Jzle _ aio Jead call 
follows by a read system call. In this figure, clock t has specified 
the execution time of each function call in microseconds. In this 
model, injectable transitions have been marked. 

Since robustness looks at the system's response to faulty 
input, injectable transitions are those input interactions that their 
input parameter value, influences the execution path. For 
example, if an input parameter is used as a condition expression 
(in a loop or condition statement), it will be the basis for 
decision-making and consequently it can change the execution 
path (usually this information can be obtained from the function 
call specification and availability of OS source code is not 
necessary). In this case, when a fault appears and changes input 
value (e.g. existence of transient hardware defects that conduces 
bit-flip error), the execution path and then execution time can 
change. It is worth mentioning that changing the program 
execution path not necessarily increases the execution time, but 
what is important is not to miss deadline. Tn this paper, time 
delays are injected in functions. 



Finally, a set of robustness test cases are extracted from the 
behavioral model. Such that every injectable transition generates 
one or more test cases. We have used binary search to select test 
cases (time delays that have injected) based on function call 
deadline. If x is a particular function call deadline in 
microsecond, the range of possible delays is [1, x], and the first 

test case is a delay with � of timing unit. 
2 

In our fault injection method, the injectable line of function 

code is delayed for � unit of time. According to the result of fault 
2 

injection experiment, new fault injection range is identified. If 

the deadline is missed, the new test case is in the range [1, �), 
2 

otherwise it is in the range (�, x]. This process continues to find 
2 

a delay threshold that does not miss function deadline. 

Injectable lines of every transition are identified and one of 
them is selected to perform a fault injection. To inject fault in a 
desired state, the target component should be in that state. Hence 
the component interactions are monitored to identify current 
state of the component and then fault is injected. 

Based on the model in Figure 1, five out of the seven 
transitions have been detected as injectable transitions. The 
number of injectable lines in each injectable transition has been 
shown in Table I. Because OS state has been considered in the 
evaluations, it is expected that the result of fault injection in 
putyage 1 (putyage function call in path no. 1) is different 
with the result of fault injection in putyage 2 (putyage 
function call in path no. 2). The results have been shown in the 
Figure 2 and Figure 3. Horizontal axis shows injected time 
delays to the function source code and vertical axis determines 
the execution time. 

According to our experiments, the worst execution time for 
generic Jzle _ aiD Jead call that has been recorded in log file, has 
been 266us which is considered as the call execution deadline. 
Figure 2 shows that in all of the fault injection experiments, 
putyage deadline (according to the model it is 6us) has been 
missed but genericJzle_aioJead deadline only missed when 
215us and 232us delays were injected. As a result, we can state 
that deadline violation in one of the transitions not necessarily 
leads to deadline violation in the call. 

Figure 3 indicates that fault injection in put yage 2 has a 
major impact on generic Jzle _ aiD Jead call compared to fault 
injection in put yage 1. So that tolerable time delay (an injected 

time delay which has not led to deadline violation) for 
put yage 2 is 61 us and it is 213 us for put yage 1. Because there 
are two more transitions in path 2, execution time of 
generic Jzle _ aiD Jead has increased and the time delay 
threshold ofputyage 2 has decreased. Furthennore, comparing 
Figure 2 and Figure 3 with each other it is observable that fault 
injection in putyage 2 increases the execution time of 
generic Jzle _ aiD Jead with a higher rate. However, in Figure 2 
it can be seen that the execution time of generic Jzle _ aiD Jead 
call compared to the execution time of put yage call increases 
with a constant rate. 

Table I shows the deadline violation thresholds of 
generic Jzle _ aiD Jead call in every injectable transition of 
Figure 1. Comparing the deadline violation thresholds in 
generic_segment_checks with the deadline violation thresholds 
of other transitions indicates that existence of more transitions 
in the path, not necessarily leads to decrease the deadline 
violation threshold. 

To the best of our knowledge, there is not a similar approach 
in the literature to compare with TIMEOUT. Hence, to evaluate 
the efficiency of TIMEOUT, the TIMEOUT's results are 
compared with the results of a random fault injection approach. 
In the random approach, there is not a model to identify the 
execution path. Thus injectable lines in this approach are 
consisted of the injectable lines in the source code of the 
generic Jzle _ aiD Jead function and the injectable lines in each 
identified injectable interaction in the TIMEOUT approach (i.e. 
all of the identified injectable lines). 6 injectable lines were 
identified in the source code of generic Jzle _ aiD Jead and the 
total number of identified injectable lines in TIMEOUT is 12. 
Consequently, there are 18 injectable lines that in the random 
approach can be selected for fault injection. This amount in 
TIMEOUT depends on model paths varies between 10 to 12 
lines. Decreasing of injectable lines in TIMEOUT efficiently 
leads to decrease the test space. Table I indicates the number of 
injectable lines for each approach. 

In the random approach, we have selected one of the 
injectable lines randomly and have injected time delays to it. 
Moreover, to specify the range of a time delay, binary search 
method has been used. 

mark ---'page_accessed, 
(t< I S7us)? 

put---'page, 
�(t<266us)? 

generic _ segment_checks, 
"\ (t<39us)? 

find _get---'page, 
"\ (t<86us)? 

1---------------)(0 Path no. 1 
-- ------ ------ ------ � 

put---'page, 
"\ (t<92us)? 

Fig. I. Behavioral model of genericJile_aioJead 
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TABLE 1. DEADLINE VIOLA nON THRESHOLDS OF 
GENERIC FILE AIO READ CALL 

Proposed 
approach 

Random 

I approach 

Transition 

- - -

Number of 
injectable 

lines 

generic _ segment_checks 3 

find _get_page 5 

fil e read actor 2 

putJlage 1 
2 

put_page 2 

- I 18 

Deadline 
violation 

threshold (us) 

76 

99 

99 

213 

61 

I 90 

Table T also shows the deadline violation thresholds of random 
approach. Based on Table T, TIMEOUT identifies critical OS 
states along with estimating criticality of each state. For 
example, according to TIMEOUT, putyage 2 with 61us 
deadline threshold is the most critical transitions in the presence 
of time delays. Using this information, a developer can apply an 

I 
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appropriate fault tolerance technique to improve system's 
reliability in such states. The technique should not impose 
more than 61 uS time delay as its time overhead. 

V. CONCLUSION 

This paper proposed an approach for state-based 
robustness testing of an OS in the presence of inputs with 
invalid timing delay. Due to the importance of OS state in 
robustness testing and significance of time in embedded real
time OSs, proposed approach evaluates the impact of time 
delays in different OS states. This approach can help to 
identify critical states, regarding time delays, and estimate 
their criticality. The results of our experiments highlight the 
influence of OS state together with time delays on the kernel 
execution time and emphasize the importance of the time in 
OS robustness testing, especially when the OS is used in a 
safety-critical application. 
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