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1 Introduction
Ever since Shannon (1948) proposed a measure of uncertainty in a discrete
distribution based on the Bolltzmann entropy, there has been a great deal
of interest in the measurement of uncertainty associated with a probability
distribution. There is now a huge literature devoted to the applications,
generalizations and properties of Shannon measure of uncertainty. Let X be
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26 Tsallis Entropy Properties of Order Statistics and . . .

a random variable having an absolutely continuous cumulative distribution
function (cdf), F (t) and probability density function (pdf), f(t). Then, the
basic uncertainty measure of X is defined as

H(X) = −
∫ +∞

−∞
f(x) log f(x)dx = −E[log f(X)]. (1)

A generalization of the Shannon entropy is Tsallis entropy (Tsallis, 1988).
The Tsallis entropy of order α for random variable X is defined as

Sα(X) =
1

α− 1

[
1−

∫ +∞

−∞
fα(x)dx

]
, α ̸= 1, α > 0. (2)

In general, Tsallis entropy can be negative. But, by choosing an appropriate
value for α, it can be nonnegative. As α → 1 in (2), it reduces to H(X)
given in (1). Also, for a nonnegative random variable X, (2) can be reduced
to

Sα(X) =
1

α− 1

[
1− 1

α
EfX,α

[r(X)α−1]

]
, (3)

where fX,α(x) = −dF̄α(x)
dx = αF̄α−1(x)f(x); α > 1, x > 0 and r(t) = f(t)

F̄ (t)
,

is the hazard rate function of X, where F̄ (t) = 1 − F (t). Properties of the
Tsallis entropy have been investigated by several authors including Nanda
and Paul (2006), Zhang (2007), Wilk and Woldarczyk (2008) and Kumar
and Taneja (2011).

The aim of this paper is to study the properties of Tsallis entropy of
order statistics. Suppose thatX1, X2, . . . , Xn are independent and identically
distributed observations from cdf, F (t) and pdf, f(t). The order statistics of
the sample is defined by the arrangement of X1, X2, . . . , Xn from the smallest
to the largest, denoted as X1:n ⩽ X2:n ⩽ . . . ⩽ Xn:n. Denote the pdf and
the cdf of Xi:n by fi:n(x) and Fi:n(x), respectively. Then, for 1 ⩽ i ⩽ n,

fi:n(x) =
1

B(i, n− i+ 1)
[F (x)]i−1[1− F (x)]n−if(x), (4)

where
B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx, a > 0, b > 0.

Order statistics are used in many branches of probability and statistics in-
cluding characterization of probability distributions, goodness-of-fit tests,
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S. Baratpour and A.H. Khammar 27

quality control, reliability theory and many other problems. Also, in physics,
order statistics is useful to construct median filters for image and signal pro-
cessing. (See Arnold et al., 2008 and David and Nagaraja, 2003 for more
details). Information theoretic aspects of order statistics have been studied
widely. Wong and Chen (1990), Park (1995, 1996), Ebrahimi et al. (2004),
Baratpour et al. (2007, 2008), Zarezadeh and Asadi (2010). Considering
importance of Tsallis entropy and order statistics in image and signal pro-
cessing, we try to extend the concept of Tsallis entropy using order statistics.

In recent years, stochastic orders have attracted an increasing number of
authors, who used them in several areas of probability and statistics, with
applications in many fields, such as reliability theory, queueing theory, sur-
vival analysis, operations research, mathematical finance, risk theory, man-
agement science and biomathematics. Indeed, stochastic orders are often
invoked not only to provide useful bounds and inequalities but also to com-
pare stochastic systems. Several authors have studied the stochastic compar-
isons. For example, Ebrahimi and Kirmani (1996), Raqab and Amin (1996),
Kochar (1999), Abbasnejad and Argami (2011), Di Crescenzo and Longob-
ardi (2013), Psarrakos and Navarro (2013), Gupta et al. (2014). We continue
this line of researches by exploring some properties of stochastic comparisons
based on Tsallis entropy of order statistics.

The paper is organized as follows: The Tsallis entropy of order statis-
tics is studied in Section 2. In Section 3, we obtain some bounds for Tsallis
entropy of order statistics. Section 4 deals with the stochastic comparisons
based on the Tsallis entropy of order statistics.

2 Tsallis Entropy of Order Statistics

Tsallis entropy associated with the ith order statistics Xi:n is given by

Sα(Xi:n) =
1

α− 1

[
1−

∫ ∞

−∞
fαi:n(x)dx

]
, (5)

where α ̸= 1, α > 0 and fi:n(x) is pdf of ith order statistics, for i = 1, 2, . . . , n
that is defined by (4). Note that for n = 1, (5) reduces to (2).

Now, we use the probability integral transformation U = F (X), where U
has standard uniform distribution. It is known that if U1:n < U2:n < · · · <
Un:n are order statistics of a random sample {U1, U2, . . . , Un} from standard
uniform distribution, then, Ui:n, i = 1, 2, . . . , n, has beta distribution with
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28 Tsallis Entropy Properties of Order Statistics and . . .

parameters i and n − i + 1. In the following lemma, we will show that the
Tsallis entropy of order statistic Xi:n can be represented in terms of Tsallis
entropy of order statistics of standard uniform distribution.

Lemma 1. Let X1, X2, . . . , Xn be a random sample with size n from contin-
uous cdf, F (t) and pdf, f(t). Let Xi:n denotes the ith order statistics. Then
the Tsallis entropy of Xi:n can be expressed as

Sα(Xi:n) =
1

α− 1
− E[fα−1(F−1(Zi))]

[
1

α− 1
− Sα(Ui:n)

]
, (6)

where Sα(Ui:n) denotes the Tsallis entropy of the ith order statistics based
on a random sample of size n from uniform distribution on (0, 1) and Zi has
beta distribution with parameters α(i− 1) + 1 and α(n− i) + 1.

Proof. By (4) and (5), and by substutiting z = F (x), we have

Sα(Xi:n) =
1

α− 1

[
1−

∫ 1

0

zα(i−1)(1− z)α(n−i)

Bα(i, n− i+ 1)
fα−1(F−1(z))dz

]

=
1

α− 1

[
1−

B
(
α(i− 1) + 1, α(n− i) + 1

)
Bα(i, n− i+ 1)

×
∫ 1

0

zα(i−1)(1− z)α(n−i)

B (α(i− 1) + 1, α(n− i) + 1)
fα−1(F−1(z))dz

]

=
1

α− 1

[
1−

B
(
α(i− 1) + 1, α(n− i) + 1

)
Bα(i, n− i+ 1)

× E[fα−1(F−1(Zi))]

]
. (7)

It is easy to see that (5), for the ith order statistics of uniform distribution
(that is, the beta distribution with parameters i and (n− i+ 1)) is given by

Sα(Ui:n) =
1

α− 1

[
1−

B
(
α(i− 1) + 1, α(n− i) + 1

)
Bα(i, n− i+ 1)

]
. (8)

Using (8) in (7), the result follows.

Remark 1. In reliability engineering, (n− i+ 1)-out-of-n systems are very
important kind of structures. This system functions if and only if at least
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(n − i + 1) components out of n components function. if X1, X2, . . . , Xn

denote the independent lifetimes of the components of such system, then the
lifetime of the system is equal to the ith order statistics, Xi:n. The special
cases of i = 1 and i = n correspond with the series and the paraller systems,
respectively. Assuming that a (n− i+1)-out-of-n system is put in operation
at time t = 0, then the Tsallis entropy of Xi:n measures the uncertainty
of the lifetime of the system. Hence the Tsallis entropy, as a measure of
uncertainty can be important for system designers to get information about
the uncertainty of the used (n− i+ 1)-out-of-n systems.

Example 3. (a) Suppose that X has uniform distribution over [a, b]. Then,
fα−1(F−1

X (t)) = ( 1
b−a)

α−1 and we have

E[fα−1(F−1(Zi))] =

(
1

b− a

)α−1

.

By Lemma 1, it can be easily shown that

Sα(Xi:n) = Sα(Xn−i+1:n), i = 1, 2, . . . , n. (9)

Therefore, for first and last order statistics of a random sample of size n, (9)
gives

Sα(X1:n) = Sα(Xn:n) =
1

α− 1

[
1− (

n

b− a
)α

b− a

α(n− 1) + 1

]
.

On the other hand, we have

Sα(X) =
1

α− 1

[
1− (b− a)1−α

]
,

hence, for i = 1, n, we get

Sα(X)− Sα(Xi:n) =
(b− a)1−α

α− 1

[
nα

α(n− 1) + 1
− 1

]
.

That is, in the uniform case, for α > 1, the difference between Tsallis entropy
of the lifetime of each component of a series system or a paraller system and
Tsallis entropy of the lifetime of the system is nonnegative.
(b) Let F (t) be exponential with mean 1

λ . Then, fα−1(F−1
X (t)) = λα−1(1−
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30 Tsallis Entropy Properties of Order Statistics and . . .

t)α−1 and we can conclude that

E[fα−1(F−1(Zi))] = λα−1B (α(i− 1) + 1, α(n− i+ 1))

B (α(i− 1) + 1, α(n− i) + 1)
.

Therefore, Lemma 1 for i = 1, n gives

Sα(X1:n) =
1

α− 1
− (nλ)α−1

α(α− 1)
, (10)

and
Sα(Xn:n) =

1

α− 1

[
1− nαλα−1B(α(n− 1) + 1, α)

]
.

By replacing n by 1 in (10), we have

Sα(X) =
1

α− 1

[
1− λα−1

α

]
.

Then, we have

Sα(X)− Sα(X1:n) =
λα−1

α(α− 1)

[
nα−1 − 1

]
.

Thus, in the exponential case, the difference between Tsallis entropy of the
lifetime of each component of a series system and Tsallis entropy of the
lifetime of the system is nonnegative, for α > 1.

3 Bounds for Tsallis Entropy of Order Satistics
Ebrahimi et al. (2004) obtained some bounds for Shannon entropy of order
statistics. Abbasnejad and Arghami (2011) provided some bounds for Renyi
entropy of order statistics. Gupta et al. (2014), derived the upper bounds
for residual entropy. In this section, we derive upper and lower bounds for
Tsallis entropy of order statistics.

Theorem 1. For any random variable X, with Tsallis entropy Sα(X) <∞,
the Tsallis entropy of Xi:n, i = 1, 2, . . . , n is bounded as follows:
(i) for all α > 1 (0 < α < 1)

Sα(Xi:n) ⩾ (⩽)
1

α− 1

[
1−Bi

(
1− (α− 1)Sα(X)

)]
,
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where
Bi =

1

Bα(i, n− i+ 1)
m

α(i−1)
i (1−mi)

α(n−i),

where mi =
i−1
n−1 is the mode of the beta distribution with parameters α(i −

1) + 1 and α(n− i) + 1; and B1 = Bn = nα.
(ii) Let M = f(m) < ∞, where m is the mode of the distribution of X.
Then

Sα(Xi:n) ⩾
1

α− 1
−Mα−1

[
1

α− 1
− Sα(Ui:n)

]
,

for all α > 0.

Proof. (i) Let gi and mi be the pdf and the mode of beta distribution with
parameters α(i − 1) + 1 and α(n − i) + 1, respectively. From (8) and since
the mode of this beta distribution is mi =

i−1
n−1 , we have, for α > 1,

−E[fα−1(F−1(Z))]

[
1

α− 1
− Sα(Ui:n)

]
= −B(α(i− 1) + 1, α(n− i) + 1)

(α− 1)Bα(i, n− i+ 1)

∫ 1

0
gi(z)f

α−1(F−1(z))dz

⩾ −B(α(i− 1) + 1, α(n− i) + 1)

(α− 1)Bα(i, n− i+ 1)

∫ 1

0
gi(m)fα−1(F−1(z))dz

= − 1

α− 1
Bi

∫ 1

0
fα(x)dx

= − 1

α− 1
Bi

(
1− (α− 1)Sα(X)

)
,

where the last equality is obtained by (2). Thus, using (6), the result follows.
For 0 < α < 1 the proof is similar.

(ii) For α > 1 (0 < α < 1), we have

fα−1(F−1(z)) ⩽ (⩾)Mα−1.

Thus, using (6), we can conclude that

Sα(Xi:n) ⩾
1

α− 1
−Mα−1

[
1

α− 1
− Sα(Ui:n)

]
.
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32 Tsallis Entropy Properties of Order Statistics and . . .

When the distribution function F (t) does not have a closed form, the
density of order statistics and the expectation in (6), can not be easily com-
puted. In this case, bounds in Theorem 1 are useful. Also, since the Tsallis
entropy expression for some well known distribution are available, we can
compute the bounds in Theorem 1, easily. When the lower bounds in both
parts of Theorem 1, are available, one may use the maximum of the these
lower bounds.

Note that in part(i) of Theorem 1, B1 = Bn = nα and in part (ii) of
Theorem 1,

Sα(Ui:n) =
1

α− 1

[
1− nα

α(n− 1) + 1

]
, i = 1, n.

Thus, we have the following bounds for Sα(Xi:n), i = 1, n:

Sα(Xi:n) ⩾ (⩽)
1

α− 1

[
1− nα

(
1− (1− α)Sα(X)

)]
, α > 1 (0 < α < 1),

and for α > 0

Sα(Xi:n) ⩾
1

α− 1

[
1− nαMα−1

α(n− 1) + 1

]
, i = 1, n.

Considering this fact, we have the following example.

Example 4. (a) The pdf of Pareto distribution with parameters λ and β
is given by

f(x) =
λβλ

xλ+1
, x ⩾ β > 0, λ > 0.

Here, M = λβ−1 and Sα(X) = 1
α−1

[
1 − λα

βα−1(αλ+α−1)

]
. The distribution of

X1:n is also Pareto with parameters nλ and β. Thus,

Sα(X1:n) =
1

α− 1

[
1− (nλ)α

βα−1(nαλ+ α− 1)

]
.

The distribution of Xn:n is more complicated. Using (6), we have

Sα(Xn:n) =
1

α− 1

[
1− (nλ)α

λβα−1
B(α(n− 1) + 1, α+

α− 1

λ
)

]
.
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Now, we can find the following bounds for α > 1:

Sα(Xi:n) ⩾
1

α− 1

[
1− (nλ)α

βα−1(αλ+ α− 1)

]
, i = 1, n,

and
Sα(Xi:n) ⩾

1

α− 1

[
1− nαλα−1

βα−1
(
α(n− 1) + 1

)], i = 1, n,

and for 0 < α < 1

1

α− 1

[
1− nαλα−1

βα−1
(
α(n− 1) + 1

)] ⩽ Sα(Xi:n) ⩽
1

α− 1

[
1− (nλ)α

βα−1(αλ+ α− 1)

]
.

In this case, we see that for α > 1, the lower bound in (ii) of Theorem 1
is sharper. For 0 < α < 1 the difference between the upper bound and
Sα(X1:n) is

(nλ)α

(α− 1)βα−1

[
1

(nαλ+ α− 1)
− 1

(αλ+ α− 1)

]
,

which is an increasing function of n. Thus, the upper bound is useful when
n is not large.
(b) For the exponential destribution with mean 1

λ , M = λ and Sα(X) =
1

α−1

[
1− λα−1

α

]
. As noted in Example 3, we have

Sα(X1:n) =
1

α− 1
− (nλ)α−1

α(α− 1)
, (11)

and
Sα(Xn:n) =

1

α− 1

[
1− nαλα−1B(α(n− 1) + 1, α)

]
.

For α > 1 the difference between Sα(X1:n) and the lower bound in (ii)

is (nλ)α−1

α−1

[
n

α(n−1)+1 − 1
α

]
which is an increasing function on n. Also, the

difference between Sα(Xn:n) and the lower bound in (ii) is nαλα−1

α−1

[
1

α(n−1)+1−
B(α(n − 1) + 1, α)

]
which is an increasing function on n. Thus, the lower

bound is useful when n is not large.
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4 Stochastic Comparisons
Let X and Y be two random variables and let the distribution function,
density function and hazard rate function of X be denoted by F (t), f(t) and
r(t) and those of Y be denoted by and G(t), g(t) and q(t), respectively. In
this section, we provide some results on the Tsallis entropy of order statis-
tics in terms of ordering properties of distributions. We need the following
definitions:

1. A nonnegative random variable X is said to have increasing (decreas-
ing) failure rate (hazard function) IFR (DFR) if r(t) = f(t)

F̄ (t)
is increas-

ing (decreasing) in t.

2. A random variableX is said to be smaller than Y in despersion ordering

(denoted by X
disp
⩽ Y ) if and only if

F−1(v)− F−1(u) ⩽ G−1(v)−G−1(u), ∀ 0 ⩽ u ⩽ v ⩽ 1,

or equivalenty,

g(G−1(u)) ⩽ f(F−1(u)), ∀ u ∈ (0, 1).

Here F−1(u) = sup{x : F (x) ≤ u}.

3. A random variable X is said to be smaller than Y in likelihood ratio
ordering (denoted by X

lr
⩽ Y ) if fX(t)

gY (t) is nonincreasing in t.

4. A random variable X is said to be smaller than Y in the failure rate
(hazard rate) ordering (denoted by X

fr
⩽ Y ) if r(t) ⩾ q(t), for all

t ⩾ 0, where r(t) and q(t) are the failure rate functions of X and Y ,

respectively, or equivalently if F̄ (t)
Ḡ(t)

is decreasing in t.

5. A random variable X is said to be smaller than Y in the stochastic
ordering (denoted by X

st
⩽ Y ) if F̄X(t) ⩽ ḠY (t) for all t.

6. A random variable X is said to be smaller than Y in entropy ordering
(denoted by X

e
⩽ Y ) if H(X) ⩽ H(Y ), where H(X) and H(Y ) are the

Shannon entropy of X and Y , respectively.
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7. A random variable X is said to be smaller than Y in Tsallis entropy
ordering (denoted by X

Ts
⩽ Y ) if Sα(X) ⩽ Sα(Y ) for all α > 0.

Remark 2. It is well known that X
lr
⩽ Y ⇒ X

fr
⩽ Y ⇒ X

st
⩽ Y and

X
disp
⩽ Y ⇒ X

st
⩽ Y and X

lr
⩽ Y ⇒ X

st
⩽ Y (Bickel and Lehmann, 1976; and

Shaked and Shanthikumar, 1994).

Theorem 2. Let X and Y be two random variables. Then, X
disp
⩽ Y implies

X
Ts
⩽ Y .

Proof. From X
disp
⩽ Y and using (2), we have

Sα(X)− Sα(Y ) =
1

α− 1

[∫ 1

0

(
gα−1(G−1(u))− fα−1(F−1(u))

)
du

]
⩽ 0,

for all α > 0.

In the special case of α → 1, X
disp
⩽ Y implies X

e
⩽ Y (Oja, 1981). By

the fact that, X
disp
⩽ Y implies that Xi:n

disp
⩽ Yi:n (Shaked and Shanthikumar,

1994), we have the following corollary.

Corollary 1. Let X and Y be two random variables and denote their order

statistic by Xi:n and Yi:n, i = 1, 2, . . . , n, respectively. Then X
disp
⩽ Y implies

Xi:n

Ts
⩽ Yi:n.

Theorem 3. Let X and Y be two random variables which at least one of

them is DFR. Then, X
fr
⩽ Y implies X

Ts
⩽ Y .

Proof. From Remark 2, X
fr
⩽ Y implies X

st
⩽ Y . But, X

st
⩽ Y is equivalent

to
E(ϕ(X)) ⩽ (⩾)E(ϕ(Y )),

for all increasing (decreasing) functions ϕ such that these expectations exist
(see Shaked and Shanthikumar, 2007). First, we assume that 0 < α < 1 and
X is DFR, then r(t)α−1 is increasing and we have

E(r(X)α−1) ⩽ E(r(Y )α−1). (12)
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36 Tsallis Entropy Properties of Order Statistics and . . .

On the other hand, X
fr
⩽ Y implies that the respective hazard rate functions

satisfy r(t) ⩾ q(t). Hence, we get

E(r(Y )α−1) ⩽ E(q(Y )α−1). (13)

Using (12) and (13) gives

E(r(X)α−1) ⩽ E(q(Y )α−1).

Thus, using (3), we obtain X
Ts
⩽ Y . For α > 1 the proof is similar.

The proof is similar when we assume that Y is DFR.

Using Remark 2, we have the following result.

Corollary 2. Under the assumptions of Theorem 3, if X
lr
⩽ Y , then X

Ts
⩽ Y .

Corollary 3. Let X be a nonnegative random variable and denote its order
statistics by Xi:n, i = 1, 2, . . . , n. Suppose X has a DFR distribution. If
Xi:n

lr
⩽ X, then Xi:n

Ts
⩽ X.

Since it is well known X1:n

lr
⩽ X

lr
⩽ Xn:n (Shaked and Shanthikumar,

1994), we have the following corollary.

Corollary 4. Let X be a nonnegative random variable having a DFR dis-
tribution. Then, X1:n

Ts
⩽ X

Ts
⩽ Xn:n.

Theorem 4. Let X be a nonnegative random variable and denote its order
statistics by Xi:n, i = 1, 2, . . . , n. Suppose Xi:n has a DFR distribution. Then
Xi:n

Ts
⩽ Xj:n, i < j.

Proof. Using the result of Chan et al. (1991), we have Xi:n

lr
⩽ Xj:n. This

implies that Xi:n

fr
⩽ Xj:n. Since Xi:n has a DFR distribution Theorem 3,

implies that Xi:n

Ts
⩽ Xj:n.

Theorem 5. Let X and Y be two nonnegative random variables and denote
their order statistics by Xi:n and Yi:n, i = 1, 2, . . . , n, respectively. Suppose

at least one of Xi:n or Yi:n is DFR. Then Xi

fr
⩽ Yj, i, j ∈ {1, . . . , n} implies

Xi:n

Ts
⩽ Yi:n.
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Proof. Note that Xi

fr
⩽ Yj implies Xi:n

fr
⩽ Yi:n (Shaked and Shanthikumar,

1994). Since at least one of Xi:n or Yi:n is DFR, by using Theorem 3 we have

Xi:n

Ts
⩽ Yi:n and this completes the proof.

Corollary 5. Under the assumptions of Theorem 5, Xi

lr
⩽ Yj, i, j ∈ {1, . . . , n}

implies Xi:n

Ts
⩽ Yi:n.

The following result deals with the likelihood ratio ordering of order
statistics of different sample sizes.

Theorem 6. Let X1, X2, . . . , Xn, Xmax(n,m) be independent and identically
distributed (iid) random variables where m and n are positive integers. Then,

Xj:m

lr
⩽ Xi:n whenever j ⩽ i and m− j ⩾ n− i.

Proof. See Shaked and Shanthikumar (2007).

In particular Xn:n

lr
⩽ Xn+1:n+1 and X1:n+1

lr
⩽ X1:n. Using the above

result, we have the following theorem.

Theorem 7. Let X1, X2, . . . , Xn+1 be iid random variables with cdf F (t).
Suppose X has a DFR distribution.
Then,
(i) X1:n+1

Ts
⩽ X1:n,

(ii) Xn:n

Ts
⩽ Xn+1:n+1.

proof. Using Theorem 6, we have X1:n+1

lr
⩽ X1:n. This implies that

X1:n+1

fr
⩽ X1:n. Since X has a DFR distribution, X1:n and X1:n+1 have

DFR distribution (Takahasi, 1988). So, by using Theorem 3, we can con-

clude that X1:n+1

Ts
⩽ X1:n. Similarly, we can prove (ii). □

Theorem 8. Let X and Y be two continuous random variables with cdfs
F (t) and G(t); and pdfs f(t) and g(t); and denote their order statistics by
Xi:n and Yi:n, i = 1, 2, . . . , n, respectively. Suppose

W1 = {u ∈ (0, 1)| f(F−1(u)) ⩾ g(G−1(u))},
W2 = {u ∈ (0, 1)| f(F−1(u)) ⩽ g(G−1(u))},

J. Statist. Res. Iran 13 (2016): 25–41



38 Tsallis Entropy Properties of Order Statistics and . . .

Wi ̸= ∅, i = 1, 2, supW2
h(u)α ⩽ infW1 h(u)

α, where h(u) = ui−1(1− u)n−i,

0 < u < 1. If X
Ts
⩽ Y then, Xi:n

Ts
⩽ Xi:n.

Proof. From (4) and (5) and by substituting u = F (x), we conclude that

Sα(Xi:n) =
1

α− 1

[
1−

∫ 1

0

1

Bα(i, n− i+ 1)
uα(i−1)(1− u)α(n−i)fα−1(F−1(u))du

]
.

By taking u = G(x) for Sα(Yi:n), we have

Sα(Yi:n) =
1

α− 1

[
1−

∫ 1

0

1

Bα(i, n− i+ 1)
uα(i−1)(1− u)α(n−i)gα−1(G−1(u))du

]
.

Thus, we find

Sα(Xi:n)− Sα(Yi:n) =
1

(α− 1)Bα(i, n− i+ 1)
Du, (14)

where
Du =

∫ 1

0
hα(u)

[
gα−1(G−1(u))− fα−1(F−1(u))

]
du.

Supposing α > 1, from X
Ts
⩽ Y , we have∫ 1

0

[
gα−1(G−1(u))− fα−1(F−1(u))

]
du ⩽ 0. (15)

Thus, from (15), we conclude that

Du =

∫
W1

h(u)α
[
gα−1(G−1(u))− fα−1(F−1(u))

]
du

+

∫
W2

h(u)α
[
gα−1(G−1(u))− fα−1(F−1(u))

]
du

⩽ inf
W1

h(u)α
∫
W1

[
gα−1(G−1(u))− fα−1(F−1(u))

]
du

+ sup
W2

h(u)α
∫
W2

[
gα−1(G−1(u))− fα−1(F−1(u))

]
du

⩽ inf
W1

h(u)α
∫
W1

[
gα−1(G−1(u))− fα−1(F−1(u))

]
du

+ inf
W1

h(u)α
∫
W2

[
gα−1(G−1(u))− fα−1(F−1(u))

]
du
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= inf
W1

h(u)α
∫ 1

0

[
gα−1(G−1(u))− fα−1(F−1(u))

]
du

⩽ 0.

For 0 < α < 1, by noting that
∫ 1
0

[
gα−1(G−1(u))− fα−1(F−1(u))

]
du ⩾ 0, in

a similar way we can show that Du ⩽ 0, that completes the proof.
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