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The mechanical behavior of a low alloy multiphase TRIP steel has been predicted by an
advanced microstructure-based finite element method. A representative volume element chosen
based on the actual microstructure has been utilized for simulating the mechanical behavior of
the studied steel. The parameters describing the martensitic transformation kinetics have been
estimated using both crystallographic and thermodynamic theories of martensitic transforma-
tion. The mechanical behavior of each of the constituent phases required for the prediction of
mechanical behavior of the studied material has been extracted from those reported in the
literature. Comparison of the predicted mechanical behavior of the investigated TRIP800 steel
with those reported in the literature shows that there is good agreement between simulated and
experimental results. Therefore, it can be said that, the utilized microstructure-based model can
be used for the prediction of both mechanical and transformation behaviors of the TRIP800
steels. It is worth noting that all of the parameters used in the model, except the sensitivity of the
martensitic transformation to the stress state, can be estimated theoretically; thus, the number of
parameters obtained by correlating the simulated and experimental results reduces to one. This
is the unique characteristic of the utilized model, which makes the application of the model for
simulation of the mechanical behavior of TRIP steels simpler than that of the similar ones.
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I. INTRODUCTION

LOW-ALLOYED TRIP steels are known as an
important class of low alloy high-strength (HSLA) steels
with a multiphase microstructure consisting of bainite
and retained austenite within the ferrite matrix. Desir-
able combination of high strength and good ductility of
TRIP steels is mainly due to the occurrence of strain-in-
duced martensitic transformation of metastable-retained
austenite.[1] Because of this suitable combination of
strength and ductility, application of TRIP steels may
lead to an improved crash worthiness accompanied by
weight reduction in automotive industries.

During the last three decades, a number of consider-
able attempts have been made for simulating the
deformation behavior of TRIP steels on the macro-
scopic level.[2–8] One of the first research works with
regard to this research topic has been carried out by
Olson and Cohen[2] in which a physical-based model has
been developed for predicting temperature-dependent
strain-induced martensitic transformation in TRIP
steels. The next attempts were focused on generalization
of Olson and Cohen’s model through which the effect of
mechanical driving force on martensitic transformation

was studied by Stringfellow et al.[3] The subsequent
series of investigations on the basis of the model
proposed by Olson and Cohen have been done by
incorporating the stress state and austenite grain size
effects on the transformation of martensite.[4,5] The
effects of hardening behavior, composition, and mor-
phology of the constituent phases on overall mechanical
behavior of TRIP steels have been also considered using
physical and numerical models.[6–8]

The mechanical properties of multiphase TRIP steels
are strongly dependent upon their composite-type
microstructures. Therefore, estimation of these proper-
ties in microscopic level needs to be taken into account.
Several micromechanics-based models have been intro-
duced and exploited to simulate local deformation
behavior of multiphase TRIP steels.[9–12] Marketz and
Fischer[9] performed a micromechanical study in order
to predict micro-stress and micro-strain distributions
within and around the plate-shaped martensitic variants.
Riesnert et al.[10] proposed a transformation criterion on
the basis of thermodynamics for predicting the onset of
the strain-induced martensitic transformation and/or its
kinetics and suggested that the stability of austenite
phase against strain-induced martensitic transformation
shows marked load-type sensitivity. Taleb and Sido-
roff[11] applied the micromechanical model of Green
wood–Johnson mechanism for simulation of transfor-
mation-induced plasticity and improved the model’s
prediction by modifying some of the presumptions. Han
et al.[12] developed a microstructure-based computa-
tional model in which the martensitic transformation
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kinetics was assumed to be a nucleation-controlled
phenomenon and predicted the change of Ms tempera-
ture under different loading conditions.

In most of the previous studies, simple representative
volume elements (RVE’s) have been used in the finite
element simulation for considering the effect of
microstructure on the mechanical properties of TRIP
steels. In recently conducted investigations, however, the
representative volume elements based on the real
microstructure have been utilized to estimate the
mechanical properties of multiphase TRIP steels.[13–15]

Choi et al. have predicted the change of austenite
volume fraction in a commercial TRIP800 steel sheet
during straining and then, estimated its engineering
stress–strain curve by the use of the representative
volume element developed based on its real microstruc-
ture obtained by scanning electron microscope. The
mechanical behavior of constituent phases and the
fitting parameters describing the martensite transforma-
tion kinetics were determined using the high-energy
X-ray diffraction experiment. A good correlation was
found between the overall macroscopic behavior of the
steel and that estimated by the computed response of the
representative volume element.[13]

The microstructure-based finite element model used
for estimating engineering stress–strain curve of the
commercial TRIP800 steel has been also utilized for
predicting its ductility and failure mode, and accept-
able agreement has been found between the experimen-
tal and predicted results.[14] In another research, the
microstructure-based finite element model used in two
previous investigations has been applied as a virtual
design tool in investigating the influence of various
materials design parameters on the deformation behav-
ior of TRIP steels.[15]

In the investigations performed by Choi and his
coworkers, a stress invariant-based transformation
kinetics law has been used in order to capture the
kinetics of martensitic phase transformation during
deformation. The stress invariant transformation equa-
tion contains four parameters which should be deter-
mined for the prediction of overall deformation
behavior of TRIP steel. Most of these constants are
considered by Choi et al. to be the adjusting parameters,
although they have particular physical meanings and
therefore, it seems that they are calculable at a priori.
The aim of the present study is to investigate the
possibility of predicting overall deformation behavior of
a low alloy TRIP steel using the transformation equa-
tion proposed by Choi et al. with the theoretically
calculated parameters. This is novel and to the authors’
knowledge, has not been attempted so far.

II. KINETICS OF MARTENSITIC PHASE
TRANSFORMATION

The procedure used in recently conducted studies for
micromechanical simulation of the TRIP800 steel based
on its real microstructure[13–15] has been adopted in this
work for the prediction of the mechanical behavior of a

similar TRIP steel. The equations utilized for predicting
the martensitic transformation kinetics together with
theoretical parameters calculation method are briefly
described in this section.
The martensitic domain formation is possible when-

ever the associated driving force reaches the critical
energy barrier of the transformation.[16] Following Serri
and Cherkaoui,[16,17] the macroscopic mechanical driv-
ing force for the martensitic transformation expressed as
the following equation, has been utilized in the present
study for predicting the transformation kinetics:

rA : ~etr ¼ R
ffiffiffiffiffiffiffi

3J2
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1þ k
J3
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3=2
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" #
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½1�

where rA is the average stress in the austenite phase, ~etr

denotes the average transformation strain, R corre-
sponds to the maximum transformation shear strain, k
described the sensitivity of the transformation to the
stress state, and a is the volume strain accompanied by
the martensitic transformation.
In Eq. [1], I1 is the first invariant of stress tensor; J2

and J3 are the second and third invariants of deviatoric
stress tensor, respectively.
The values of parameters R and a in Eq. [1] can be

calculated based on the crystallographic description of
martensitic transformation stated in References 18 and
19.
In ferrous alloys and during martensitic transforma-

tion, the FCC crystal structure of the parent phase
changes into BCT structure of the product. The Bain
strain, which corresponds to the transformation of a
unit cell in the parent crystal structure into the product
with the smallest atomic displacement, can be obtained
as follows[18,19]:

ðcBcÞ ¼
g1 0 0
0 g2 0
0 0 g3

0

@
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where g1 ¼ g2 ¼
ffiffiffi

2
p
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and g3 ¼
ca0
ac
. The subscripts c

and a¢ denote the austenite and martensite phases,
respectively.
It has been shown that the invariant line of the

martensitic transformation strain should be on the {110}
planes of the austenite phase which do not contain the c
axis of the martensite.[20] Considering one of these
planes, the plane defined by the invariant—normal of
the transformation strain should contain one of

1 �1 1
� �

directions. Therefore, (101) and

1 0 �1
� �

can be considered to be the plane containing
the invariant line and direction lying on the invari-
ant—normal plane of the transformation strain,
respectively.
Considering the invariant line to be u1 u2 u3½ �, the

vector u1 u2 u3½ � will be on the plane 1 0 1ð Þ
when

u1 ¼ �u3: ½3�

Supposing u1 u2 u3½ � to be a unit vector, then
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u21 þ u22 þ u23 ¼ 1: ½4�

This vector changes into a new vector v1 v2 v3½ � as
a result of the Bain transformation using the following
equation:

v1 v2 v3½ � ¼ u1 u2 u3½ �ðcBcÞ: ½5�

Since u1 u2 u3½ � has been considered to be an
invariant vector, its length should be unchanged after
the Bain deformation. Therefore,

v21 þ v22 þ v23 ¼ u21 þ u22 þ u23: ½6�

Solving Eqs. [3], [4], and [6] simultaneously, the
indices of both the u1 u2 u3½ � and v1 v2 v3½ �vec-
tors will be calculated.

Similarly, the invariant unit vector perpendicular to
the invariant line, i.e., h1 h2 h3½ � vector, can be
calculated using the following equation resulting from
the assumption that the plane indicated by
ð h1 h2 h3 Þ contains 1 0 �1

� �

direction.

h1 ¼ h3 ½7�

This direction becomes the new vector l1 l2 l3½ �,
because of the Bain deformation. Therefore,

l1 l2 l3½ � ¼ h1 h2 h3½ �ðcBcÞ�1 ½8�

The invariance of h1 h2 h3½ � vector requires that

l21 þ l22 þ l23 ¼ h21 þ h22 þ h23: ½9�

Solving Eqs. [8] and [9] simultaneously and considering
that the h1 h2 h3½ � is a unit vector, the indices of both
the h1 h2 h3½ � and l1 l2 l3½ � vectors are calculated.

One way for converting ðcBcÞinto an invariant line
strain is to employ a rigid body rotation which simul-
taneously rotates l1 l2 l3½ � into h1 h2 h3½ � and
v1 v2 v3½ � into u1 u2 u3½ �. Defining the
a1 a2 a3½ � vector as the cross product of
u1 u2 u3½ � and h1 h2 h3½ � vectors and considering
the b1 b2 b3½ � vector to be the cross product of
v1 v2 v3½ � and l1 l2 l3½ �vectors, this rigid body
rotation can be expressed as

ðcJcÞ ¼
u1 h1 a1
u2 h2 a2
u3 h3 a3

0

@

1

A

v1 l1 b1
v2 l2 b2
v3 l3 b3

0

@

1

A

�1

: ½10�

Therefore, the invariant line strain can be obtained as
follows:

ðcScÞ ¼ ðcJcÞ ðcBcÞ: ½11�

Having determined the invariant line strain, ðcScÞ, it
should be factorized according to the following equation
for obtaining the shape deformation matrix, ðcPcÞ.

ðcScÞ ¼ ðcPcÞ ðcQcÞ; ½12�

where

cPcð Þ ¼
1þmd1p1 md1p2 md1p3
md2p1 1þmd2p2 md2p3
md3p1 md3p2 1þmd3p3

0

@

1

A ½13�

and

cQcð Þ ¼
1þ ne1q1 ne1q2 ne1q3
ne2q1 1þ ne2q2 ne2q3
ne3q1 ne3q2 1þ ne3q3

0

@

1

A: ½14�

In Eq. [13], d1 d2 d3½ � and p1 p2 p3½ � are the
unit vectors in the direction of macroscopic displace-
ment and invariant plane normal of the transformation,
respectively. m represents the magnitude of displace-
ment due to the martensitic transformation. Since the
lattice invariant shear has been assumed to occur on
1 0 1ð Þ �1 0 1

� �

system and because its effect is to
cancel the shape change due to ðcQcÞ, according to the
phenomenological theory of martensite phase transfor-
mation, the latter should be a shear on
1 0 1ð Þ 1 0 �1

� �

. Therefore, q1 q2 q3½ � equals
0:707 0 0:707½ � and e1 e2 e3½ � can be expressed as
0:707 0 �0:0707½ �. Since ðcQcÞ should not change
the volume, its determinant should be equal to
unity.[18,19]

Rearranging Eq. [12], using Eqs. [13] and [14] and
considering the indices of the vectors q1 q2 q3½ � and
e1 e2 e3½ � results in

S11 S12 S13

S21 S22 S23

S31 S32 S33

0

B

@

1

C

A

¼
1þmd1p1 md1p2 md1p3

md2p1 1þmd2p2 md2p3

md3p1 md3p2 1þmd3p3

0

B

@

1

C

A

�
1þ nð0:707Þ2 0 nð0:707Þ2

0 1 0

�nð0:707Þ2 0 1� nð0:707Þ2

0

B

@

1

C

A

:

½15�

The following relations are obtained by multiplying
each of the ðcPcÞ rows by the second column of ðcQcÞ, i.e.,

S12 ¼ md1p2 ½16�

S22 ¼ 1þmd2p2 ½17�

S32 ¼ md3p2: ½18�

Since ðcScÞ has been already calculated, each of the
ðcScÞ components are known. Dividing Eq. [16] by
Eq. [18] gives

S12

S32
¼ d1

d3
½19�
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Or

d3 ¼
S32

S12
d1: ½20�

Equation [17] can be written as

md2p2 ¼ S22 � 1: ½21�

Therefore,

S12

S22 � 1
¼ d1

d2
½22�

or

d2 ¼
S22 � 1

S12
d1: ½23�

Since d1 d2 d3½ � is a unit vector, the following
relationship is obtained:

d21 þ d22 þ d23 ¼ 1: ½24�

Hence, the d1 d2 d3½ � vector can be determined by
solving Eqs. [20], [23], and [24] simultaneously.

The inverse of ðcScÞ in Eq. [12] can be expressed as

ðcScÞ�1 ¼ ðcQcÞ�1ðcPcÞ�1 ½25�

or
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1

detðcScÞ :

½26�

It is worth noting that since detðcQcÞ ¼ 1, detðcPcÞ is
equal to detðcScÞ. It is clearly observable in Eq. [13] that

detðcPcÞ ¼ 1þmd1p1 þmd2p2 þmd3p3: ½27�

Multiplication of the second row of ðcQcÞ�1 by each

of the columns of ðcPcÞ�1 results in

S�
21 ¼

md2p1
detðcScÞ ½28�

S�
22 ¼

1þmd3p3 þmd1p1
detðcScÞ ½29�

S�
23 ¼

md2p3
detðcScÞ : ½30�

Since ðcScÞ and d1 d2 d3½ � have been already
determined, S�

21, S
�
22, S

�
23, d1, d2, d3 , and detðcScÞ are

known. Therefore, mp1 mp2 mp3½ � can be calculated
by solving Eqs. [28], [29], and [30], simultaneously.
Knowing that p1 p2 p3½ � (normal of the habit plane)
is a unit vector, the value of m is obtainable.
The values of a and R can be calculated by the

following equations:

a ¼ p1 p2 p3½ �
md1
md2
md3

2

4

3

5 ½31�

R ¼ m2 � a2
	 
1=2

: ½32�

a, R, and m, parameters together with the indices d1,
d2, and d3 in d1 d2 d3½ � vector have been illustrated in
Figure 1, schematically.

III. MATERIALS AND METHODS

The material investigated in this study was a TRIP800
steel sheet with the initial thickness of 1 mm. The
chemical composition of the investigated steel is given in
Table I.
X-ray diffraction experiments were carried out using

Phillips X’pert diffractometer with Cuka radiation. The
2h step size was equal to 0.02 deg and the exposure time

Fig. 1—Schematic representation of the most important parameters
utilized in the crystallographic theory of martensitic phase transfor-
mation.
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was 53 seconds during X-ray peak scanning. The
samples were first mechanically polished and then, were
chemically polished for 30 minutes using a
95pctH2O2-5pctHF solution,[21] before radiation expo-
sure. The (111), (200), and (220) peaks of the austenite
phase and (110), (200), and (211) peaks of the ferrite
phase were chosen for subsequent analyses.

Specimens for optical metallography were polished
following a detailed procedure recommended by Buehler
Ltd.,[22] and then, were etched in a solution prepared by
adding 10 g sodium metabisulfite into 100 ml water.[23]

Tensile specimens 25 mm in length and 6 mm in width
were cut from the steel sheet by wire electro-discharge
machining to avoid strain-induced martensitic transfor-
mation during sample preparation. Tensile test was
conducted using a screw-driven Zwick Z250 universal
tensile testing machine at a constant cross head speed of
10 mm/min corresponding to an initial strain rate of
6.67 9 10�3 s�1.

IV. FINITE ELEMENT ANALYSIS

The finite element model using the real microstructure
of the low alloy TRIP800 steel[13–15] was employed in
this study. The optical micrograph of the investigated
steel (Figure 2) was used for the subsequent image
processing and imported into the ABAQUS general
purpose commercial finite element code.[24] It needs to
be mentioned that the volume fraction and morphology
of the constituent phases in Figure 2, which has been
chosen to be the representative volume element, are
almost equal to the corresponding average values for the
whole steel microstructure measured by the image

analysis software. Since tensile specimens have been
cut from the steel sheet and these specimens undergo an
in-plane loading condition during both uniaxial and
biaxial tensile tests, two-dimensional three-node plane
stress element (CPS3) were adopted for discretization of
the representative volume element. In the discretized
micrograph illustrated in Figure 3, the phase boundaries
were explicitly modeled with a finer mesh for the
subsequent study of failure initiation.
In the simulation of the uniaxial tensile loading, the

same displacement was applied on the nodes located
along the right edge of the representative volume
element in the x direction, while these nodes could
move freely in the y direction. The nodes located in the
left edge of the representative volume element were
considered to be fixed in x direction, but allowed to
move freely in the y direction. Since the representative
volume element should remain rectangular during
deformation, the top and bottom edges of the element
were constrained so that all the nodes located along
these edges displace the same in the y direction. For
modeling the biaxial tensile deformation, the nodes
located along the left and bottom edges of the repre-
sentative volume element were considered not to move
in the x and y directions, respectively; while the right
and top edges of the element were subjected to dis-
placements along the respective x and y directions based
on the corresponding principal strain ratio, e22/e11. In
the case of equibiaxial deformation, for example, the
right and top edges of the element were displaced in the
respective x and y directions so that the element
experiences the same strain along x and y directions.
Macroscopic engineering stresses were obtained by
dividing the reaction forces of the right and top edges
of the volume element in the respective x and y
directions by the corresponding initial length. Macro-
scopic engineering strains were also calculated by
dividing the right and top edge displacements by the
initial length of the respective horizontal and vertical
edges of the representative volume element.
In the current work, all the constituent phases of the

TRIP steel were assumed to have isotropic elastic–plas-
tic deformation behavior. The Young’s modulus and
Poisson’s ratio of the constituent phases were considered
to be 210 GPa and 0.3, respectively.[13–15] The flow
stresses of ferrite and bainite phases were assumed to
follow the so-called Ludwik–Hollomon equation
(Eq. [33]), while the Swift equation (Eq. [34]) was
adopted for predicting the flow curves of retained
austenite and martensite phases. The flow behavior of
retained austenite and martensite in the TRIP800 steel
with the chemical composition as that utilized in the
current work has been reported to be estimated by the
Swift law.[25] Since ferrite and bainite phases have not
been distinguished from each other in Reference 25, the
reported value for the flow stress of the ferrite in this

Table I. Chemical Composition of the Investigated Steel (in Wt. Percent)

Fe C Si Mn P Al

Based 0.32 1.4 1.5 0.008 0.047

Fig. 2—Optical micrograph of the investigated TRIP800 steel. Illus-
trating the Bainite (B) and retained austenite (A) within the ferrite
(F) matrix.
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reference cannot be used in this study. Instead, the
values employed for the prediction of flow stress as a
function of plastic strain in other related references have
been adopted for the purpose of simulations in this
work.[15] Since the chemical compositions of ferrite
phase in all low alloy TRIP steels are almost similar,[26]

and this is the case for bainite phase as well, the flow
behavior of these phases has been assumed to be almost
the same as those reported in the literature for low alloy
TRIP steels. The following well-known equations were
assumed for constituent phases of the investigated TRIP
steel samples in the present study.

ri ¼ ry;i þ Kie
ni
ep ði ¼ F;BÞ ½33�

ry;i ¼ ryo;ið1þHo;ieepÞni ði ¼ A;MÞ: ½34�

All the parameters in Eqs. [33] and [34] which are
obtained from the literature are given in Table II.
The kinetics of strain-induced martensitic transfor-

mation expressed by Eq. [1] was implemented into
ABAQUS general purpose finite element code using a
user material subroutine (UMAT). In this subroutine,
the current magnitude of the mechanical driving force
for martensitic transformation in each integration point
of the elements belonging to the austenite phase is
compared with the critical value of the mechanical
driving force for the transformation. It is assumed that
strain-induced martensitic transformation occurs when
the current mechanical driving force exceeds the critical
value. In this case, the mechanical properties of the
integration point change to those of the martensite
phase.

Fig. 3—The discretized representative volume element (RVE).
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V. RESULTS AND DISCUSSIONS

The X-ray diffraction patterns of the investigated steel
in both the as-received and uniaxially deformed state
(fractured) are shown in Figure 4. As it is clearly seen in
Figure 4, the as-received sample contains two different
phases, i.e., the body-centered cubic (BCC) ferrite (a)
phase and the face-centered cubic (FCC) austenite (c)
phase. After uniaxial deformation, all of the diffraction
peaks for c phase except for the peak corresponding to
(111) plane disappear indicating that the strain-induced
martensitic transformation has occurred.

The average lattice parameters of the austenite and
ferrite phases can be determined by the average diffract-
ing angles, 2hi, which are obtained from XRD experi-
ments corresponding to each h k lf g plane, using the
following relation[27]:

a ¼ 1

N

X

N

i¼1

k
2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ k2 þ l2
p

sinðhiÞ
: ½35�

In this equation, N is the number of reflection and k is
the incident X-ray beam wavelength. The carbon
content (in weight percent) of the austenite phase, Cc,
can be estimated by the following equation[21,28]:

ac ¼ 0:35467þ 0:00467Cc nmð Þ; ½36�

where ac is the austenite lattice parameter.
In martensitic phase transformation, the austenite

phase transforms into martensite (a¢) with body-cen-
tered tetragonal (BCT) crystal structure. The martensite
lattice parameters are related to the average carbon
content of the parent austenite phase through the
following empirical equations[27]:

aa0 ¼ aa � 0:0014Cc ðnm) ½37�

ca0 ¼ aa þ 0:0115Cc ðnm);

where aa0 and ca0 are the lattice parameters of the
martensite phase and aa is the lattice parameter of the
ferrite phase.
The volume fraction of retained austenite can be

obtained from the relative intensities of multiple diffrac-
tion peaks using the following equation[29]:

Vc ¼

1
q

P

q

j¼1

Icj
R0

cj

1
p

P

p

i¼1

Iai
R0

ai
þ 1

q

P

q

j¼1

Icj
R0

cj

; ½38�

where Vc is the austenite volume fraction; Iai and Icj are
the integrated intensities corresponding to the ith and
jth peaks of the respective ferrite and austenite phases. p
and q are the number of the respective ferrite and
austenite diffraction peaks which has been chosen for
the calculation.
The value of R¢ parameter corresponding to each of

the constituent phases can be expressed as follows[29,30]:

R0 ¼ 1

v2

� �

Fj j2p 1þ cos2 2h

Sin2hCosh

� � �

e�2M; ½39�

where v is the volume of unit cell, F the structural factor,
p the multiplicity factor, h the Bragg angle, and e�2M

denotes the temperature factor. As mentioned before,
the (111), (200), and (220) peaks of austenite and those
of (110), (200), and (211) planes for ferrite were chosen
for the calculation of Vc.
The average lattice parameters of the constituent

phases together with the average carbon content and
volume fraction of retained austenite in the as-received
state were estimated by both XRD results and those
of image analysis, and the results are listed in
Table III.
Using the estimated lattice parameters of the austenite

and martensite phases, the Bain strain, habit plane,
shape deformation matrix, and R and a parameters of
martensitic phase transformation were calculated based
on the corresponding formulae mentioned before. These
calculated values are given in the following:

cBcð Þ ¼
1:11786 0 0

0 1:11786 0
0 0 0:832454

0

@

1

A; ½40�

Habit plane : �0:17724 �0:80657 �0:65394ð Þ;
½41�

cBcð Þ ¼
0:9935 �0:0298 �0:0208
0:0249 1:1133 0:07902
�0:0209 �0:0953 0:9334

0

@

1

A; ½42�

R ¼ 0:18; ½43�

Table II. Values of the Material Parameters

Ferrite
E (GPa) 210
m 0.3
K 1200
ry (MPa) 425
n 0.6

Bainite
E (GPa) 210
m 0.3
K 3400
ry (MPa) 500
n 0.65

Austenite
E (GPa) 210
m 0.3
ry0 700
H0 50
n 0.24

Martensite
E (GPa) 210
m 0.3
ry0 2300
H0 100
n 0.05
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a ¼ 0:04: ½44�

The values of R and a parameters calculated for
martensitic transformation of the investigated steel are
in good agreement with those reported in the literature
for the same material.[31]

In the current work, the critical mechanical driving
force of the martensitic transformation has been
assumed to be the same as the thermodynamic free
energy change for this transformation per unit volume.
The thermodynamic free energy change of the marten-
sitic phase transformation at the martensite start tem-
perature has been reported to be estimated by the
following expression[32]:

DGc!a0 ¼ 2xRT ln xþ x D �Ha
c � D �Hc

c

�

�

� D �Sa
xs � D �Sc

xs

	 


Tþ 4xa � 6xc

�

�þ A;
½45�

where

A ¼ �4RTð1� xÞ lnð1� xÞ þ 5RTð1� 2xÞ lnð1� 2xÞ

� 6RTx ln
dc � 1þ 3x

dc þ 1� 3x

�

�

�

�

�

�

�

�

þ B

½46�

B ¼ �6RTð1� xÞ ln 1� 2Jc þ ð4Jc � 1Þx� dc
2Jcð2x� 1Þ

�

�

�

�

�

�

�

�

þ 3RTx lnð3� 4xÞ þ C

½47�

Fig. 4—X-ray diffraction patterns of microstructure of the as-received and uniaxially deformed state (fractured) TRIP800 steel.
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C ¼ 4RTx ln
da � 3þ 5x

da þ 3� 5x

�

�

�

�

�

�

�

�

þ ð1� xÞDGc!a
Fe þ Df�: ½48�

In these equations, x is the mole fraction of carbon in
the austenite phase, T refers to the martensite start
temperature, R is the universal gas constant,
D �Ha

c ¼ 111918 J/mol, D �Sa
xc ¼ 51:44 J/molK; and

D �Hc
c ¼ 35129þ 169105x J/mol ½49�

D �Sc
xs ¼ 7:639þ 120:4x J/molK ½50�

da ¼ 9� 6xð2Ja þ 3Þ þ ð9þ 16JaÞx2
�

�

�

�

1=2 ½51�

dc ¼ 1� 2xð1þ 2JcÞ þ ð1þ 8JcÞx2
�

�

�

�

1=2 ½52�

Ja ¼ 1� exp � xa

RT

� �

½53�

Jc ¼ 1� exp � xc

RT

� �

½54�

xa ¼ 48570 J/mol ½55�

xc ¼ 8054 J/mol: ½56�

Considering the estimated carbon content of retained
austenite, the mole fraction of carbon in this phase is
estimated to be 0.052 and hence, the martensite start
temperature of the studied steel will be estimated to be
around 400 K (127 �C).[33] The values of DGc!a and
Df�have been obtained from the relevant References 34,
35. Therefore, the critical driving force for the marten-
sitic phase transformation in the investigated steel can
be calculated as 1330 J/mol. Dividing this value by the
molar volume of austenite phase, results in the estimated
critical driving force, i.e., 190 MPa, for martensitic
transformation in the investigated steel. It is worth
mentioning that the molar volume of austenite can be
obtained from the estimated lattice parameter of this
phase.
Experimentally determined variation of the retained

austenite volume fraction as a function of applied strain
shows that the maximum transformation rate occurs
during plane strain tension, and the transformation rate
during uniaxial tension is lower than that when the steel
deforms in equibiaxial tension.[31] The value of stress
state sensitivity parameter of martensitic transforma-
tion, k, was determined so that the above-mentioned
transformation rate trend was obtained numerically.
This value was found to be 0.15.
Figure 5 shows the engineering stress–strain curve of

the investigated steel predicted by the utilized
microstructure-based finite element method together
with the experimental data obtained by the uniaxial
tensile test. As can be observed, there is a good

Table III. The Lattice Parameters of Different Phases (a: Ferrite, c: Austenite and a¢: Martensite) and the Volume Fraction and

Carbon Content of Retained Austenite in the Investigated Steel

Volume Fraction of Retained Austenite
(Pct) ac (nm) aa (nm) Cc (Wt Pct) aa0 (nm) ca0 (nm)

X-ray diffraction Image analysis 0.36014 0.286315 1.18 0.28467 0.2998
18 17.8

Fig. 5—Engineering stress-engineering strain curves of the studied
TRIP800 steel.

Fig. 6—Variation of the volume fraction of retained austenite as a
function of applied strain under different loading conditions.
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agreement between the experimental and predicted
results. Particularly, the employed numerical method is
capable of estimating the ultimate tensile strength
(UTS), the engineering strain corresponding to UTS,
and the engineering failure strain satisfactorily.

The volume fraction of retained austenite as a
function of equivalent strain of the representative
volume element under different loading conditions
estimated by the utilized microstructure-based finite
element method is given in Figure 6. The experimentally
determined volume fraction of retained austenite as a
function of equivalent strain obtained under the same
loading conditions as those used in numerical estima-
tion, extracted from the literature, is also superimposed
on Figure 6. As it is clearly observable in this figure,
there is an appropriate correlation between the numer-
ical and experimental results.

It should be mentioned that the variation of marten-
site volume fraction in the representative volume ele-
ment has been estimated by image analysis. For
example, the evolution of martensite phase in the
representative volume element under uniaxial tension
is shown in Figure 7. In this figure, the red and blue
areas represent the martensite and retained austenite

phases, respectively. The remaining part of the
microstructure is shown as white regions. The volume
fraction of martensite and/or retained austenite phase
can be estimated by the analysis of these digitized
images using the same procedure as that used for
determining volume fraction of a phase in a particular
micrograph.
From Figures 5 and 6, it is clear that although the

mechanical behavior of constituent phases used in the
current work has not been obtained by in situ techniques
and all the parameters describing the martensitic trans-
formation kinetics except the sensitivity of transforma-
tion to the stress state have been estimated theoretically,
the numerical method used in this work has a good
capability for predicting both the mechanical properties
and martensitic transformation kinetics of the TRIP800
steel.
Figure 8 (part a to part e) shows the equivalent plastic

strain distribution in the representative volume element
of the investigated material deformed in uniaxial tension
at different engineering strains. As it can be clearly seen
in this figure, with an increase in the applied strain, the
plastic strain localization increases within the represen-
tative volume element. The equivalent plastic strain

Fig. 7—Martensite volume fraction evolution in the RVE under uniaxial tension at various engineering strains of (a) 2 pct, (b) 5 pct, (c) 10 pct,
and (d) 15 pct.
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Fig. 8—Distribution of equivalent plastic strain for TRIP800 steel at various engineering strains of (a) 2 pct, (b) 5 pct, (c) 15 pct, (d) 20.6 pct,
and (e) 24 pct.
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distribution at the applied strain value corresponding to
the failure strain clearly shows that the equivalent
plastic strain has been localized at a narrow band in a
situation approximately perpendicular to the loading
direction. Therefore, it can be said that the failure
phenomenon in the material during deformation in
uniaxial tension has most probably occurred by plastic
strain localization perpendicular to the loading
direction.

The fractured tensile specimen is shown in Figure 8.
In this figure, the loading direction is the same as that of
the assumed representative volume element which has
been used in the numerical calculation. As can be
observed in this figure, the fracture surface of the tensile
specimen is almost flat and perpendicular to the loading
direction. The shape and relative orientation of the
fractured region is almost the same as the equivalent
plastic strain localization band in the representative
volume element predicted by the numerical method
(Figure 8(e)). This is an additional reason for the fact
that fracture in this specimen has taken place by plastic
strain localization perpendicular to the loading
direction.

Figures 8 and 9 show that the microstructure-based
finite elementmodel used in this researchwork can predict
ductility and failure mode of TRIP800 steel (at least
during uniaxial tension) with an acceptable accuracy.

VI. SUMMARY AND CONCLUSION

The finite element model based on the actual
microstructure was used to predict uniaxial engineering
stress-engineering strain curve of TRIP800 steel as well
as the variation of martensite volume fraction in its
microstructure as a function of the applied strain under
different loading conditions. The martensitic transfor-
mation kinetics was predicted by the use of a compu-
tational model which has already been developed.
Dilational (a) and shear (R) strains generated in the

steel due to martensitic transformation needed to be
used in the transformation kinetics model were esti-
mated using the crystallographic theory of the marten-
sitic transformation.
In this study, the critical mechanical driving force of

the martensitic transformation was assumed to be the
same as thermodynamic free energy change of the
transformation per unit volume and the amount of this
critical value was estimated to be 190 MPa for the
investigated steel. The value of the stress state sensitivity
parameter of the martensitic transformation, k, i.e.,
0.15, was determined so that the variation of martensite
volume fraction during different loading conditions was
successfully predicted by the numerical method. The
mechanical behavior of each constituent phase was
extracted from the literature and the utilized martensitic
transformation kinetics was implemented into ABA-
QUS general purpose finite element code by a user
material subroutine. The results of finite element simu-
lation under different loading conditions showed that a
good agreement exists between both the mechanical and
transformation behaviors of the investigated TRIP800
steel. Moreover, using this microstructure-based finite
element method ductility and failure mode of the
investigated steel during uniaxial tension were predicted
and it was found that there is an appropriate correlation
between the experimental and predicted results.
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