
Topology and its Applications 219 (2017) 17–28
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Topological coarse shape homotopy groups

Fateme Ghanei a, Hanieh Mirebrahimi a,∗, Behrooz Mashayekhy a, Tayyebe Nasri b

a Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures, Ferdowsi 
University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran
b Department of Pure Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 March 2016
Received in revised form 11 
December 2016
Accepted 23 December 2016
Available online 3 January 2017

MSC:
55Q07
55P55
54C56
54H11
18A30

Keywords:
Topological coarse shape homotopy 
group
Coarse shape group
Shape group
Topological group
Inverse limit

Cuchillo-Ibanez et al. introduced a topology on the sets of shape morphisms between 
arbitrary topological spaces in 1999. In this paper, applying a similar idea, we 
introduce a topology on the set of coarse shape morphisms Sh∗(X, Y ), for arbitrary 
topological spaces X and Y . In particular, we can consider a topology on the coarse 
shape homotopy group of a topological space (X, x), Sh∗((Sk, ∗), (X, x)) = π̌∗

k(X, x), 
which makes it a Hausdorff topological group. Moreover, we study some properties 
of these topological coarse shape homotopy groups such as second countability, 
movability and in particular, we prove that π̌∗top

k preserves finite product of compact 
Hausdorff spaces. Also, we show that for a pointed topological space (X, x), 
π̌top
k (X, x) can be embedded in π̌∗top

k (X, x).
© 2017 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Suppose that (X, x) is a pointed topological space. We know that πk(X, x) has a quotient topology 
induced by the natural map q : Ωk(X, x) → πk(X, x), where Ωk(X, x) is the kth loop space of (X, x) with 
the compact-open topology. With this topology, πk(X, x) is a quasitopological group, denoted by πqtop

k (X, x)
and for some spaces it becomes a topological group (see [5–7,15]).

Calcut and McCarthy [8] proved that for a path connected and locally path connected space X, πqtop
1 (X)

is a discrete topological group if and only if X is semilocally 1-connected (see also [6]). Pakdaman et 
al. [24] showed that for a locally (n − 1)-connected space X, πqtop

n (X, x) is discrete if and only if X is 
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semilocally n-connected at x (see also [15]). Fabel [12,13] and Brazas [6] presented some spaces for which 
their quasitopological homotopy groups are not topological groups. Moreover, despite Fabel’s result [12]
that says the quasitopological fundamental group of the Hawaiian earring is not a topological group, Ghane 
et al. [16] proved that the topological nth homotopy group of an n-Hawaiian like space is a prodiscrete 
metrizable topological group, for all n ≥ 2.

Cuchillo-Ibanez et al. [10] introduced a topology on the set of shape morphisms between arbitrary topo-
logical spaces X, Y , Sh(X, Y ). Moszyńska [21] showed that for a compact Hausdorff space (X, x), the kth 
shape group π̌k(X, x), k ∈ N, is isomorphic to the set Sh((Sk, ∗), (X, x)) and Bilan [2] mentioned that the 
result can be extended for all topological spaces. The authors [22], considering the latter topology on the 
set of shape morphisms between pointed spaces, obtained a topology on the shape homotopy groups of 
arbitrary spaces, denoted by π̌top

k (X, x) and showed that with this topology, the kth shape group π̌top
k (X, x)

is a Hausdorff topological group, for all k ∈ N. Moreover, they obtained some topological properties of 
these groups under some conditions such as movability, N-compactness and compactness. In particular, 
they proved that π̌top

k commutes with finite product of compact Hausdorff spaces. Also, they presented two 
spaces X and Y with the same shape homotopy groups such that their topological shape homotopy groups 
are not isomorphic.

The aim of this paper is to introduce a topology on the coarse shape homotopy groups π̌∗
k(X, x) and to 

provide some topological properties of these groups. First, similarly to the techniques in [10], we introduce a 
topology on the set of coarse shape morphisms Sh∗(X, Y ), for arbitrary topological spaces X and Y . Several 
properties of this topology such as continuity of the map Ω : Sh∗(X, Y ) ×Sh∗(Y, Z) −→ Sh∗(X, Z) given by 
the composition Ω(F ∗, G∗) = G∗ ◦F ∗ and the equality Sh∗(X, Y ) = lim

←
Sh∗(X,Yμ), for an HPol-expansion 

q : Y → (Yμ, qμμ′ , M) of Y , are proved which are useful to hereinafter results. Moreover, we show that this 
topology can also be induced from an ultrametric similarly to the process in [9].

By the above topology, we can consider a topology on the coarse shape homotopy group π̌∗top

k (X, x) =
Sh∗((Sk, ∗), (X, x)) which makes it a Hausdorff topological group, for all k ∈ N and any pointed topological 
space (X, x). It is known that if X and Y are compact Hausdorff spaces, then X × Y is a product in 
the coarse shape category [23, Theorem 2.2]. In this case, we show that the kth topological coarse shape 
group commutes with finite product, for all k ∈ N. Also, we prove that movability of π̌∗top

k (X, x) can be 
concluded from the movability of (X, x), for topological space (X, x) with some conditions. As previously 
mentioned, π̌k(X, x) with the topology defined by Cuchillo-Ibanez et al. [10] on the set of shape morphisms, 
is a topological group. We show that this topology also coincides with the topology induced by π̌∗top

k (X, x)
on the subspace π̌k(X, x).

2. Preliminaries

Recall from [1] some of the main notions concerning the coarse shape category and pro∗-category. Let T
be a category and let X = (Xλ, pλλ′ , Λ) and Y = (Yμ, qμμ′ , M) be two inverse systems in the category T . 
An S∗-morphism of inverse systems, (f, fn

μ ) : X → Y, consists of an index function f : M → Λ and of a set 
of T -morphisms fn

μ : Xf(μ) → Yμ, n ∈ N, μ ∈ M , such that for every related pair μ ≤ μ′ in M , there exist 
a λ ∈ Λ, λ ≥ f(μ), f(μ′), and an n ∈ N so that for every n′ ≥ n,

qμμ′fn′

μ′ pf(μ′)λ = fn′

μ pf(μ)λ.

If M = Λ and f = 1Λ, then (1λ, fn
λ ) is said to be a level S∗-morphism. The composition of S∗-morphisms 

(f, fn
μ ) : X → Y and (g, gnν ) : Y → Z = (Zν , rνν′ , N) is an S∗-morphism (h, hn

ν ) = (g, gnν )(f, fn
μ ) : X → Z, 

where h = fg and hn
ν = gnν f

n
g(ν), for all n ∈ N. The identity S∗-morphism on X is an S∗-morphism 

(1Λ, 1nX ) : X → X, where 1Λ is the identity function and 1nX = 1Xλ
in T , for all n ∈ N and every λ ∈ Λ.
λ λ
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An S∗-morphism (f, fn
μ ) : X → Y is said to be equivalent to an S∗-morphism (f ′, f ′ n

μ ) : X → Y, denoted 
by (f, fn

μ ) ∼ (f ′, f ′ n
μ ), provided every μ ∈ M admits a λ ∈ Λ and n ∈ N such that λ ≥ f(μ), f ′(μ) and for 

every n′ ≥ n,

fn′

μ pf(μ)λ = f ′ n′

μ pf ′(μ)λ.

The relation ∼ is an equivalence relation among S∗-morphisms of inverse systems in T . The category
pro∗-T has as objects all inverse systems X in T and as morphisms all equivalence classes f∗ = [(f, fn

μ )] of 
S∗-morphisms (f, fn

μ ). The composition in pro∗-T is well defined by putting

g∗f∗ = h∗ = [(h, hn
ν )],

where (h, hn
ν ) = (g, gnν )(f, fn

μ ) = (fg, gnν fn
g(ν)). For every inverse system X in T , the identity morphism in 

pro∗-T is 1∗
X = [(1Λ, 1nXΛ

)].
In particular, if (X) and (Y ) are two rudimentary inverse systems in HTop, then every set of mappings 

fn : X → Y , n ∈ N, induces a map f∗ : (X) → (Y ) in pro∗-HTop.
A functor J = J T : pro-T → pro∗-T is defined as follows: For every inverse system X in T , J (X) = X

and if f ∈ pro-T (X, Y) is represented by (f, fμ), then J (f) = f∗ = [(f, fn
μ )] ∈ pro∗−T (X, Y) is represented 

by the S∗-morphism (f, fn
μ ), where fn

μ = fμ for all μ ∈ M and n ∈ N. Since the functor J is faithful, we 
may consider the category pro-T as a subcategory of pro∗-T .

Let P be a subcategory of T . A P-expansion of an object X in T is a morphism p : X → X in pro-T , 
where X belongs to pro-P characterised by the following two properties:

(E1) For every object P of P and every map h : X → P in T , there is a λ ∈ Λ and a map f : Xλ → P in P
such that fpλ = h;
(E2) If f0, f1 : Xλ → P in P satisfy f0pλ = f1pλ, then there exists a λ′ ≥ λ such that f0pλλ′ = f1pλλ′ .

The subcategory P is said to be pro-reflective (dense) subcategory of T provided that every object X in 
T admits a P-expansion p : X → X.

Let P be a pro-reflective subcategory of T . Let p : X → X and p′ : X → X′ be two P-expansions of the 
same object X in T , and let q : Y → Y and q′ : Y → Y′ be two P-expansions of the same object Y in T . 
Then there exist two natural (unique) isomorphisms i : X → X′ and j : Y → Y′ in pro-P with respect to p, 
p′ and q, q′, respectively. Consequently J (i) : X → X′ and J (j) : Y → Y′ are isomorphisms in pro∗-P. A 
morphism f∗ : X → Y is said to be pro∗-P equivalent to a morphism f ′ ∗ : X′ → Y′, denoted by f∗ ∼ f ′ ∗, 
provided that the following diagram in pro∗-P commutes:

X J (i)−−−−→ X′
⏐⏐�f∗ f ′∗

⏐⏐�

Y J (j)−−−−→ Y′.

(1)

This is an equivalence relation on the appropriate subclass of Mor(pro∗-P). Now, the coarse shape category
Sh∗

(T ,P) for the pair (T , P) is defined as follows: The objects of Sh∗
(T ,P) are all objects of T . A morphism 

F ∗ : X → Y is the pro∗-P equivalence class < f∗ > of a mapping f∗ : X → Y in pro∗-P. The composition
of F ∗ =< f∗ >: X → Y and G∗ =< g∗ >: Y → Z is defined by the representatives, i.e., G∗F ∗ =< g∗f∗ >:
X → Z. The identity coarse shape morphism on an object X, 1∗X : X → X, is the pro∗-P equivalence class 
< 1X

∗ > of the identity morphism 1X
∗ in pro∗-P.

The faithful functor J = J(T ,P) : Sh(T ,P) → Sh∗
(T ,P) is defined by keeping objects fixed and whose 

morphisms are induced by the inclusion functor J = J : pro-P → pro∗-P.
T
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Remark 2.1. Let p : X → X and q : Y → Y be P-expansions of X and Y respectively. For every morphism 
f : X → Y in T , there is a unique morphism f : X → Y in pro-P such that the following diagram commutes 
in pro-P:

X ←−−−−
p

X
⏐⏐�f f

⏐⏐�

Y ←−−−−
q

Y.

(2)

If we take other P-expansions p′ : X → X′ and q′ : Y → Y′, we obtain another morphism f ′ : X′ → Y′

in pro-P such that f ′p′ = q′f and so we have f ∼ f ′ and hence J (f) ∼ J (f ′) in pro∗-P. Therefore, 
every morphism f ∈ T (X, Y ) yields an pro∗-P equivalence class < J (f) >, i.e., a coarse shape morphism 
F ∗ : X → Y , denoted by S∗(f). If we put S∗(X) = X for every object X of T , then we obtain a functor 
S∗ : T → Sh∗, which is called the coarse shape functor.

Since the homotopy category of polyhedra HPol is pro-reflective (dense) in the homotopy category HTop 
[19, Theorem 1.4.2], the coarse shape category Sh∗

(HTop,HPol) = Sh∗ is well defined.

3. A topology on the set of coarse shape morphisms

Similarly to the method of [10], we can define a topology on the set of coarse shape morphisms. Let X
and Y be topological spaces. Assume X = (Xλ, pλλ′ , Λ) is an inverse system in pro-HPol and p : X → X is 
an HPol-expansion of X. For every λ ∈ Λ and F ∗ ∈ Sh∗(Y, X) put V F∗

λ = {G∗ ∈ Sh∗(Y, X)| S∗(pλ) ◦F ∗ =
S∗(pλ) ◦G∗}. First, we prove the following results.

Proposition 3.1. The family {V F∗

λ | F ∗ ∈ Sh∗(Y, X) and λ ∈ Λ} is a basis for a topology Tp on 
Sh∗(Y, X). Moreover, if p′ : X → X′ = (Xν , pνν′ , N) is another HPol-expansion of X, then the iden-
tity map (Sh∗(Y, X), Tp) −→ (Sh∗(Y, X), Tp′) is a homeomorphism which shows that this topology depends 
only on X and Y .

Proof. We know that F ∗ ∈ V F∗

λ for every λ ∈ Λ and every F ∗ ∈ Sh∗(Y, X). Suppose F ∗, G∗ ∈ Sh∗(Y, X)
and λ1, λ2 ∈ Λ and H∗ ∈ V F∗

λ1
∩ V G∗

λ2
. Since H∗ ∈ V F∗

λ1
, then S∗(pλ1) ◦ F ∗ = S∗(pλ1) ◦H∗. We show that 

V F∗

λ1
= V H∗

λ1
. Suppose K∗ ∈ V F∗

λ1
, so S∗(pλ1) ◦K∗ = S∗(pλ1) ◦F ∗ = S∗(pλ1) ◦H∗. Therefore K∗ ∈ V H∗

λ1
and 

hence V F∗

λ1
⊆ V H∗

λ1
. Conversely, if K∗ ∈ V H∗

λ1
, then we have S∗(pλ1) ◦K∗ = S∗(pλ1) ◦H∗ = S∗(pλ1) ◦F ∗. So 

K∗ ∈ V F∗

λ1
and hence V H∗

λ1
⊆ V F∗

λ1
. Similarly, since H∗ ∈ V G∗

λ1
, we have V G∗

λ1
= V H∗

λ1
and so H∗ ∈ V H∗

λ1
∩V H∗

λ2
. 

We know that there exists a λ ∈ Λ such that λ ≥ λ1, λ2. We show that H∗ ∈ V H∗

λ ⊆ V H∗

λ1
∩ V H∗

λ2
which 

completes the proof of the first assertion.
Given K∗ ∈ V H∗

λ . We have pλ1λpλ = pλ1 and pλ2λpλ = pλ2 . Since K∗ ∈ V H∗

λ , so S∗(pλ) ◦K∗ = S∗(pλ) ◦H∗

and therefore S∗(pλ1) ◦K∗ = S∗(pλ1) ◦H∗. Hence K∗ ∈ V H∗

λ1
. Similarly K∗ ∈ V H∗

λ2
and so K∗ ∈ V H∗

λ1
∩V H∗

λ2
.

Now, suppose that p′ : X → X′ is another HPol-expansion of X. Then there exists a unique isomorphism 
i : X −→ X′ given by (iν , φ) such that i ◦p = p′. To complete the proof, it is sufficient to show that V F∗

ν =
V F∗

φ(ν), for every ν ∈ N and F ∗ ∈ Sh∗(Y, X). For each G∗ ∈ V F∗

φ(ν), we have S∗(pφ(ν)) ◦G∗ = S∗(pφ(ν)) ◦ F ∗

and so S∗(p′ν) ◦ G∗ = S∗(p′ν) ◦ F ∗. Hence G∗ ∈ V F∗
ν and therefore V F∗

φ(ν) ⊆ V F∗
ν . Similarly, one can show 

that V F∗
ν ⊆ V F∗

φ(ν). �
Corollary 3.2. Let X ∈ Obj(HPol). Then Sh∗(Y, X) is discrete, for every topological space Y .
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Example 3.3. Let P = {∗} be a singleton and Q = {∗}∪̇{∗} (disjoint union). Then card(Sh(P, Q)) = 2
while card(Sh∗(P, Q)) = 2ℵ0 (see [1, Example 7.4]). It shows that Sh(P, Q) is a countable discrete space 
while Sh∗(P, Q) is an uncountable discrete space.

Theorem 3.4. The map Ω : Sh∗(X, Y ) × Sh∗(Y, Z) −→ Sh∗(X, Z) given by the composition Ω(F ∗, G∗) =
G∗ ◦ F ∗ is continuous, for arbitrary topological spaces X, Y and Z.

Proof. Consider HPol-expansions p : X → X = (Xλ, pλλ′ , Λ), q : Y → Y = (Yμ, qμμ′ , M) and r : Z → Z =
(Zν , rνν′ , N) of X, Y and Z, respectively. Let F ∗

0 ∈ Sh∗(X, Y ) and G∗
0 ∈ Sh∗(Y, Z) given by (fn

μ , f) and 

(gnν , g), respectively. Let ν ∈ N and G∗
0 ◦F ∗

0 ∈ V
G∗

0◦F∗
0

ν . We show that Ω(V F∗
0

g(ν)×V
G∗

0
ν ) ⊆ V

G∗
0◦F∗

0
ν . To do this, 

we must show that for any F ∗ ∈ V
F∗

0
g(ν) and G∗ ∈ V

G∗
0

ν , S∗(rν) ◦G∗ ◦F ∗ = S∗(rν) ◦G∗
0 ◦F ∗

0 . Since F ∗ ∈ V
F∗

0
g(ν), 

we have S∗(qg(ν)) ◦F ∗
0 = S∗(qg(ν)) ◦F ∗ and since G∗ ∈ V

G∗
0

ν , we have S∗(rν) ◦G∗
0 = S∗(rν) ◦G∗. Note that 

S∗(rν) ◦G∗
0 is a coarse shape morphism which is given by [(gnν , gαν)], where αν : {ν} −→ N is the inclusion 

map. Define α : Yg(ν) −→ Zν as a coarse shape morphism given by [(gnν , βν)], where βν : {ν} −→ {g(ν)}. 
We have S∗(rν) ◦ G∗

0 = α ◦ S∗(qg(ν)) and so S∗(rν) ◦ G∗
0 ◦ F ∗

0 = α ◦ S∗(qg(ν)) ◦ F ∗
0 = α ◦ S∗(qg(ν)) ◦ F ∗ =

S∗(rν) ◦G∗
0 ◦ F ∗ = S∗(rν) ◦G∗ ◦ F ∗. �

The following corollary is an immediate consequence of the above theorem.

Corollary 3.5. Let X and Y be topological spaces and let F ∗ : X −→ Y be a coarse shape morphism. Let Z
be a topological space and consider F̂ ∗ : Sh∗(Y, Z) −→ Sh∗(X, Z) and F̃ ∗ : Sh∗(Z, X) −→ Sh∗(Z, Y ) to be 
defined by F̂ ∗(H∗) = H∗ ◦ F ∗ and F̃ ∗(G∗) = F ∗ ◦G∗.

(i) F̂ ∗ and F̃ ∗ are continuous, ˜(G∗ ◦ F ∗) = G̃∗ ◦ F̃ ∗, ̂(G∗ ◦ F ∗) = F̂ ∗ ◦ Ĝ∗ and ˆId∗ and ˜Id∗ are the 
corresponding identity maps.

(ii) Assume Sh∗(X) ≥ Sh∗(Y ). Then Sh∗(Y, Z) is homeomorphic to a retract of Sh∗(X, Z) and Sh∗(Z, Y )
is homeomorphic to a retract of Sh∗(Z, X), for every topological space Z.

(iii) Assume Sh∗(X) = Sh∗(Y ). Then Sh∗(Y, Z) is homeomorphic to Sh∗(X, Z) and Sh∗(Z, Y ) is homeo-
morphic to Sh∗(Z, X), for every topological space Z.

Now, we want to prove the following theorem which is useful to study the topological properties of the 
space of coarse shape morphisms.

Theorem 3.6. Let X and Y be topological spaces and let p : X −→ X = (Xλ, pλλ′ , Λ) and q : Y −→ Y =
(Yμ, qμμ′ , M) be HPol-expansions of X and Y , respectively. Take Sh∗(X, Y ) = (Sh∗(X, Yμ), (qμμ′)∗, M)
and consider the morphism q∗ : Sh∗(X, Y ) −→ Sh∗(X, Y ) induced by q. Then q∗ is an inverse limit of 
Sh∗(X, Y ) in Top.

Proof. Let Z be a topological space and let g : Z −→ (Sh∗(X, Yμ), (qμμ′)∗, M) be a morphism in pro-Top. 
We must show that there is a unique continuous map α : Z −→ Sh∗(X, Y ) such that q∗ ◦α = g in pro-Top. 
We know that gμ(z) ∈ Sh∗(X, Yμ), for every z ∈ Z and μ ∈ M . Suppose gμ(z) =< [(gnμ,z, const = λμ,z)] >
and define hz : M −→ Λ by hz(μ) = λμ,z. We define α(z) =< [(gnμ,z, hz)] >. Since (qμμ′)∗ ◦ gμ′ = gμ, so 
for every z ∈ Z, ((qμμ′)∗ ◦ gμ′)(z) = gμ(z). Thus, there is a λ ≥ λμ,z, λμ′,z and n ∈ N such that for every 
n′ ≥ n, qμμ′ ◦ gn′

μ′,z ◦ pλμ′,zλ = gn
′

μ,z ◦ pλμ,zλ. It follows that α(z) is a coarse shape morphism. It is clear that 
q∗ ◦ α = g. To complete the proof, we show that α is continuous. Let z ∈ Z, μ ∈ M and F ∗ = α(z) ∈ V F∗

μ . 
We have α−1(V F∗

μ ) = {z′ ∈ Z : α(z′) ∈ V F∗
μ } = {z′ ∈ Z : (qμ)∗ ◦ α(z′) = (qμ)∗ ◦ α(z)} = {z′ ∈ Z : gμ(z) =

gμ(z′)} = g−1
μ (gμ(z)). Since Sh∗(X, Yμ) is discrete, {gμ(z)} is an open subset of Sh∗(X, Yμ) and since gμ is 

continuous, we have g−1
μ (gμ(z)) is open subset of Z. It follows that α is continuous. �
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Corollary 3.7. Let X and Y be two topological spaces. Then Sh∗(X, Y ) is a Tychonoff space.

Suppose that (M, ≤) is a directed set. From [9], we denote by L(M) the set of all lower classes in M
ordered by inclusion, in which Δ ⊆ M is called a lower class if for every δ ∈ Δ and μ ∈ M with μ ≤ δ, 
then μ ∈ Δ. Moreover, for any two lower classes Δ, Δ′ ∈ L(M), we say that Δ ≤ Δ′ if and only if Δ ⊃ Δ′. 
Then (L(M), ≤) is a partially ordered set with the least element M which is denoted by 0. Furthermore, 
L(M)∗ = L(M) − 0 is downward directed (see [9, proposition 2.1]).

Let X be a set and (Γ, ≤) be a partial ordered set with a least element 0. Recall from [17] that a 
Γ-ultrametric on X is a map d : X ×X → Γ such that for all x, y ∈ X and γ ∈ Γ, the following hold:

1) d(x, y) = 0 ⇐⇒ x = y.
2) d(x, y) = d(y, x).
3) If d(x, y) ≤ γ and d(y, z) ≤ γ, then d(x, z) ≤ γ.

Now, using the same idea as in [9], we can prove the following theorem:

Theorem 3.8. Let X and Y be topological spaces. Assume q : Y −→ Y = (Yμ, qμμ′ , M) is an HPol-expansion 
of Y . For every F ∗, G∗ ∈ Sh∗(X, Y ) take

d(F ∗, G∗) = {μ ∈ M : S∗(qμ) ◦ F ∗ = S∗(qμ) ◦G∗}.

Then we have an L(M)-ultrametric d : Sh∗(X, Y ) × Sh∗(X, Y ) → (L(M), ≤).

Proof. First, we show that d(F ∗, G∗) is a lower class. Suppose μ ∈ d(F ∗, G∗) and μ′ ∈ M such that μ′ ≤ μ. 
Then qμ′ = qμ′μqμ and we have

S∗(qμ′) ◦ F ∗ = S∗(qμ′μ) ◦ S∗(qμ) ◦ F ∗ = S∗(qμ′μ) ◦ S∗(qμ) ◦G∗ = S∗(qμ′) ◦G∗.

It follows that μ′ ∈ d(F ∗, G∗). Now, let F ∗, G∗ ∈ Sh∗(X, Y ) such that d(F ∗, G∗) = 0. It is equivalent to 
S∗(qμ) ◦ F ∗ = S∗(qμ) ◦G∗, for every μ ∈ M or equivalently F ∗ = G∗. Other conditions can also be proved 
easily. �

Let (M, ≤) be a directed set and (L(M), ≤) be the corresponding ordered set of lower classes in M . For 
every μ ∈ M , consider {μ′ ∈ M : μ ≥ μ′} as the lower class generated by μ, which is denote by [μ] and 
define φ : (M, ≤) → (L(M), ≤) that maps μ to [μ]. If μ ≥ μ′, then [μ] ≤ [μ′] and (φ(M), ≤) is a partial 
ordered set and also is downward directed in L(M) (see [9]).

Now, we have:

Proposition 3.9. Let X and Y be topological spaces. Suppose q : Y −→ Y = (Yμ, qμμ′ , M) is an HPol-
expansion of Y . For every μ ∈ M and F ∗ ∈ Sh∗(X, Y ) take

B[μ](F ∗) = {G∗ ∈ Sh∗(X,Y ) : d(F ∗, G∗) ≤ [μ]}.

Then the family {B[μ](F ∗) : F ∗ ∈ Sh∗(X, Y ), μ ∈ M} is a basis for a topology in Sh∗(X, Y ). Moreover, 
this topology is independent of the fixed HPol-expansion of Y and it coincides with the topology defined 
previously.

Proof. It is obvious that F ∗ ∈ B[μ](F ∗), for all μ ∈ M . Suppose F ∗, G∗ ∈ Sh∗(X, Y ) and μ1, μ2 ∈ M and 
H∗ ∈ B[μ1](F ∗) ∩ B[μ2](G∗). Therefore d(H∗, F ∗) ≤ [μ1] and d(H∗, G∗) ≤ [μ2]. Let K∗ ∈ B[μ1](H∗), then 
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we have d(K∗, H∗) ≤ [μ1] and d(H∗, F ∗) ≤ [μ1] and so by the definition, d(K∗, F ∗) ≤ [μ1]. It shows that 
K∗ ∈ B[μ1](F ∗) and B[μ1](H∗) ⊆ B[μ1](F ∗). Conversely, we can show that B[μ1](F ∗) ⊆ B[μ1](H∗) and hence 
we have B[μ1](H∗) = B[μ1](F ∗). Similarly, we can conclude that B[μ2](H∗) = B[μ2](G∗). Hence, to prove 
the first assertion, it is enough to consider μ ∈ M such that μ ≥ μ1, μ2, then [μ] ≤ [μ1], [μ2] and this easily 
implies that H∗ ∈ B[μ](H∗) ⊆ B[μ1](H∗) ∩B[μ2](H∗) = B[μ1](F ∗) ∩B[μ2](G∗).

Now, suppose that q′ : Y → Y′ = (Yν , qνν′ , N) is another HPol-expansion of Y . Then there exists 
a unique isomorphism j : Y −→ Y′ given by (jν , φ) such that j ◦ q = q′ (we can assume that φ is an 
increasing map). Let ν ∈ N and F ∗ ∈ Sh∗(X, Y ), then φ(ν) ∈ M . Given G∗ ∈ B[ν](F ∗), so by the 
above argument B[ν](F ∗) = B[ν](G∗). For each H∗ ∈ B[φ(ν)](G∗), we have d(G∗, H∗) ≤ [φ(ν)], i.e., if 
μ ≤ φ(ν), then S∗(qμ) ◦ G∗ = S∗(qμ) ◦ H∗. Given ν′ ∈ N such that ν′ ≤ ν, then φ(ν′) ≤ φ(ν) and so 
S∗(qφ(ν′)) ◦ G∗ = S∗(qφ(ν′)) ◦ H∗. It implies that S∗(q′ν′) ◦ G∗ = S∗(q′ν′) ◦ H∗ and thus H∗ ∈ B[ν](G∗). 
Therefore G∗ ∈ B[φ(ν)](G∗) ⊆ B[ν](G∗) = B[ν](F ∗) and it follows that the topology corresponding to 
HPol-expansion q is stronger than the topology corresponding to HPol-expansion q′. Similarly, we can 
prove that the converse is true.

Finally, we want to show that the topology induced by d coincides with the topology Tq studied in 
Proposition 3.1. It is easy to see that V F∗

μ = B[μ](F ∗), for every μ ∈ M and F ∗ ∈ Sh∗(X, Y ) which 
completes the proof. �
4. The topological coarse shape homotopy groups

Let X be a topological space and p : X → X = (Xλ, pλλ′ , Λ) be an HPol-expansion of X. We know that 
the kth coarse shape group π̌∗

k(X, x), k ∈ N, is the set of all coarse shape morphisms F ∗ : (Sk, ∗) → (X, x)
with the following binary operation

F ∗ + G∗ =< f∗ > + < g∗ >=< f∗ + g∗ >=< [(fn
λ )] + [(gnλ)] >=< [(fn

λ + gnλ)] >,

where coarse shape morphisms F ∗ and G∗ are represented by morphisms f∗ = [(f, fn
λ )] and g∗ = [(g, gnλ)] :

(Sk, ∗) → (X, x) in pro∗-HPol∗, respectively (see [2]).
Now, we show that π̌∗

k(X, x) = Sh∗((Sk, ∗), (X, x)) with the above topology is a topological group which 
is denoted by π̌∗top

k (X, x), for all k ∈ N.

Theorem 4.1. Let (X, x) be a pointed topological space. Then π̌∗top

k (X, x) is a topological group, for all k ∈ N.

Proof. First, we show that φ : π̌∗top

k (X, x) → π̌∗top

k (X, x) given by φ(F ∗) = F ∗−1 is continuous, where F ∗

and F ∗−1 : (Sk, ∗) → (X, x) are represented by f∗ = (f, fn
λ ) and f∗−1 = (f, fn−1

λ ) : (Sk, ∗) → (X, x), 
respectively and fn−1

λ : (Sk, ∗) → (Xλ, xλ) is the inverse loop of fn
λ . Let V F∗−1

λ be an open neighbourhood 
of F ∗−1 in π̌∗top

k (X, x). We know that for any G∗ =< [(g, gnλ)] >∈ V F∗

λ , S∗(pλ) ◦G∗ = S∗(pλ) ◦F ∗. So there 
is an n′ ∈ N such that for any n ≥ n′, gnλ � fn

λ rel {∗} by [1, Claim 1 and Claim 2]. Then for any n ≥ n′, 
gn

−1

λ � fn−1

λ rel {∗} and so S∗(pλ) ◦G∗−1 = S∗(pλ) ◦ F ∗−1 . Thus φ(G∗) ∈ V F∗−1

λ . Therefore, the map φ is 
continuous.

Second, we show that the map m : π̌∗top

k (X, x) × π̌∗top

k (X, x) → π̌∗top

k (X, x) given by m(F ∗, G∗) = F ∗+G∗

is continuous, where F ∗+G∗ is the coarse shape morphism represented by f∗+g∗ = (f, fn
λ +gnλ) : (Sk, ∗) →

(X, x) and fn
λ + gnλ is the concatenation of paths. Let V F∗+G∗

λ be an open neighbourhood of F ∗ + G∗ in 
π̌∗top

k (X, x). For any (K∗, H∗) ∈ V F∗

λ ×V G∗

λ , we have S∗(pλ) ◦ (K∗ +H∗) = (S∗(pλ) ◦K∗) +(S∗(pλ) ◦H∗) =
(S∗(pλ) ◦F ∗) +(S∗(pλ) ◦G∗) = S∗(pλ) ◦(F ∗+G∗). Hence m(K∗, H∗) ∈ V F∗+G∗

λ and so m is continuous. �
Using Corollary 3.5, we can conclude the following results:
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Corollary 4.2. If F ∗ : (X, x) → (Y, y) is a coarse shape morphism, then F̃ ∗ : π̌∗top

k (X, x) → π̌∗top

k (Y, y) is 
continuous.

Corollary 4.3. If (X, x) and (Y, y) are two pointed topological spaces and Sh∗(X, x) = Sh∗(Y, y), then 
π̌∗top

k (X, x) ∼= π̌∗top

k (Y, y) as topological groups.

Corollary 4.4. For any k ∈ N, π̌∗top

k (−) is a functor from the pointed coarse shape category of spaces to the 
category of Hausdorff topological groups.

Bilan in [4], showed that every coarse shape group can be obtained as the inverse limit of an inverse 
system of groups and also proved that, for an inverse systems of compact polyhedra, the coarse shape group 
functor commutes with the inverse limit. Now, we generalise this result for topological coarse shape groups 
in the following:

Corollary 4.5. Let X be a topological space and p : X → X = (Xλ, pλλ′ , Λ) be an HPol-expansion of X. By 
Theorem 3.6, we know that π̌∗top

k (X, x) ∼= lim
←

π̌∗top

k (Xλ, xλ) as topological groups, for all k ∈ N. Since every 

π̌∗top

k (Xλ, xλ) is discrete and Hausdorff, π̌∗top

k (X, x) is prodiscrete and Hausdorff, for every topological space 
(X, x).

Corollary 4.6. Let (X, x) = lim
←

(Xi, xi), where Xi’s are compact polyhedra. Then for all k ∈ N,

π̌∗top

k (X,x) ∼= lim
←

π̌∗top

k (Xi, xi).

Proof. It can be proved similarly to the Corollary 3.8 in [22]. �
Corollary 4.7. Let p : (X, x) → (X, x) = ((Xλ, xλ), pλλ′ , Λ) be an HPol∗-expansion of a pointed topological 
space (X, x). Then the following statements hold for all k ∈ N:

(i) If the cardinal number of Λ is ℵ0 and π̌∗top

k (Xλ, xλ) is second countable for every λ ∈ Λ, then π̌∗top

k (X, x)
is second countable.

(ii) If π̌∗top

k (Xλ, xλ) is totally disconnected for every λ ∈ Λ, then so is π̌∗top

k (X, x).

Proof. The results follow from the fact that the product and the subspace topologies preserve the properties 
of being second countable and totally disconnected. �
Remark 4.8. The authors proved a similar result to the above corollary for shape homotopy groups [22, 
Corollary 3.9]. Note that in that case, we can omit the assumption of second countability of πqtop

k (Xλ, xλ), 
for all λ ∈ Λ. Indeed, if X is a polyhedron, so X is second countable and hence Ωk(X, x) is second countable, 
for all x ∈ X and k ∈ N (see [11]). Since πqtop

k (X, x) is discrete, then the map q : Ωk(X, x) → πqtop
k (X, x) is 

a bi-quotient map and therefore πqtop
k (X, x) is also second countable, for all k ∈ N (see [20]).

Let X be a topological space and let x0, x1 ∈ X. A coarse shape path in X from x0 to x1 is a bi-pointed 
coarse shape morphism Ω∗ : (I, 0, 1) → (X, x0, x1). X is said to be coarse shape path connected, if for every 
pair x, x′ ∈ X, there is a coarse shape path from x to x′. If X is a coarse shape path connected space, then 
π̌∗
k(X, x) ∼= π̌∗

k(X, x′), for any two points x, x′ ∈ X and every k ∈ N [3, Corollary 1].
Now, we show that these two groups are isomorphic as topological groups, if X is a coarse shape path 

connected, paracompact and locally compact space.
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Theorem 4.9. Let X be a coarse shape path connected, paracompact and locally compact space. Then 
π̌∗top

k (X, x) ∼= π̌∗top

k (X, x′), for every pair x, x′ ∈ X and all k ∈ N.

Proof. If X is a topological space admitting a metrizable polyhedral resolution and for a pair x, x′ ∈ X there 
exists a coarse shape path in X from x to x′, then (X, x) and (X, x′) are isomorphic pointed spaces in Sh∗

�

(see [3, Theorem 3]). Since coarse shape path connected, paracompact and locally compact spaces satisfy in 
the above condition [25], Sh∗(X, x) ∼= Sh∗(X, x′). Hence by Corollary 4.3 we have π̌∗top

k (X, x) ∼= π̌∗top

k (X, x′), 
for every pair x, x′ ∈ X and all k ∈ N. �
5. Main results

It is well-known that if the Cartesian product of two spaces X and Y admits an HPol-expansion, which is 
the Cartesian product of HPol-expansions of these space, then X×Y is a product in the shape category (see 
[18]). In this case, the authors showed that the kth topological shape group commutes with finite products, 
for all k ∈ N [22, Theorem 4.1].

Also, if X and Y admit HPol-expansions p : X → X and q : Y → Y, respectively, such that p × q :
X ×Y → X ×Y is an HPol-expansion, then X ×Y is a product in the coarse shape category [23, Theorem 
2.2]. Mardešić [18] proved that if p : X → X and q : Y → Y are HPol-expansions of compact Hausdorff 
spaces X and Y , respectively, then p ×q : X×Y → X ×Y is an HPol-expansion and so in this case, X×Y

is a product in the coarse shape category.
Now, we show that under the above condition, the kth topological coarse shape group commutes with 

finite products, for all k ∈ N.

Theorem 5.1. If X and Y are coarse shape path connected spaces with HPol-expansions p : X → X and 
q : Y → Y such that p ×q : X×Y → X ×Y is an HPol-expansion, then π̌∗top

k (X×Y ) ∼= π̌∗top

k (X) ×π̌∗top

k (Y ), 
for all k ∈ N.

Proof. Let S∗(πX) : X × Y → X and S∗(πY ) : X × Y → Y be the induced coarse shape morphisms 
of canonical projections and assume that φX : π̌∗top

k (X × Y ) → π̌∗top

k (X) and φY : π̌∗top

k (X × Y ) →
π̌∗top

k (Y ) are the induced continuous homomorphisms by S∗(πX) and S∗(πY ), respectively. Then the induced 
homomorphism φ : π̌∗top

k (X × Y ) → π̌∗top

k (X) × π̌∗top

k (Y ) is continuous. Since X × Y is a product in 
Sh∗, we can define a homomorphism ψ : π̌∗top

k (X) × π̌∗top

k (Y ) → π̌∗top

k (X × Y ) by ψ(F ∗, G∗) = �F ∗, G∗�, 
where �F ∗, G∗� : Sk → X × Y is a unique coarse shape morphism with S∗(πX)(�F ∗, G∗�) = F ∗ and 
S∗(πY )(�F ∗, G∗�) = G∗. In fact, if F ∗ = 〈f∗ = (f, fn

λ )〉 and G∗ = 〈g∗ = (g, gnμ)〉, then �F ∗, G∗� = 〈�f∗, g∗�〉, 
where �f∗, g∗� is given by �f, g�nλμ = fn

λ × gnμ : Sk → Xλ × Yμ. By the proof of [23, Theorem 2.4], the 
homomorphism ψ is well define and moreover, φ ◦ ψ = id and ψ ◦ φ = id.

To complete the proof, it is enough to show that ψ is continuous. Let �F ∗, G∗� ∈ V
�F∗,G∗�
λμ be a basis 

open in the topology on π̌∗top

k (X × Y ). Considering open sets F ∗ ∈ V F∗

λ and G∗ ∈ V G∗
μ , we show that 

ψ(V F∗

λ ×V G∗
μ ) ⊆ V

�F∗,G∗�
λμ . Let H∗ ∈ V F∗

λ and K∗ ∈ V G∗
μ , then S∗(pλ) ◦H∗ = S∗(pλ) ◦F ∗ and S∗(qμ) ◦K∗ =

S∗(qμ) ◦G∗. By a straight computation, we can conclude that pλ×qμ(�H∗, K∗�) = pλ×qμ(�F ∗, G∗�) which 
implies that ψ(H∗, K∗) = �H∗, K∗� ∈ V

�F∗,G∗�
λμ . �

Theorem 5.2. Let (X, x) be a pointed topological space. Then for all k ∈ N,

(i) If (X, x) ∈ HPol∗, then π̌∗top

k (X, x) is discrete.
(ii) If p : (X, x) → (X, x) = ((Xλ, xλ), pλλ′ , Λ) is an HPol∗-expansion of (X, x) and π̌∗top

k (X, x) is discrete, 
then π̌∗top

k (X, x) ≤ π̌∗top

k (Xλ, xλ), for some λ ∈ Λ.
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Proof. (i) This follows from Corollary 3.2.
(ii) Since π̌∗top

k (X, x) is a discrete group, {E∗
x} is an open set of identity point of π̌∗top

k (X, x). Thus 
{E∗

x} = ∪λ∈Λ0V
F∗

λ , where Λ0 ⊆ Λ. Consider the induced homomorphism pλ∗ : π̌∗top

k (X, x) → π̌∗top

k (Xλ, xλ)
given by pλ∗(F ∗) = S∗(pλ) ◦F ∗. Let G∗ ∈ kerpλ∗, i.e., S∗(pλ) ◦G∗ = E∗

xλ
= S∗(pλ) ◦E∗

x. Thus G∗ ∈ V
E∗

x

λ ⊆
∪λ∈Λ0V

F∗

λ = {E∗
x} and so G∗ = E∗

x. Therefore pλ∗ is injective, for all λ ∈ Λ0 and k ∈ N. �
Recall that an inverse system X = (Xλ, pλλ′ , Λ) of pro-HTop is said to be movable if every λ ∈ Λ admits 

a λ′ ≥ λ such that each λ′′ ≥ λ admits a morphism r : Xλ′ → Xλ′′ of HTop with pλλ′′ ◦ r � pλλ′ . We say 
that a topological space X is movable provided that it admits an HPol-expansion p : X → X such that 
X is a movable inverse system of pro-HPol [19]. We know that under some conditions, movability can be 
transferred from a pointed topological space (X, x) to π̌top

k (X, x) (see [22]) and now we show that it can be 
transferred to π̌∗top

k (X, x) too.

Lemma 5.3. If (X, x) = ((Xλ, xλ), pλλ′ , Λ) is a movable (uniformly movable) inverse system, then the inverse 
system

Sh∗((Sk, ∗), (X,x)) = (Sh∗((Sk, ∗), (Xλ, xλ)), (pλλ′)∗,Λ)

in pro-Top is also movable (uniformly movable), for all k ∈ N.

Proof. Let λ ∈ Λ. Since (X, x) is a movable inverse system, there is a λ′ ≥ λ such that for ev-
ery λ′′ ≥ λ there is a map r : (Xλ′ , xλ′) → (Xλ′′ , xλ′′) such that pλλ′′ ◦ r � pλλ′ rel {xλ′}. We 
consider r∗ : Sh∗((Sk, ∗), (Xλ′ , xλ′)) → Sh∗((Sk, ∗), (Xλ′′ , xλ′′)). Hence (pλλ′′)∗ ◦ r∗ = (pλλ′)∗ and so 
Sh∗((Sk, ∗), (X, x)) is movable. �
Remark 5.4. Let (X, x) be a movable space. Then there exists an HPol∗-expansion p : (X, x) → (X, x)
such that (X, x) is a movable inverse system. Suppose p∗ : Sh∗((Sk, ∗), (X, x)) → Sh∗((Sk, ∗), (X, x))
is an HPol∗-expansion, then using Lemma 5.3, we can conclude that π̌∗top

k (X, x) is a movable topo-
logical group, for all k ∈ N. By Theorem 3.6, if p : (X, x) → (X, x) is an HPol∗-expansion of 
X, then p∗ : Sh∗((Sk, ∗), (X, x)) → Sh∗((Sk, ∗), (X, x)) is an inverse limit of Sh∗((Sk, ∗), (X, x)) =
(Sh∗((Sk, ∗), (Xλ, xλ)), (pλλ′)∗, Λ). Now, if Sh∗((Sk, ∗), (Xλ, xλ)) is a compact polyhedron for all λ ∈ Λ, 
then by [14, Remark 1] p∗ is an HPol∗-expansion of Sh∗((Sk, ∗), (X, x)) and therefore in this case, movability 
of (X, x) implies movability of π̌∗top

k (X, x).

Remark 5.5. Suppose (X, x) is a topological space and p : (X, x) → (X, x) = ((Xλ, xλ), pλλ′ , Λ) is an 
HPol∗-expansion of (X, x). Consider J : π̌top

k (X, x) −→ π̌∗top

k (X, x) given by J(F =< (f, fλ) >) = F ∗, where 
F ∗ =< (f, fn

λ = fλ) >. Then J is an embedding. To prove this, we show that for each λ ∈ Λ and for all 
F ∈ π̌top

k (X, x), J(V F
λ ) = V

J(F )
λ ∩ J(π̌top

k (X, x)). Suppose G =< (g, gλ) >∈ V F
λ , so S∗(pλ) ◦G = S∗(pλ) ◦F

or equivalently gλ � fλ. We know that J(G) =< gnλ = gλ > and J(F ) =< fn
λ = fλ >. So for all 

n ∈ N, gnλ � fn
λ and it follows that S∗(pλ) ◦ J(G) = S∗(pλ) ◦ J(F ). Hence J(G) ∈ V

J(F )
λ ∩ J(π̌top

k (X, x)). 
Conversely, suppose that G∗ =< g′ nλ >∈ V

J(F )
λ ∩ J(π̌top

k (X, x)). Since G∗ ∈ J(π̌top
k (X, x)), there exists a 

G ∈ π̌top
k (X, x) such that J(G) = G∗. If G =< gλ >, then J(G) =< gnλ = gλ >. Since J(G) = G∗, we 

can conclude that there is an n′ ∈ N such that for every n ≥ n′, g′ nλ � gλ. On the other hand, we have 
S∗(pλ) ◦ G∗ = S∗(pλ) ◦ J(F ), i.e., there is an n′′ ∈ N such that for every n ≥ n′′, g′ nλ � fλ. It follows 
that gλ � fλ and hence S∗(pλ) ◦ G = S∗(pλ) ◦ F . Therefore, G ∈ V F

λ and G∗ = J(G) ∈ J(V F
λ ). Hence 

J(V F
λ ) = V

J(F )
λ ∩ J(π̌top

k (X, x)) which completes the proof.

Let (X, x) be a topological space. We know that the induced homomorphism φ : πqtop
k (X, x) → π̌top

k (X, x)
is continuous, for all k ∈ N. Consider the composition J ◦ φ : πqtop(X, x) → π̌∗top

k (X, x) in which J is the 
k
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embedding defined in Remark 5.5. If (X, x) is shape injective, then the homomorphism φ is an embedding 
and hence we have an embedding from πqtop

k (X, x) to π̌∗top

k (X, x).
Let X ⊆ Y and r : Y → X be a retraction. Consider the inclusion map j : X → Y . It is known that 

j∗ : π̌top
k (X, x) → π̌top

k (Y, x) is a topological embedding [22, Theorem 4.2] and similarly to the proof of it, 
we can conclude that the induced map j∗ : π̌∗top

k (X, x) → π̌∗top

k (Y, x) is also a topological embedding.
In the following, we present examples whose topological coarse shape homotopy groups are not discrete.

Example 5.6. Let (HE, p = (0, 0)) = lim
←

(Xi, pi) be the Hawaiian Earring where Xj = ∨j
i=1S

1
i . The first 

shape homotopy group π̌top
1 (HE, p) is not discrete (see [22, Example 4.5]). So the above Remark follows 

that π̌∗top

1 (HE, p) is not discrete.

Example 5.7. Let k ∈ N and let X = (Xn, pnn+1, N), where Xn =
∏n

j=1 S
k
j is the product of n copies of 

k-sphere Sk, for all n ∈ N and the bonding morphisms of X are the projection maps. Put X = lim
←

Xn. 

Refer to [22], π̌top
k (X) ∼= lim

←
πqtop
k (Xn) ∼=

∏
Z is not discrete. Since π̌top

k (X) is a subspace of π̌∗top

k (X) and 

it is not discrete, then π̌∗top

k (X) is not discrete.
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