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ABSTRACT 

In this paper, the pseudo-potential based lattice 

Boltzmann model of Li and Luo [1] is implemented 

to study the effect of the kinematic viscosity ratio of 

gas to liquid and the density ratio of liquid to gas on a 

droplet impact onto a thin liquid film. The model has 

certain capabilities which make it applicable to cases 

with large density ratios, low viscosities, and tunable 

values of surface tension independent of the density 

ratio. The coexistence values (densities) from the 

numerical model are compared to those of the 

analytical solution of the Maxwell construction. For 

further validation of the model, the simulation results 

for pressure difference at the interface are compared 

to those of the theoretical solution based on the 

Laplace law. Simulation results of the droplet impact 

onto a thin liquid film show that at high density ratios 

such as 1000 selected in this paper, when the 

kinematic viscosity ratio of the gas to liquid is high 

(above 150), no secondary droplets are generated. As 

the gas viscosity is decreased, however, the splashing 

leads to liquid breakup and separation of the 

secondary droplets. It was also found that the density 

ratio has a significant effect on the impact 

phenomenon. For a case with a low density ratio of 

10, the liquid rise from the surface cannot move 

freely in radial and vertical directions leading to the 

formation of an inward liquid turn on top of the 

raised liquid sheet. 

Key words: multiphase, pseudo-potential, lattice 

Boltzmann method, droplet impact 

1. INTRODUCTION 

Droplet impact onto a liquid film is a fascinating  and 

complex physical phenomenon which is mostly seen 

in nature such as when the rain drops impinge on 

already wetted surfaces of the ground and ponds. It 

also has practical importance in industrial processes 

and natural sciences including fuel injection in 

internal combustion engines, corrosion of turbine 

blades, spray cooling, spray painting or coating and 

the erosion of soil [2,3]. Many researchers, therefore, 

tried to examine this subject through performing 

different experiments, simulations and theoretical 

analyses to identify the underlying physics of the 

phenomenon. The available results in the literature 

show that droplet impact onto a liquid film is 

governed by a set of non-dimensional numbers that 

among them the Weber number (ratio of the inertia to 

the surface tension force), the Ohnesorge number (the 

ratio of the viscous to surface tension force), and the 

dimensionless liquid film thickness (film thickness 

divided by the droplet diameter) are the most 

important ones. Furthermore, the dynamics of the 

impact is expressed by introducing a non-

dimensional time by means of the impact velocity 

and the droplet diameter [3,4]. Depending on the 

mentioned non-dimensional parameters, different 

outcomes such as deposition and splashing are 

possible [5, 6]. 

Rein [5] thoroughly reviewed the experimental 

studies on the droplet impact onto the solid and liquid 

surfaces. For the impact on deep liquid layers, 

possible outcomes including bouncing, coalescence, 

vortex rings and splashing were described and the 

effect of different parameters, especially Weber 

number, on the outcome was also discussed. 

Yarin and Weiss [7] experimentally and theoretically 

investigated the sequential impact of several droplets 

onto a solid surface. Generation of capillary waves in 

the case of low impact velocity, and liquid splashing 

at higher velocities were observed in their 

experiments. They also developed theoretical 

relations including the time evolution of the crown 

radius and compared the analytical results with the 

corresponding experimental data from their 

experiments.  

Wang and Chen [8] investigated the droplet impact 

onto very thin liquid films and reported the critical 
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Weber number for splashing. They found that the 

critical Weber number is independent of the film 

thickness for a dimensionless film thickness of less 

than 0.1; the critical Weber number, however, 

increases as the fluid viscosity is increased. 

Manzello and Yang [9] performed experiments on 

water droplets impinging on water and HFE7100 

(Methoxy-nonafluorobutane) liquid films. For their 

range of experiments, they observed that for the 

impact on the HFE7100 liquid surface, the central jet 

arising from the surface of sufficiently deep liquid 

layers after the impact, did not break-up. Therefore, 

they concluded that the critical Weber number for the 

central jet break-up of water- HFE7100 impact is not 

defined. 

Cossali et. al [3] studied the time evolution of 

different parameters such as the crown diameters, 

height and vertical velocity and mean size of the 

secondary drops diameters through performing 

experiments on water droplets impinging onto thin 

liquid films. The mass and diameter ratios of the 

secondary drops to the primary drop were 

investigated experimentally by Okawa et. al [6]. 

Further studies are those of Rioboo et. al [10], 

Vander Wal et. al [2]  and Pan et. al [11], where 

droplet impact on liquid film was investigated 

experimentally.  

As a conventional approach to simulate problems 

involving interfacial dynamics, the Navier-Stokes 

equations are typically solved using the control 

volume method along with an interface tracking 

method such as the Volume of Fluid (VOF) or the 

level-set method to track the interface.  

Rieber and Frohn [4] performed a three dimensional 

simulation of the water droplet impact onto thin 

liquid films using the VOF method. Results showed 

that the time evolution of the crown diameter is 

almost independent of the Weber number, but the 

number of secondary drops increased for higher 

impact Weber numbers. Asadi and Passandideh-Fard 

[12] performed a 2D axisymmetric simulation 

utilizing the VOF method and validated the 

simulation by comparing the time evolution of the 

nondimensional crown height and diameters with the 

experimental data in the literature. They also 

proposed simple correlations for nondimensional 

parameters involved in the phenomenon. Lee et. al 

[13] used the level-set method in a 2D axisymmetric 

coordinates. Guo et. al [14] implemented the 

combined level set and VOF method (CLSVOF) to 

investigate the subject in 2D coordinates. 

As an alternative approach, the Lattice Boltzmann 

Method (LBM) has been proved to be a simple but 

powerful method for simulation of various physical 

problems, especially multiphase flows where the 

beauty of the method is more recognized. In contrast 

to the macroscopic methods, there is no need to track 

the interface any longer due to the consistent kinetic 

nature of the LBM and interface formation. Among 

different multiphase models in the LBM, the Shan 

and Chen pseudo-potential model [15,16], the free 

energy model [17], and the model by He et. al [18] 

are widely used. All these models, however, suffer 

from different problems including low density ratio 

limitation. Therefore, many researches have been 

conducted to overcome the problems of each model, 

leading to new modified models with considerable 

success. 

The available studies in the literature on the LBM 

method particularly for investigating droplet impact 

on liquid films are limited. Lee and Lin [19] in their 

proposed  model for simulating incompressible two 

phase flows at high density ratios which is based on 

the He et. al model, simulated a 2D droplet impact on 

a thin liquid film as a validation of their model. In 

their study, however, only the effect of the Reynolds 

number up to 500 was shown and other parameters 

like the Weber number, the dimensionless film 

thickness and the density ratio were held constant. 

Based on the He et. al model, Guo and Wang [20] 

investigated the effect of density ratio on the splash 

shape in two dimensional coordinates. Cheng and 

Lou [21] performed a three dimensional simulation 

using the free energy model to study the effect of 

oblique drop impact at a density ratio of 100 and a 

relatively high Re number of 2000. 

Among the two phase models, the pseudo-potential 

model benefits from the simplicity and computational 

efficiency. This model, however, has various 

drawbacks including: the low density ratios 

limitation; presence of high spurious currents at the 

interface; coupling between the surface tension and 

density ratio; thermodynamic inconsistency; and 

instability at low viscosities. These drawbacks 

prevent the use of this model in simulating many 

realistic multiphase problems. Therefore, from the 

introduction of this model, many studies have been 

accomplished to overcome or alleviate the above 

drawbacks. In this paper, the pseudo-potential based 

model of Li and Luo [1] is implemented to study the 

effect of the kinematic viscosity ratio of gas to liquid 

and the density ratio of liquid to gas on a droplet 

impact onto a thin liquid film. The model has certain 

capabilities which make it applicable to cases with 

large density ratios, low viscosities, and tunable 

values of surface tension independent of the density 

ratio. 



  

2. NUMERICAL METHOD 

The lattice Boltzmann equation with the popular 

single relaxation time BGK collision operator and a 

force term is expressed as [22]  : 
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where x is the spatial position, eα the discrete velocity 

in the αth direction, δt the time step, τ the relaxation 

time, Fα the forcing term, and fα and fα
eq  represent the 

particle distribution and the equilibrium distribution 

functions in the αth direction, respectively. For 

incompressible flows: 
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where ωα is the weight factor in the αth direction and 

cs is the sound speed in lattice which is equal to 

/ 3c  where / .c x t   ρ and v are the macroscopic 

density and velocity, respectively.  

For the D2Q9 lattice used in this paper, the discrete 

velocities and the weight factors are given by: 
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Guo et al. [22] by considering the effects of the 

discrete lattice Boltzmann on the forcing term, 

acquired a forcing scheme which exactly recovers the 

macroscopic mass conservation equation and the 

Navier-Stokes equations. However, using this scheme 

in the Shan and Chen pseudo-potential multiphase 

model does not work for the relatively large density 

ratios and is stable only in a very narrow temperature 

ratio range [23,24]. Li et al. [24] proposed an 

improved forcing scheme which is stable at higher 

density ratios by using a modified velocity in the Guo 

force scheme as follows: 
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where v′ is the modified velocity given by the 

equation   2
/ 0.5    v v Fε  in which ϵ is a 

constant that can be tuned to achieve thermodynamic 

consistency (setting ϵ = 0 gives the Guo forcing 

scheme). ψ is the effective mass which is a function 

of the local density of the fluid and F is the 

summation of all forces exerted on each fluid particle 

defined in this paper as
1 2

 F F F  where F1 is the 

fluid-fluid interaction force and F2 is the fluid-solid 

interaction force. In this paper concentration is on the  

early stages of the droplet impact which the effect of 

gravity is negligible [19].              

In order to further improve the stability of the 

numerical model and, therefore, achieve higher 

density ratios and lower viscosities, the Multi-

Relaxation Time (MRT) collision operator is 

implemented. The MRT lattice Boltzmann equation 

for multiphase flows is expressed as follows [25]: 

   

 

 ,  ,  

1
  

2
eq

i i i i i
i i

f t t t f t

f f t s s

  

 

 


 
 
 

   

      

x e x
  (6) 

where Λ is the relaxation matrix and s is the forcing 

term.  

Comparing the above equation with Eqs. (1) and (5), 

the force term s is given by the following equation 

[26]:    
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It is more convenient to do the collision step in the 

momentum space, therefore, the right-hand side of 

Eq. (6) is transformed into the momentum space by 

multiplying it with the transformation matrix M as 

follows [25, 27, 28] : 
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where M is the transformation matrix  given by : 

1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 0 1 0 1 1 1 1

 =         0 2 0 2 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 2 0 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

 
 
    
 
    
 

   
   
 

   
   
 

  
   

M

  (9) 

ˆ       f fM   (10) 

According to [29]: 
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I is the identity matrix and  is the diagonal 

relaxation matrix in the moment space defined as 

[29]: 
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where ρ is the density, e stands for the energy, and ζ 

is related to the energy square. j is the momentum, q 

the energy flux, and υ is the kinematic viscosity. It is 

worth mentioning that since the relaxation matrix is 

now diagonal in the momentum space, the relaxations 

of various physical terms are decoupled [27]. The s1, 

s4 and s6 entities of the relaxation matrix must be 

equal to each other and are taken to be one. Thus, s2, 

s3, s5 = s7 and s8 = s9 can be tuned separately to 

achieve higher stability. s2 and s8 = s9  are related to 

the bulk viscosity and kinematic viscosity,  

respectively : 
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It has been proved that the viscous relaxation time is 

a function of the local density which is given by the 

following linear interpolation [28]: 
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where τg, τl, ρg, ρl and ρ are the relaxation time for the 

gas phase, liquid phase, gas and liquid densities, and 

the local density in the computational domain, 

respectively. Equation (15) provides tunable 

kinematic and, as a result, tunable dynamic viscosity 

ratios. This is because according to Eq. (14), 

substituting the relaxation time of each phase gives 

the corresponding kinematic viscosity. 

The macroscopic density and velocity are given by: 
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Li. et al [29] proposed the following relation for the 

force term in the momentum space: 
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In order to tune the surface tension independent of 

the density ratio, Li et al. [1] added a source term to 

the MRT LB equation which modifies Eq. (8) as 

follows: 
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where the source term C is given by : 
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where Qxx, Qxy , and Qyy  are obtained using the 

equation:  
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where κ is a coefficient which tunes the surface 

tension. G = -1 and    1 1/ 3  , 2 1/12w w   are the 

weights in the D2Q9 lattice model. The streaming 

step is still performed in the velocity space and, 

therefore, the collision term (Eq. 18) is transformed 

back into the velocity space,  therefore, the streaming 

step is: 

    1,  ,    f t t t f t       x e x M m   (21) 

The fluid-fluid interaction force is given by: 
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where c = 1. The Carnahan-Starling equation of state 

(EOS) is used in this paper : 
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The critical temperature is  0.3773 /cT a bR ,b = 4, 

R = 1. The parameter a affects the interface 

thickness; reducing its value gives thicker interface 

which leads to smaller spurious currents and higher 

stability, especially at high density ratios. Therefore, 

in this paper a is set to be 0.25 at high density ratios. 

The fluid-solid interaction force is similarly given by: 

̂
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where ρw is a fictitious wall density varied to achieve 

different contact angles. S is equal to one for solid 

nodes and zero elsewhere.  

3. MODEL VALIDATION 

In order to validate the developed LBM model, two 

cases are considered. In the first case, the coexistence 

values from the numerical model are compared to 

those of the analytical solution of the Maxwell 

construction. A liquid film with thickness of 50 

lattice units is placed at the center of a 200 ×200 

lattice domain using the following relation: 

   1 2tanh tanh
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where y1 = 2(y-75)/5 and y2 = 2(y-125)/5. The liquid 

film is then let to be equilibrated for 10,000 time 

steps. The periodic boundary condition is applied in 

all sides of the domain. The relaxation times for both 

phases is set to be τυ = 0.6, s2 = s3 = 0.51, s5 = s7 = 1.1 

and ϵ is set to be 0.114. The parameter a in the EOS 

(Eq. 24) is set to be 0.25 for temperature ratios less 

than 0.6 and 0.5 for others. Figure 1 compares the 

variation of T/Tc vs. density obtained from the 

analytical solution of the Maxwell construction and 

that of the simulation where an excellent agreement 

between the two results is observed.  

 

Fig. 1: Comparison of numerical coexistence values 

with those of Maxwell construction.  

Some of the coexistence values are shown in Table 1 

for completeness.  It was found that τυ value does not 

change the coexistence values considerably. 

The second case considered is the evaluation of the 

Laplace law, ∆P = σ/R0 in which σ is the surface 

tension and Ro is the drop radius. The Laplace law  

 ρl / ρg 

T/Tc Numerical Maxwell construction  

0.7 0.358 / 0.00921 0.358 / 0.0093 

0.6 0.406 / 0.00273 0.406 / 0.003 

0.48 0.464 / 0.000483 0.464 / 0.000445 

Table 1: Some coexistence values obtained from 

numerical model compared with those of the 

Maxwell construction. 

states that the pressure difference between the inside 

and outside of the droplet is linearly related to the  

inverse of the droplet radius with the surface tension 

as the proportionality factor. A droplet is placed at 

the center of the domain by using the following 

equation defining the initial density distribution: 
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where x0 and y0 are the domain center coordinates 

which here are equal to 100. Other input parameters 

(τυ, s2=s3, s5=s7, ϵ, and a) are kept the same as in the 

previous case. Figure 2 shows the results of the 

simulation at T/Tc = 0.48.  

 
Fig. 2: Evaluation of Laplace law at T/Tc = 0.48.  

As it can be seen from the figure, there is a linear 

relationship between the pressure difference and 

inverse of the droplet radius for different values of κ. 

Therefore, the model results agree with those of the 

Laplace law and at the same time tunable surface 

tension values independent of the density ratio are 

possible in the numerical model. 



  

4. RESULTS AND DISCUSSION 

Figure 3 shows the time evolution of the droplet 

impact onto a thin liquid film with a dimensionless 

time (      ⁄ ) interval of 0.3. V is the droplet 

impact velocity equal to 0.12, D = 80 is its diameter, 

and t the time in lattice units. The density ratio is 

approximately 1000 corresponding to temperature 

ratio of 0.48. Dimensionless film thickness 

(H*=H/D) is 0.25. H is being the liquid film 

thickness equal to 20. The liquid kinematic viscosity 

          which gives              ⁄ . κ is 

set to be 0.6 which leads to σ = 0.003 and    
   

          The Ohnesorge number,    

√    ⁄    ⁄ (    )
    equals to 0.0093 and the 

kinematic viscosity ratio of gas to liquid is 5 which is 

the result of setting the viscous relaxation time 

       and        . The other relaxation times 

and ϵ are the same as those mentioned in previous 

cases in Section 3. The bounce back no slip boundary 

condition is imposed at top and bottom and the 

periodic boundary condition at two sides of a 

400×300 domain. The droplet is assumed to touch the 

liquid film at time equal zero (t=0). As the figure 

shows, the droplet spreads radially outward on the 

liquid film pushing the liquid up to the formation of a 

crown which is widening with time. The tip of the  

crown after a certain time is seen to break up forming 

secondary droplets at the rim. 

The effect of the viscosity ratio on the splashing of 

droplet impact onto the liquid film is displayed in 

Fig. 4. The kinematic (and as a result, the dynamic) 

viscosity ratio is changed through varying the gas 

viscosity while the liquid viscosity is kept constant; 

this means that the Reynolds number remains 

unchanged for various kinematic viscosity ratios. The 

figure shows that the viscosity ratio plays an 

important role in the splashing phenomenon. When 

the kinematic viscosity  ratio of the gas to liquid is 

high (above 150), no secondary droplets are 

generated (see Fig. 4c). As the gas viscosity is 

decreased, however, the splashing leads to liquid 

breakup and separation of the secondary droplets. 

The number of these secondary droplets increases by 

further reduction of the viscosity ratio as depicted in 

Fig. 4a.  

To evaluate the effect of the liquid to gas density 

ratio on droplet impact, a low ratio of 10 is selected    

to be compared with the results of a high density ratio 

of 1000. The kinematic viscosity ratio and the 

dimensionless film thickness are the same as the 

values related to Fig. 3. The Reynolds and Weber 

numbers are 1520 and 200, respectively, which are 

close to the simulation values for a density ratio of 

1000. Figure 5 shows the time evolution of impact 

dynamics with a time interval of 0.325 indicating that 

the density ratio has a significant effect on the impact 

phenomenon. Since the gas density is considerable at 

the density ratio of 10, it prevents the liquid rise from 

the surface to move freely in both radial and vertical 

directions leading to the formation of an inward 

liquid turn on top of the raised liquid sheet. 

 

 

 
Fig. 3: Time evolution of a droplet impact onto a thin 

liquid film.     ⁄           ⁄   , H* = 

0.25, Re = 1440, We = 178, and Oh=0.0093. 

Time interval = 0.3 

 
                     (a)                                (b) 

 
   (c) 

Fig. 4: The effect of viscosity ratio on the impact for 

a gas to liquid kinematic viscosity ratio of 

(a): 5, (b): 50, (c): 150.     ⁄      , 

H*=0.25, Re = 1440, We = 178, and 

Oh=0.0093. The images belong to t*= 1.5. 



 

 

Fig. 5: Time evolution of a droplet impact onto a thin liquid film.     ⁄         ⁄   , H* = 0.25, Re = 1520 

and We = 200. The time interval between images is 0.325. 

5. CONCLUSION 

In this paper a MRT lattice Boltzmann model was 

implemented to study the droplet impact on a thin 

liquid film. The multiphase model is based on the 

pseudo-potential multiphase model.  

According to the simulation results of the developed 

numerical model in this paper, the following 

conclusions are made: 

 Simulation results can be obtained at density 

ratios as high as 1000. 

 The coexistence values agree well with 

those of the analytical solutions at a wide 

range of the temperature ratio. 

 Surface tension in the model can be varied 

independent of the density ratio. 

 The LBM model can predict the underlying 

physics of droplet impact such as crown 

formation, and separation of secondary 

droplets from top of  the crown. 

 Viscosity ratio plays an important role on 

size and number of secondary droplets 

separated from the crown. A higher 

kinematic viscosity ratio of gas to liquid 

results in a smaller number of secondary 

droplets with larger size. 

 The shape of the liquid rise from the liquid 

film at low density ratios like 10 is 

completely different with the crown shape 

observed at density ratio of 1000. 
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