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Abstract Many algorithms have been proposed so far for pruning and sparse approximation
of feedforward neural networks with random weights in order to obtain compact networks
which are fast and robust on various datasets. One drawback of the randomization process is
that the resulted weight vectors might be highly correlated. It has been shown that ensemble
classifiers’ error depends on the amount of error correlation between them. Thus, decrease in
correlation between output vectors must lead to generation of more efficient hidden nodes.
In this research a new learning algorithm called New Sparse Learning Machine (NSLM) for
single-hidden layer feedforward networks is proposed for regression and classification. In
the first phase, the algorithm creates hidden layer with small correlation among nodes by
orthogonalizing the columns of the output matrix. Then in the second phase, using L1-norm
minimization problem, NSLM makes the components of the solution vector become zero
as many as possible. The resulted network has higher degree of sparsity while the accuracy
is maintained or improved. Therefore, the method leads to a new network with a better
generalization performance. Numerical comparisons on several classification and regression
datasets confirm the expected improvement in comparison to the basic network.
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1 Introduction

Single Hidden Layer Feedforward Networks (SLFNs) are capable of approximating com-
plex nonlinear mappings arbitrarily well and thus are extensively used in various applications
including classification and regression problems. Conditions, under which universal approxi-
mation of feedforward networks is valid, have been investigated in several literatures. Hornik
[1] proved that feedforward networks with additive hidden nodes and continuous, bounded
and non-constant activation function approximate any continuous mapping to any desired
degree of accuracy over compact input sets. An extension of the above theorem is proposed by
Leshno et al. [2] which states that a multilayer feedforward network with additive nodes and
locally bounded piecewise continuous activation function can approximate any continuous
function if and only if the network’s activation function is non-polynomial. In addition, the
universal approximation capability is generalized for randomized feedforward networks in
some research works [3–5] and is investigated for a network trained with N distinct samples
[6].

A major issue appears when using most neural network based methods, is choosing the
appropriate number of hidden nodes which should be determined by trial and error process,
since too few or too many hidden nodes lead to underfitting or overfitting respectively [7].
To improve generalization and avoid this issue, a large network is trained and unnecessary
nodes are pruned during learning. In fact, the size of the network is automatically determined
by the algorithm with respect to the desired accuracy. Several methods are proposed to create
a sparse network. Sietsma and Dow [8] discussed neural network pruning methods in detail.
Lazarevic et al. [9] presented several pruning algorithms in ensemble neural networks that
remove redundant classifiers via identifying the groups of similar classifiers. Furthermore,
Setiono [10] proposed a penalty functionwith two terms that helps prune unnecessaryweights
using simple criteria. In another research work [11], he presented a new pruning algorithm for
neural network and obtained high accuracy rate for breast cancer diagnosis. Huang et al. [12]
proposed a generalized growing and pruning Radial Basis Function (RBF) neural network
for function approximation. In addition, Rong et al. [13] presented a pruning algorithm for
Feedforward Neural Networks (FNN) with random weights using statistical methods for
measuring the relevance of hidden nodes in contributing to the prediction accuracy of the
classifier and prone/keep the irrelevant/relevant nodes, to obtain a compact network which
is fast and robust on unseen data. Alcin et al. [14] introduced several sparse schemes of the
randomized FNNs in which various greedy algorithms are used for sparse approximation of
the output weight vector and investigated several greedy algorithms to design an efficient
network being free of parameter adjustment and avoiding the singularity problem.

Recently, the study of L1-norm penalty attracted significant attentions due to its ability
for obtaining sparse models. 1-norm extreme learning machine (1-norm ELM), proposed by
Balasundaram et al. [15], is a recent sparsemodel representation for regression andmulticlass
classification based on a linear programming problem whose solution is obtained by solving
its dual exterior penalty problem using a fast Newton method. Sakar and Mammone [16] has
formerly proposed a heuristic learning algorithm for growing neural tree networks based on
minimizing the L1-norm of the error and a pruning algorithm to improve the generalization
performance, in pattern classification problem. They showed that L1-norm minimization has
better performance in terms of reducing the number of classification errors than the squared
error minimization method used in backpropagation.

Seen from another perspective, diverse sets of classifiers are shown to outperform single
predictors in multiple classifier systems. Brown et al. [17], reviewed existing explanation of
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Fig. 1 Structure of a single hidden layer feedforward network: input layer, hidden layer, output layer

why ensembles with diverse errors perform well, including literature for both the regression
and classification cases. They suggested that, the mean square error of ensemble classifiers
depends on the amount of error correlation between individual units, quantified in terms of
covariance. Based on this, we would ideally like the correlation between classifiers’ outputs
to be small. In order to obtain low (or even zero) correlation, diversity should be increased
[18]. Tumer and Ghosh [19] quantified the need to reduce correlation between individual
classifiers especially for a limited training data.

In this research, a NewSparse LearningMachine (NSLM)method is presented. In the next
sections, we briefly state the primal linear programming ELM introduced by Balasundaram
et al. [15] as well as the method used for obtaining its solution. The proposed NSLM is
introduced in Sect. 3. Experimental results for accuracy and sparsity level of NSLM in
comparison to the original 1-norm ELM on several regression and classification problems
are illustrated in Sect. 4. Finally, Sect. 5 concludes this research.

2 1-norm Extreme Learning Machine (1-norm ELM)

Suppose {(xi , ti )}i=1,...,N be the set of N training samples, where xi = (xi1, ..., xid)T ∈ R
d

is the i th input vector and ti ∈ R is its desired output. The input weight vectors a j =
(a j1, ..., a jd)

T ∈ R
d and biases b j ∈ R connect the input layer to the j th hidden node.

Likewise, the output weight vector (β1, ..., βL ) ∈ R
L connects the L nodes of the hidden

layer to the output node. Figure 1 illustrates the general structure of a single hidden layer
feedforward neural network. The goal is to determine weight vectors such that the following
equation holds:

ti =
L∑

j=1

β j .g(a j , b j , xi ) ∀i = 1, ..., N (1)

where g(a j , b j , xi ) is the output value of the j th hidden node for the input sample xi . The
equation system (1) can be expressed in a matrix form as follows:
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Hβ = T (2)

where

H =
⎡

⎢⎣
g(a1, b1, x1) · · · g(aL , bL , x1)

...
. . .

...

g(a1, b1, xN ) · · · g(aL , bL , xN )

⎤

⎥⎦ (3)

is the output matrix of the hidden layer and T = (t1, ..., tN )T ∈ R
N is the desired output

vector of the network.
From the view point of the network architecture, nodes in the hidden layer can be additive

whose output value is determined by

g j (x) = g
(〈a j , x〉 + b j

)

or RBF nodes with the following output

g j (x) = g

( ||x − a j ||
b j

)

1-norm ELM with absolute loss, proposed by Balasundaram et al. [15] as a robust and
sparse iterative method for regression and classification, is stated as follows: Given a training
set of N samples, activation function g, L hidden nodes and the output vector T , the problem
1-norm ELM with absolute loss is formulated as the following minimization problem:

min
β∈RL

C‖Hβ − T ‖1 + ‖β‖1 (4)

where C > 0 is a constant. Given β = r − s such that r, s ∈ R
L , and Hβ − T = p − q such

that p, q ∈ R
N , the problem (4) is equivalent to solving the following linear programming

problem:

min
r,s∈RL ,p,q∈RN

eTL (r + s) + CeTN (p + q) (5)

subject to:

H(r − s) − p + q = T

r, s, p, q ≥ 0

where eL and eN are the column vectors of ones of dimension L and N respectively.
Although the problem (5) is feasible and bounded and thus solvable, Balasundaram et al.

[15] obtained the solution by solving its dual exterior penalty problem using Newton-Armijo
algorithm, due to increase in number of unknowns and constraints of the primal form.

They showed that there exists θ̄ > 0 such that for any θ ∈ (0, θ̄ ] the following equations:
r = 1

θ
(HT u − eL)+, s = 1

θ
(−HT u − eL)+

p = 1

θ
(−u − CeN )+, q = 1

θ
(u − CeN )+

generate an exact solution to the primal problem (5), where u is the solution of the correspond-
ing dual exterior penalty problem and x+ is a vector whose i th component is max {0, xi }. For
further details we refer the reader to [15].

The main advantage of using 1-norm ELM is that it leads to a sparse model in the sense
that many components of the optimal output vector will become zero and thus there are much
less number of hidden nodes in the network in comparison to randomized FNN.
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3 The Proposed NSLM Method

In this section, a new learning algorithm called new sparse learning machine (NSLM) for
single-hidden layer feedforward networks is proposed based on the notions discussed in
the previous section which uses independent nodes in the hidden layer of the network for
obtaining optimal weight vectors.

In practice, when the parameters of the hidden layer are created randomly, there might be
a large number of hidden nodes that are highly correlated, which leads to inefficiency in the
network. The main goal of NSLM is to take advantage of any potential sparsity by reducing
the correlation between classifiers’ outputs to improve generalization of the network.

In contrast to 1-norm ELM method in which the input weight vectors and the biases are
randomly assigned at the beginning of the learning algorithm and remain fixed in the optimal
network, inNSLM the inputweights and biases are optimized through a least squares problem
so as to estimate a diverse output set. The hidden layer output matrix H in 1-norm ELM
method inherits the randomness characteristic from the input weights and thus is random. The
idea of our proposed method is to transform the random output vectors of hidden nodes into
a diverse set by orthogonalizing the columns of matrix H using Gram–Schmidt algorithm
[23]. It can be shown that the matrix produced by the Gram–Schmidt orthogonalization
algorithm generates the equal subspace to that of the original random matrix H in 1-norm
ELM. The orthogonalizing procedure leads to an ideal decrease in correlation between output
vectors of hidden nodes. Computational experiments on various regression and classification
datasets confirm that, this method eventually results in an increase in sparsity level whereas
the accuracy of the original network is maintained or improved.

3.1 Input Weights Estimation

At the beginning of the learning process, the input weight vector and the bias of the first
hidden node are optimized.

Let X =[X1, ..., XN ](d+1)×N be thematrix of input sampleswhere Xi =(xi1, ..., xid , 1)T ,

∀i ∈ {1, ..., N } and the desired output be the following row vector:

h1(X) = [h1(X1), ..., h1(XN )] = 1

Tmax
[t1, ..., tN ]1×N (6)

where Tmax = maxi=1,...,N {|ti |}. We determine the optimal input weight vector w∗
1 =

(a11, ..., a1d , b1) of the first hidden node using the following optimization problem whose
objective is to minimize the squared residual error along with a Tikhonov regularization term
[22]:

min
wT
1 ∈Rd+1,ξT ∈RN

1

2
||w1||22 + 1

2
Cin ||ξ ||22 (7)

subject to:
w1X = g−1 (h1(X)) − ξ

where Cin > 0 is a constant and ξ is the residual error vector. The optimal input weights of
the first nodew∗

1 is generated using problem (7) such that its output vector g(w∗
1X) has almost

the same direction as target vector T in order to reduce the error as much as possible. As the
length of the output vector can be adjusted later by the output weight β, we can multiply the
target vector T by the positive constant value 1

Tmax
in this step such that it is restricted to the

domain of the function g−1(.) which is supposed to be the inverse hyperbolic tangent in this
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research. Finally, including the Tikhonov regularization term in the objective function, we
minimize the squared residual error as well as the input weight vector as much as possible.
So, w∗

1 will be adjusted such that g(w∗
1X) ≈ 1

Tmax
T . The constant value Cin in problem (7)

is a regularization term for optimizing the effect of the two terms in the objective function
and will be approximated by trial and error.

In order to solve (7), the method of Lagrange multipliers [21] is used. The Lagrangian is:

L(w1, ξ, α) = 1

2
w1w

T
1 + 1

2
Cinξξ T − (

w1X − g−1(h1(X)) + ξ
)
α (8)

where α ∈ R
N is the Lagrange multiplier. Thus, the following system of equations holds:

∂L

∂w1
= 0,

∂L

∂ξ
= 0,

∂L

∂α
= 0 (9)

which yields:

w1 = αXT , Cinξ = α, w1X − g−1 (h1(X)) + ξ = 0 (10)

Substituting the first two equations of (10) into the last equation yields:

w1 = g−1 (h1(X))

(
XT X + 1

Cin
I

)−1

XT (11)

Similarly, substituting the second equation of (10) into the first one and then using the
last equation yields:

w1 = g−1 (h1(X)) XT
(
XXT + 1

Cin
I

)−1

(12)

In order to increase the calculation speed, Eq. (11) or (12) is used when N < d or N > d
respectively.

Therefore, the optimal weight vector of the first hidden node is obtained using Eq. (11) or
(12). Before calculating the other L − 1 optimal weight vectors, a matrix HN×L is generated
as defined in (2) using g(w∗

1X)T as the first column and g(w j X)T as the j th column of
the matrix, where w j ∈ R

d+1, j ∈ {2, ..., L} are random input weight vectors. Afterwards,
using Gram-Schmidt orthogonalization algorithm [23], a matrix H̄N×L = [v1, ..., vL ] with
a set of L orthogonal columns v j , j ∈ {1, ..., L} is derived from H . The algorithm is stated
in Table 1.

It is known that the columns of matrix H̄ produced by the Gram-Schmidt algorithm,
generates the equal subspace to that of H . In the next step, the goal is to reproduce the
remaining L − 1 random hidden nodes such that they are as diverse as possible and span the
same space as 1-norm ELM.

Similar to the definition (6) for estimating the input vector corresponding to the first hidden
node, let the desired output of the j th hidden node be the following row vector:

h j (X) = [h j (X1), ..., h j (XN )] = 1

v jmax
[v j1, ..., v j N ]1×N , ∀ j = 2, ..., L (13)

where v jmax = maxi=1,...,N {|v j i |} and v j i is the i th component of the column vector v j .
Following the same process for calculating w∗

1 , the optimal input weight vectors w∗
j =

(a j1, ..., a jd , b j ), j ∈ {2, ..., L} are obtained via replacing w1 by w j and h1(X) by h j (X) in
problem (7). Replacing the desired output vector of the j th hidden node by the corresponding
modified column of H̄ in problem (7), we can determine the optimal input parameters of j th
hidden node w∗

j such that g(w
∗
j X) estimates the direction of v j .
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Table 1 Gram-Schmidt orthogonalization algorithm

Input an arbitrary basis {u1, ..., uL } for an L-dimensional space V .

Output an orthogonal basis {v1, ..., vL } for V .

– Let v1 = u1
– For j = 2 to L do

– Let σ be a zero vector

– For k = 1 to j − 1 do

– Put σ = σ + uTj vk

||vk ||2 vk

– End

– Put v j = u j − σ

– End

According to the Theorem 2.1 in [24], column vectors of H defined by (2) is theoretically
capable of spanning the whole solution space. However in practice, it might fail to do so since
input parameters of hidden nodes are obtained by simulating the continuous probability
distribution function based on finite samples of MATLAB or other software. Therefore,
H might contain columns which are highly correlated. Using Gram-Schmidt process, we
determine the optimal input weights w∗

j , j ∈ {1, ...L} to produce L independent column
vectors of the optimal output matrix H∗ defined in (14) including one column having a
close direction to the target vector. Taking advantage of L1 norm and the above mentioned
properties of H∗, the method leads to a more compact network architecture.

3.2 Output Weights Estimation

In this phase, the 1-norm ELMwith absolute loss [15] is applied to estimate the output weight
vector β of the network using the following output matrix:

H∗ =
⎡

⎢⎣
g(w∗

1X1) · · · g(w∗
L X1)

...
. . .

...

g(w∗
1XN ) · · · g(w∗

L XN )

⎤

⎥⎦ (14)

wherew∗
j , j ∈ {1, ..., L} are the optimal input vectors obtained from the previous phase. The

optimal output weight vector β is obtained from the following problem:

min
β∈RL

Cout ||H∗β − T ||1 + ||β||1 (15)

Regarding themethod used for problem (4), optimal β = r−s for (15) is obtained through
solving its corresponding dual exterior penalty problemusingNewton-Armijo algorithm. The
steps of the proposed NSLM algorithm are presented in Fig. 2. In the next section, we will
show that substituting the random matrix H in 1-norm ELM by H∗ defined above yields an
output vector with a higher degree of sparsity in comparison to the original method while
avoiding underfitting.

123



M. Nayyeri et al.

Fig. 2 The flowchart of NSLM
algorithm

4 Computational Experiments

In this section, the performance of NSLM is compared with 1-norm ELM using several
classification and regression datasets. All codes are implemented in MATLAB environment.

To verify the effectiveness of the proposed NSLM method, numerical comparisons are
carried out on six binary and three multiclass datasets for classification and eight datasets for
regression. The characteristics of datasets are shown in Tables 2 and 3. All datasets are taken
from UCI machine learning repository [20].

In all the experiments, the original data are normalized by the following formulation:

xi j = xi j − xmin
j

xmax
j − xmin

j

∀(i, j)
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Table 2 Classification datasets Data Samples Attributes Classes

Australian Credit 690 14 2

Breast Cancer 699 9 2

Diabetes 768 9 2

Glass 214 9 6

Iris 150 4 3

Liver 345 6 2

WDBC 569 30 2

Wine 178 13 3

Cleveland 297 13 2

Table 3 Regression datasets Data Samples Attributes

Autoprice 159 15

Clouds 108 7

Housing 506 13

Quakes 2178 3

Strikes 635 6

Baskballs 96 4

Bodyfat 252 13

Pyrim 74 27

where xmin
j = mini∈{1,...,N }{xi j } and xmax

j = maxi∈{1,...,N }{xi j } for the j th attribute, j ∈
{1, ..., d}.

Additive nodes are used for the hidden layer of both networks with hyperbolic tangent
as the activation function. The input weights and biases of the hidden nodes are selected
randomly with uniform distribution from the interval [−1, 1] at the beginning and are
used as the initial input for both algorithms. The penalty parameter is set to θ = 10−4.
The optimal values of parameters L , Cin and Cout are determined through comparison of
mean accuracies by varying values of the initial number of hidden nodes L over the set
{10, 100, 200, 400, 800, 1000},Cin over {0.01, 0.1, 1, 10, 100, 1000} andCout over {32, 64,
128, 256, 512, 1024, 2048} and then choosing the triple (L ,Cin,Cout ) corresponding to the
highest mean accuracy for each method.

The mean accuracy corresponding to each triple (L ,Cin,Cout ) is obtained by performing
10 independent trials. For each trial, the total samples are randomly permuted and then evenly
divided for training and testing. The mean value of 10 test accuracies is returned as the mean
accuracy of the corresponding triple. For classification datasets, the highest mean accuracy
among all triples (L ,Cin,Cout ) for both algorithms is shown under “MaxAcc” in Table 4
and the corresponding triple is also illustrated in Table 5. Similarly for regression datasets,
the lowest Root Mean Square Error (RMSE) among all triples is shown under “MinRMSE”
in Table 6 and the corresponding optimal triple is illustrated in Table 7. The value “STD”
shows the standard deviation of 10 test accuracies corresponding toMaxAcc andMinRMSE,
and is obtained from the following equation:
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Table 4 Classification results Dataset Method MaxAcc (%) STD (%) #Nodes

Australian Credit NSLM 86.46 1.47 9

1-norm 84.29 1.82 73

Breast Cancer NSLM 95.00 1.21 5.60

1-norm 95.27 1.16 47.70

Diabetes NSLM 77.68 1.14 6.10

1-norm 68.52 4.03 74.50

Glass NSLM 46.73 3.63 5.20

1-norm 34.11 17.43 27.10

Iris NSLM 86 30.37 2.50

1-norm 54.67 45.03 3.30

Liver NSLM 66.13 3.85 5.10

1-norm 52.03 27.63 6

WDBC NSLM 93.93 1.10 18

1-norm 94.86 1.03 52.80

Wine NSLM 90.56 2.81 10.10

1-norm 92.70 3.36 31.90

Cleveland NSLM 65.37 4.20 8.70

1-norm 48.99 7.25 8.90

Table 5 Optimal parameters for
classification datasets

Dataset Method L Cout Cin

Australian Credit NSLM 800 512 100

1-norm 100 256

Breast Cancer NSLM 800 1024 0.10

1-norm 100 64

Diabetes NSLM 1000 256 1000

1-norm 100 32

Glass NSLM 10 64 10

1-norm 100 32

Iris NSLM 200 256 1

1-norm 10 1024

Liver NSLM 800 32 1

1-norm 10 128

WDBC NSLM 200 1024 10

1-norm 100 256

Wine NSLM 1000 512 1

1-norm 100 512

Cleveland NSLM 100 32 100

1-norm 10 256
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Table 6 Regression results Dataset Method MinRMSE (%) STD (%) #Nodes

Autoprice NSLM 1.04 0.25 2.50

1-norm 1.57 0.35 2.60

Clouds NSLM 0.38 0.11 2.40

1-norm 0.78 0.29 22.60

Housing NSLM 0.12 0.01 6.10

1-norm 0.10 0.02 36.10

Quakes NSLM 0.18 0.01 2.90

1-norm 0.24 0.06 3.70

Strikes NSLM 0.30 0.00 3.80

1-norm 0.42 0.12 43.30

Baskballs NSLM 0.25 0.10 2

1-norm 0.47 0.39 1.90

Bodyfat NSLM 0.14 0.09 2.30

1-norm 0.13 0.03 19.80

Pyrim NSLM 0.14 0.07 4

1-norm 0.12 0.04 19.10

Table 7 Optimal parameters for
regression datasets

Dataset Method L Cout Cin

Autoprice NSLM 200 128 0.01

1-norm 10 32

Clouds NSLM 10 32 10

1-norm 800 32

Housing NSLM 100 32 10000

1-norm 100 256

Quakes NSLM 200 1024 0.01

1-norm 10 512

Strikes NSLM 10 512 1

1-norm 400 128

Baskballs NSLM 100 1024 100

1-norm 10 512

Bodyfat NSLM 1000 32 1

1-norm 800 512

Pyrim NSLM 800 64 10

1-norm 800 64

std(Cin ,Cout ) = 1

10

(
10∑

i=1

(acc(i) − ¯acc)2
) 1

2

, ∀(Cin,Cout )

where acc(i) is the test accuracy of i th test set and ¯acc is the mean value of 10 test accuracies.
Non-zero components of the optimal weight vector are enumerated after each training phase
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Table 8 Total execution time for
a random trial on classification
datasets

Dataset Method Acc(%) #Nodes Time(s)

Australian Credit NSLM 86.09 9 4.85

1-norm 84.06 79 1.06

Breast Cancer NSLM 94.29 3 2.40

1-norm 94.84 41 1.18

Diabetes NSLM 75.26 6 4.58

1-norm 46.09 62 1.11

Glass NSLM 52.34 8 0.06

1-norm 42.99 28 0.16

Iris NSLM 93.33 4 0.20

1-norm 80 4 0.04

Liver NSLM 64.16 6 1.87

1-norm 63.95 7 0.06

WDBC NSLM 94.03 18 0.91

1-norm 91.90 65 0.87

Wine NSLM 88.76 10 5.21

1-norm 95.51 29 0.10

Cleveland NSLM 67.11 8 0.14

1-norm 42.57 9 0.05

and 10 values corresponding to MaxAcc and MinRMSE are averaged as the average number
of hidden nodes in the optimal network which is shown under “#Nodes”. Similar to [15], we
solve the problem (15) using Newton’s method without Armijo step size. In Tables 4, 6, 8
and 9, the best results are shown in boldface for each dataset, with respect to higher accuracy,
lower deviation, smaller network size and less execution time.

As can be seen from Table 4 for classification and Table 6 for regression problem, the
average number of hidden nodes in NSLM has dramatically decreased in most of the experi-
ments, as was expected. The increase in sparsity level is up to 12 times (on Diabetes dataset)
for classification and up to 11 times (on Strikes dataset) for regression in comparison to
1-norm ELM. Furthermore, NSLM achieves better accuracies on more than two third of the
experiments. This accuracy increase is significant in some classification instances. In the
remaining instances, there is a slight difference between the accuracies obtained for the two
methods, meaning that NSLM could maintain or improve the accuracies with a much more
compact architecture.

In order to evaluate the practicality of our proposed method, we also measured the total
execution time of a random trial in seconds on each dataset for the two algorithms, using
the optimal parameters obtained in the previous experiments. The results are reported under
“Time” in Tables 8 and 9 alongwith the accuracies obtained for classification under “Acc” and
for regression under “RMSE”. Also, the number of hidden nodes obtained for this random
trial is shown under the “#Nodes” column. Since the structure of NSLM is unchanged in
comparison to 1-norm network, the testing time is the same for both methods. According
to Table 8, NSLM needs more time for training than 1-norm. However, this is not always
the case in regression instances, as can be seen in Table 9. The time increase is due to the
orthogonalization process, particularly when the number of attributes is large. However, we
are less concerned with the time of learning, which is spent in the laboratory, than making
an accurate and efficient predictor to perform well in practice.
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Table 9 Total execution time for
a random trial on regression
datasets

Dataset Method RMSE(%) #Nodes Time(s)

Autoprice NSLM 0.82 2 0.19

1-norm 1.36 9 0.10

Clouds NSLM 0.64 2 0.07

1-norm 2.91 20 0.88

Housing NSLM 0.11 11 0.32

1-norm 0.38 39 0.47

Quakes NSLM 0.21 3 1.20

1-norm 2.33 5 11.10

Strikes NSLM 0.30 3 0.11

1-norm 1.06 43 2.84

Baskballs NSLM 0.35 3 0.12

1-norm 0.55 1 0.08

Bodyfat NSLM 0.43 1 2.54

1-norm 0.11 11 0.96

Pyrim NSLM 0.05 4 1.60

1-norm 1.14 18 2.21

5 Conclusion

In this research a novel learning algorithm called New Sparse Learning Machine (NSLM) is
proposed, for regression and multiclass classification.

In practice, when using randomized feedforward networks, a large number of hidden
nodes are generated, which may be highly correlated, that leads to inefficiency in the size of
the network. It has been proven that, the mean square error of ensemble classifiers depends
on the amount of error correlation between individual units. The main idea of our proposed
approach is to achieve any potential sparsity in the network by reducing the correlation
between classifiers outputs to improve its performance on test data. NSLM transforms the
random output vectors of hidden nodes into a diverse set by orthogonalizing the columns of
the output matrix of the hidden layer using Gram–Schmidt algorithm. The orthogonalizing
procedure leads to an ideal decrease in correlation between output vectors of hidden nodes.
Computational experiments on various regression and classification datasets confirm that, the
proposed approach eventually results in better generalization performance and significantly
smaller network size.

According to [15], L1-norm minimization problem tends to make components of the
optimal solutionvector becomezero.One case of potential interest is using a similar procedure
to obtain more sparsity in the number of input weights as well. It seems to be particularly
beneficial for high dimensional datasets, since it can do the learning and the feature selection
duties simultaneously. Furthermore, applying the orthogonalization procedure introduced
for NSLM in other neural network based learning algorithms to improve generalization, also
opens new areas for research.
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