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ABSTRACT. In this work, we investigate a spectral parametric it-
eration method for solving nonlinear partial differential equations.
The efficiency of this approach is illustrated by numerical experi-
ments on the Burgers’ equation.

1. INTRODUCTION

Numerical methods for partial differential equations (PDEs) can be
classified into the local and global categories. The finite-difference and
finite-element methods are based on local arguments, whereas the spec-
tral method is global in character. In practice, finite-element methods
are particularly well-suited to problems in complex geometries, whereas
spectral methods can provide superior accuracy, at the expense of do-
main flexibility. We emphasize that there are many numerical ap-
proaches, such as hp finite-elements and spectral-elements, which com-
bine advantages of both the global and local methods.
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Here, we introduce the basic principles of the spectral parametric
iteration method (PIM) [!] for solving the PDEs in one spatial dimen-
sion. In particular, the adaptive version of the PIM is used to solve a
simple model problem- an initial-boundary value problem consisting of
Burgers’ equation

U2
ut—guxx_<?>7 176(0,1), t>0,

w(0,£) = u(1,1) = 0, (1.1)

u(z,0) = sin (27z) + 3 sin (1),

where ¢ is a physical parametric. According to the method of lines' for
the PDE, a semi-discretization of Burgers’ equation (1.1) using central
finite differences in space is given by the following initial value problem
of ODEs of M dimension
( du1 o

dt

du; €

T W (uj+1 —

duM
Cdt
subject to the initial conditions

1
2u; +uj-1) = 7= ; 1)

=0,

u1(0) =0, u;(0) =sin (27wx;) + %sin (rxj), upm(0)=0, (1.3)

where z; = (j — 1)Az (j = 1,..,M) and Az = 1/(M — 1), and
u;(t) is an approximation to the solution u = u(z,t) at © = z;, i.e.,
u;(t) = ufw;, t).

Let u(t) = [uy(t), ..., upn(t)]" and £(t,u) = [fi(t,0), ..., far(t, )]
Now we consider (1.2) as Zu(t) = f(¢,u(t)) with u(0) = u® and ¢ €
A = (0,T), which can be rewritten as below:

Llu(t)] + Nu(t)] = (1) (1.4)

The Chebyshev collocation parametric iteration method for (1.4) is
to approximate u(t) by u’¥ € (Py(A))", such that [2, 3]

£ [ (1) = ()] = KT () A (550)].

uVmr(0) =u®, m >0, 0<k<N,
(1.5)

IThe PDE is first discretized in the spatial domain, and then the resulting system
of ODEs can be integrated using an ODE solver.

1043



A SPECTRAL PARAMETRIC ITERATION METHOD

where Py (A) denotes the set of polynomials of degree at most N and

d
Apm(0)] = L™ (N[ (0] —g(t) = Za " ()= (t a7 (1)
(1.6)
Assume that u;(t), j = 1,..., M is the jth component of the solution
u™¥(t). Therefore, we will have the following explicit piecewise-spectral
PIM (PSP) [1] formula for solving the system (1.5):

J,s+1 J%j,s+1

lel;-\;j_l;rl = ([ + thﬁ)LjuN’m + th75 (N‘u]-V’m — gj,s> s (17)

where L, N, H and g are as mentioned in [1].

It is obvious that the best PSP method can be achieved by using a
variable number of N and a variable step size A in the solution to ob-
tain a specified tolerance. Therefore, the following adaptive strategy is
proposed for the PSP method. The new step size of the PSP algorithm

1 (e}
An@w - Am-l—l = Ammln {fafcmawa max {faCmim fCLC' <_> }} 7
err
(1.8)
2
is obtained by using err = \/ % Z?:l (E“) with N,,.1 as order of

Tol;

polynomial where Fst = a"™ ! —u™N"+1 and Tol; = Atol+Rtol.|u) ™ ""].

Here, for err < face, (facer € (0,1]), we use a = le+1 and
N1 = max{ Ny, Npin }, and for err > facer,, a = Nim and N,,.1 =
min{ Ny, + 1, Nyaz }- The integration of the growth factors fac,,.. and
facmin to relation (1.8) prevents for too large step increase and con-
tribute to the safety of the code. Additionally, using the safety factor
fac makes sure that err will be accepted in the next step with high
probability. The step is accepted, in case that err < fac.,, otherwise
it is rejected and then the procedure is redone.

2. MAIN RESULTS

In this section, in order to show the efficiency of the proposed al-
gorithm, we solve the system (1.2) using the adaptive PSP (APSP)
algorithm. We note that all tests here are performed in Matlab 7 with
double precision in a Toshiba Tecra A8 (Windows XP Professional
with SP2): Intel(R) Core(TM)2 Duo Processor T7200 (2.00GHz, 4MB
Cache, 997 MHz, 0.99 GB of RAM). In the framework of the PSP al-
gorithm, for simplicity, we now put the auxiliary parameter h = —1,
the auxiliary function H = I, the auxiliary linear operator £ = %u,
the nonlinear operator N' = —f (¢,u) and the source term g(t) = 0.
The numerical results can be observed in Table 1. In Table 1, we listed
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the costed number of steps (labeled as No. of steps) for some different
values of T, Atol and Rtol, and the corresponding costed CPU elapsed
time (labeled as CPU time). We can observe, from Table 1, that the
PSP algorithm costs both less computational time and very smaller
steps than the Matlab ode45 solver with the same tolerances for this
system. Besides, Table 1 reveals that the Matlab ode45 solver can not
solve the system (1.2) on some intervals, while the scheme developed
here readily solve it on the same interval. In fact, this kind of methods
(orthogonal approximations) permits bigger step size and so could save
total computational time.

TABLE 1. The numerical results obtained from solving
(1.2) when ¢ = 10 using the APSP algorithm when
Npin = 5, Npae = 25, face, = 0.1, fac = 0.9,
facmin = 0.5 and facye: = 1.5

Algorithm M T Atol  Rtol No. of steps CPU time (s)

APSP 5 1000 10713 10713 47 0.30

ODE45 5 1000 10713 1013 661481 132.43

APSP 10 1000 1072 10712 119 0.95

ODE45 10 1000 10712 10712 — > 3000

APSP 20 100 10~ 1071 406 5.29

ODE45 20 100 10~ 1071t — > 5000
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