
Computers & Industrial Engineering 106 (2017) 20–31
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
Scheduling of loading and unloading operations in a multi stations
transshipment terminal with release date and inventory constraints
http://dx.doi.org/10.1016/j.cie.2017.01.023
0360-8352/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Industrial Engineering, Faculty of
Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

E-mail addresses: a.bazgosha@stu.um.ac.ir (A. Bazgosha), m_ranjbar@um.ac.ir
(M. Ranjbar), negin.jamili@stu.um.ac.ir (N. Jamili).
Atiyeh Bazgosha, Mohammad Ranjbar ⇑, Negin Jamili
Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

a r t i c l e i n f o
Article history:
Received 28 October 2016
Received in revised form 18 January 2017
Accepted 23 January 2017
Available online 26 January 2017

Keywords:
Transshipment terminal
Parallel machine scheduling problem
Metaheuristic algorithms
a b s t r a c t

In this paper, we study a transshipment scheduling problem with multiple identical loading/unloading
stations and release date and inventory constraints. This problem is similar to the parallel machine
scheduling problem where the makespan is to be minimized, which is an NP-hard problem in the
scheduling theory. We formulate the problem as an integer linear programming model, which is solvable
only for small-size instances by CPLEX solver in reasonable times. Also, we develop two constructive
heuristic solution approaches, namely parallel and serial schedule generation schemes. We also develop
three metaheuristic methods based on genetic algorithm, particle swarm optimization and cuckoo opti-
mization algorithm. The developed solution methods have been compared using computational studies
based upon 870 randomly generated test instances. The experimental results show that the parallel
schedule generation scheme outperforms the serial one and the cuckoo optimization algorithm shows
the best performance among the developed metaheuristic methods.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In this article, we consider a cross docking system containing
multiple dock doors, which can process one inbound or outbound
truck at a time, which is an extension of Briskorn, Choi, Lee, Leung,
and Pinedo (2010). It is assumed that the given set of dock doors
are equipped similarly and have identical factors for loading and
unloading activities, such as capacity and processing speed. More-
over, only one type of product is considered and the loading and
unloading operations are distinguished by the inventory modifica-
tion they made. In this regard, we separate the operations into two
classes, positive and negative, so that positive operations represent
unloading activities which increase the inventory level, and the
negative ones account for loading activities that lead to a decrease
in the inventory level. Each loading/unloading operation is exe-
cuted by a specific vehicle, which has arrived at the terminal at a
certain point in the time, named release date, and requires a prede-
termined processing time. Also, preemption of operations is not
allowed, i.e. once docked, a truck must be fully loaded or unloaded
before its departure. Furthermore, a limited storage space is also
supposed to exist inside the transshipment terminal where an ini-
tial inventory is held. Additionally, we assume that the inventory
level is immediately decreased by the time a loading operation
starts, whereas the modification made by an unloading operation
is applied by the time it is completed.

Regarding the aforementioned parameters to be integers, this
problem can be viewed as a parallel machine scheduling problem
with inventory constraints. In other words, dock doors are sup-
posed to act as production machines and loading/unloading oper-
ations are considered as the jobs to be processed. Since the
objective is to minimize the makespan, according to the three field
notation introduced by Graham, Lawler, Lenstra, and Kan (1979)
this problem can be represented as Pmjrj; inv jCmax.

Due to the increasing amount of attention paid to cross docking
scheduling in recent years, there is an extensive literature dealing
with this research area. Boysen and Fliedner (2010) and Van Belle,
Valckenaers, and Cattrysse (2012) present an extensive overview
in this direction and provide recent surveys of the scheduling sys-
tems in cross docking platforms. Briskorn et al. (2010) focus on sin-
gle machine scheduling subject to inventory constraints, where all
jobs are available at the beginning of the time horizon and they
either increase or decrease the inventory level according to their
type, so that it remains nonnegative at each time. The authors relax
the capacity restrictions and determine the computational com-
plexity of the problem for several cases with different objectives

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2017.01.023&domain=pdf
http://dx.doi.org/10.1016/j.cie.2017.01.023
mailto:a.bazgosha@stu.um.ac.ir
mailto:m_ranjbar@um.ac.ir
mailto:negin.jamili@stu.um.ac.ir
http://dx.doi.org/10.1016/j.cie.2017.01.023
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31 21
such as minimization of total weighted completion time and the
number of tardy jobs, and prove the strongly NP-hardness of the
general versions. The problem of scheduling the trucks in a cross
dock with a single dock door is also considered in Vahdani and
Zandieh (2010). The authors apply five metaheuristic algorithms
for such a problem to minimize the total operation times in the
facility. In Briskorn, Jaehn, and Pesch (2013), the authors develop
exact methods for tackling the single machine problem subject to
inventory constraints, where the objective is to minimize the total
weighted completion time. They also assume that all jobs are avail-
able at the beginning and the inventory’s capacity is unlimited.
Briskorn and Leung (2013) consider the similar problem to find a
schedule such that the maximum lateness among all jobs is mini-
mized, and present four branch and bound algorithms.

Introducing a basic model for scheduling trucks at cross docking
terminals with multiple dock doors, Boysen, Fliedner, and Scholl
(2010) assume that the terminal has two gates and model it as a
two machine scheduling problem. They also show that minimizing
the makespan is strongly NP-hard even if all processing times are
equal. Madani-Isfahani, Tavakkoli-Moghaddam, and Naderi
(2014) discusses about a truck scheduling problem in a multiple
cross docks, where two types of delay times are considered and
the objective is to minimize the total operation time or maximize
the throughput of the cross docking system. In the problem pro-
posed by Alpan, Bauchau, Larbi, and Penz (2008), cross docking
with multiple doors and temporary storage is considered. To deter-
mine the optimal truck sequence such that the total cost is mini-
mized, the authors develop a bounded dynamic programming.
Alpan, Ladier, Larbi, and Penz (2011a) and Alpan, Larbi, and Penz
(2011b) also study a cross dock scheduling problem for serving
outbound trucks at multiple stack doors. They assume that the
arrival sequence of inbound trailers is fixed and consider a First-
Come-First-Served (FCFS) policy to assign the order of incoming
trucks.

The contributions of this article are threefold: (1) we introduce
Pmjrj; inv jCmax and formulate it as a linear integer programming
model; (2) we develop two schedule generation schemes named
as parallel and serial to create feasible solutions for the problem;
and (3) we develop three metaheuristic algorithms to improve
the created solutions by the parallel and serial schedule generation
schemes.

The remainder of this paper is organized as follows. Section 2
deals with modeling the problem as a linear integer programming
and solution methods are sketched in Section 3. Section 4 is
devoted to the computational study and evaluation of the devel-
oped algorithms. Finally, conclusions and future research direc-
tions are presented in Section 5.
Table 1
Description of parameters and variables.

Parameters Definitions

M : f1;2; . . . ; jMjg Set of machines with index i
jMj Total number of machines
J : f1;2; . . . ; jJjg Set of jobs with index j
jJj Total number of jobs
T : f0; . . . ; jTjg Set of times with index t
jTj An upper bound for the completion time of all jobs
IC Capacity of storage space

Iini Initial inventory level

pj Processing time of job j
rj Release date of job j

Variables Definitions
Xjit Binary variable that takes the value of 1 if processing of

job j is completed on machine i at time instant t and takes
0, otherwise

It Inventory level of transshipment terminal at time instant
t

2. Problem statement and modeling

We assume that the transshipment terminal has a set M of jMj
identical docks, considered as identical parallel production
machines. It is also assumed that one product type is handled.
Set of loading and unloading operations is denoted by J, considered
as the set of jobs in the corresponding parallel machine scheduling
problem. This set is separated into two subsets, Jþ and J�, so that Jþ

consists of unloading operations (positive jobs) and J� accounts for
loading ones (negative jobs). Each job j ¼ 1; . . . ; jJj has a processing
time pj and is processed with a single truck that arrives at a specific
release date shown by rj. Considering a storage space with a given

capacity IC, it is assumed that its initial inventory level is Iini, and dj
defines the inventory modification made when job j ¼ 1; . . . ; jJj is
processed. This parameter takes a positive value for unloading
operations and a negative amount for the loading ones. It should
be mentioned that any reduction in inventory level is applied
immediately by starting a loading operation and the increase made
by an unloading operation is done when it is completely processed.
Clearly, inbound and outbound shipments quantity must be taken
into account so that the inventory level remains nonnegative and
does not exceed its capacity at each point of time.

Table 1 summarizes the parameters and decision variables
required to formulate the problem as a mathematical model.

Regarding the above notations, the formulation of this problem
reads as follows.

Min Cmax ð1Þ
subject to

Cmax P
XjTj
t¼1

XjMj

i¼1

tXjit; 8j 2 J ð2Þ

XjTj
t¼1

XjMj

i¼1

Xjit ¼ 1; 8j 2 J ð3Þ

Xt

s¼t�pjþ1

X
8j02Jnfjg

Xj0 is 6 Bð1� XjitÞ; 8i 2 M; 8j 2 J; 8t 2 T ð4Þ

XjJj
j¼1

XminfjTj;tþpjg

s¼maxðtþ1;rjþpjÞ

XjMj

i¼1

Xjis 6 jMj; 8t 2 T ð5Þ

XjTj
t¼1

XjMj

i¼1

tXjit � pj P rj; 8j 2 J ð6Þ

It ¼ It�1 þ
X
j2Jþ

XjMj

i¼1

djXjit þ
X
j2J�

XjMj

i¼1

djXj;i;tþpj ; 8t 2 f1; . . . ; jTjg ð7Þ

I0 ¼ Iini þ
X
j2J�

XjMj

i¼1

djXji;pj ; ð8Þ

It 6 IC; 8t 2 T ð9Þ

Xjit 2 f0;1g; 8j 2 J; 8t 2 T ð10Þ

It 2 Zþ; 8t 2 T ð11Þ
The objective function (1) minimizes the makespan, which is set
greater than or equal to the completion time of the last job in

22 A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31
constraint (2). Constraint (3) guarantees that processing of each job
is completed on a single machine and in exactly one time instant.
Constraint (4), in which B indicates a sufficiently large positive
value, enforces the jobs to be executed with no preemption.
Constraint (5) ensures that no more than jMj jobs can be processed
as parallel. Also, Constraint (6) shows that no job can be started to
process before its release date. Constraints (7) and (8) are related to
the inventory level and denotes the amount of inventory at time
t 2 T n f0g and t ¼ 0, respectively, based on modifications made
by each operation. Restriction imposed to storage capacity is
stipulated in constraint (9). Finally, the last two constraints describe
the type of the variables, in which Zþ is the set of non-negative
integers.
3. Constructive heuristics

As presented in Briskorn and Pesch (2013), the mentioned
problem is proven to be strongly NP-hard even in the case of
a single machine and considering no release dates for jobs.
Therefore, solving the developed mathematical model is highly
time consuming and only applicable for small instances. In this
section, we aim at developing two constructive heuristics. These
heuristic algorithms are schedule generation schemes, named
parallel and serial, to provide feasible schedules for the
problem. To do so, we follow the basic idea of Kolisch (1996),
where so-called parallel and serial scheduling method was
extended for the classical resource-constrained project
scheduling problem.
3.1. Parallel schedule generation scheme (PSGS)

The PSGS iterates over the time horizon of the problem and
does time incrementation. This scheme consists of at most jJj
decision points, in each of which a set of eligible jobs is
scheduled based on their priority. A priority list of jobs is
given as an input to the PSGS. Similar to the activity-list
representation in project scheduling (see Debels, De Reyck,
Leus, & Vanhoucke, 2006), Fig. 1 depicts a priority list of jobs
where jobs 5 and 4 has the highest and the lowest priorities
among jobs, respectively.

The PSGS starts at time instant t ¼ 0 and the time pointer is
increased as the eligible jobs are scheduled. In addition to the
previously mentioned notation, the required parameters are
defined in Table 2 and the steps of this method are demonstrated
in Algorithm 1.
Fig. 1. Priority list of jobs.

Table 2
The required notation for PSGS.

Parameters Definitions

PL Priority list of jobs
EJt : fj 2 Jjrj 6 tg Set of eligible jobs at decision point t (with release date

not less than time t), sorted according to PL
AJt Set of jobs in progress at time t, also called active jobs
ftj Finish time of job j
EJtðgÞ g th member of EJt
AMt Number of available machines at time t
ut Number of jobs that are finished at time t
Algorithm 1: Pseudo-code for the PSGS
Step 1.
 Let s ¼ minfrjg
j2J

, g ¼ 1, AJs ¼ £,

jTj ¼ maxfrjg
j2J

þP
j2Jpj,

for all t 2 T let It ¼ Iini and AMt ¼ jMj, for all j 2 J let
ftj ¼ 0.
Step 2.
 Let EJs ¼ fj 2 Jjrj 6 sg and PL ¼ PL n EJs.

Step 3.
 for g ¼ 1 to jEJsj

if dEJsðgÞ < 0 and for all t 2P s: It þ dEJsðgÞ P 0
then

for all t P s let It ¼ It þ dEJsðgÞ.
for all t 2 ½s; sþ pEJsðgÞ�: let AJt ¼ AJt [EJsðgÞ,

EJs ¼ EJs n EJsðgÞ and AMt ¼ AMt � 1.
let ftg ¼ sþ pEJsðgÞ.

else if dEJsðgÞ > 0 and for all t P sþ pEJsðgÞ:
It þ dEJsðgÞ < IC then

for all t P sþ pEJsðgÞ let It ¼ It þ dEJsðgÞ.
for all t 2 ½s; sþ pEJsðgÞ�: let AJt ¼ AJt [EJsðgÞ,

EJs ¼ EJs n EJsðgÞ and AMt ¼ AMt � 1.
let ftg ¼ sþ pEJsðgÞ .
Step 4.
 if AMs ¼ 0 then
let s ¼ minfftjg

j2AJs
, AMs ¼ AMs þus and

AJs ¼ AJs n fj 2 AJsjftj ¼ sg.
go to Step 2.
Step 5.
 if ðEJs ¼ £ and PL–£Þ then
let s ¼ minfrjg

j2PL
; go to Step 2.

else if ðEJs ¼ £andPL ¼ £Þ then
let Cmax ¼ maxðft1; . . . ; ftnÞ.
return feasible schedule and stop.

else if ðEJs–£&ðPL–£ or AJs–£ÞÞ
let s1 ¼ min

j2PL
ðrjÞ; s2 ¼ min

j2AJs
ðftjÞ and

s ¼ minðs1; s2Þ.
if s ¼ s1 then go to Step 2.
else if s ¼ s2 then
let AMs ¼ AMs þus, AJs ¼ AJs n fj 2 AJsjftj ¼ sg

and go to Step 3.
else if ðEJs–£ and PL–£ and AJs–£Þ no feasible
solution can be found, stop.
The above algorithm initializes the required parameters in Step 1,
where the main one is s which defines the time pointer and is set
to minfrjg

j2J
at the beginning of the procedure. In the PSGS, s is

increased gradually while a set of eligible jobs are scheduled
according to the priority list of PL. Thereafter, based on the value
of s, PL and EJs are updated in Step 2. It is to be noted that in each
stage of updating s, some elements are removed from PL and put
into EJs in which the scheduled jobs are no longer maintained.

In Step 3, the possibility of scheduling is checked for all the eli-
gible jobs in EJs. Since the elements of EJs are regarded as the eli-
gible jobs which are available at the current time, they are all
needed to be investigated in order not to violate the inventory
constraints in the case of being scheduled. Checking procedure is
separated in this step for the positive and negative set of jobs, as
the modification they made in inventory level is at the start of
the processing for the negative ones and at the end of it for the
positives. The inventory level of the storage space (It), the set of
active jobs (AJs), the number of available machines (AMs) and the
set of eligible job (EJs) are parameters to be updated at every

Table 3
Parameters of the example.

j 1 2 3 4 5

pj 6 4 6 2 7
rj 2 4 0 5 3
dj 7 6 -3 -5 -11

A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31 23
repetition of Step 3 where a job is newly scheduled. The finish time
of the mentioned job is also calculated in this step. Afterwards,
there are two possible cases which are investigated in the follow-
ing. Step 4 is to consider a situation in which no idle machine is
available to start an operation. In this case, the time pointer (s)
is increased to the minimum of the finish times of the active jobs
and Step 2 is repeated. Step 5 is then designed to examine the sit-
uation where no eligible job is in EJs at time s, while set PL contains
some jobs yet. To schedule these jobs, s is set to minfrjg

j2PL
so that the

mentioned jobs are added to EJs, the algorithm is then restarted
from Step 2. In Step 5, it is also investigated that if all the jobs
are scheduled, the objective function is calculated using
Cmax ¼ maxfft1; . . . ; ftng and the procedure is terminated. Another
possibility is that some jobs in EJs are not scheduled because of
the inventory restriction, while PL or AJs are not empty. To tackle
this situation, the time pointer (s) can be increased to
s1 ¼ min

j2PL
frjg, in order to add some jobs to EJs, or to the minimum

of the finish times of the active positive jobs (s2) when the inven-
tory level is changed. It is worth mentioning that completion of the
negative job is not considered since the modification they make to
the inventory level is applied at the start of their processing. The
earliest change made in the inventory level is computed by consid-
ering the minimum of s1 and s2 and the time pointer is updated to
this value. Another case, leading to the failure of this method in
finding a feasible solution, is a situation in which PL and AJs are
empty, while the eligible jobs in EJs are not permissible to be
processed due to the inventory constraints. In this case no
modification can be made and the procedure stops searching for
a feasible solution.
Fig. 2. Gantt Chart for the optimal schedule of the example.

Fig. 3. Gantt Chart of the exam
Consider an instance where due to the inventory constraints the
set of positive and negative jobs are not possible to be scheduled
separately. In such a case, a feasible solution may be found by
scheduling a negative and positive job simultaneously, such that
the processing of the negative job starts right at the completion
time of the positive one. As performed in Step 6, in these cases
the PSGS fails to obtain a feasible solution.

In Step 7, the completion time of the scheduled job, the avail-
ability of machines and the three sets AJs, SJ and EJs are updated,
and in the case of existence of an unscheduled job the procedure
is repeated from Step 5.

Consider an example of Pmjrj; inv jCmax with jJj ¼ 5, jMj ¼ 2,

Iini ¼ 12, IC ¼ 14, PL ¼ ð5;3;1;4;2Þ. Other required parameters of
this example is provided in Table 3.

To employ the PSGS, we do as follows. At the beginning, the
only eligible job to be started at time 0 is job 3. Having been com-
pleted, this job increases the time pointer to s ¼ 2, where job 1 is
the single job able to be started based on its release date. As the
inventory constraints is violated by assigning this job, the time
pointer changes to s ¼ 3 and the list of eligible sorted jobs is
defined as EJs ¼ ð5;1Þ. Regarding the release dates, since the eligi-
ble jobs are not allowed to be processed, the decision point is mod-
ified and takes the value of s ¼ 4. Iterating Step 2, we update the
eligible list to EJs ¼ ð51;2Þ, where no eligible job is available to
be processed, and the decision point changes to s ¼ 5. According
to the new list EJs ¼ ð5;1;4;2Þ, job 4 is the only job permissible
to be processed. Scheduling the mentioned job leads to the non-
accessibility of the machine and increment the time pointer by
one. Thereafter, job 1 is chosen among the eligible list to be started,
and the updated decision point is equal to 12 (makespan of the
currently scheduled jobs). Finally, the processing of job 5 and 2
begins simultaneously at this time point and a feasible schedule
with Cmax ¼ 19 is obtained.

In the following, Fig. 2 depicts a Gantt Chart for the optimal
schedule, while the one based on the obtained schedule from PSGS
is shown in Fig. 3.

As illustrated before, in some instances the PSGS is unable to
reach a feasible solution for a specific priority list. Let us consider
the previously mentioned example where PL ¼ ð5;3;2;1;4Þ. Fig. 4
depicts a partial schedule for this problem where the only eligible
job at time s ¼ 0 is job 3. Thereafter, at time s ¼ r1 ¼ 2 job 1 is eli-
gible to be processed while it is not permissible because of the
inventory restriction. s is then increased to 3 (s ¼ r5 ¼ 3) and EJ3
is updated to ð5;1Þ. Since none of the jobs in EJ3 are permissible
to be scheduled, s is updated to 4 (s ¼ r2 ¼ 4) and EJ4 ¼ ð5;2;1Þ
and none of these jobs can be processed yet. In the next step,
s ¼ r4 ¼ 5, EJ5 ¼ ð5;2;1;4Þ and job 4 is chosen to be processed. In
the following where s ¼ ft3 ¼ 6, EJ6 ¼ ð5;2;1Þ and job 2 can be
started in this time. Next, the decision point is updated as
s ¼ ft4 ¼ 7 and EJ7 ¼ ð5;1Þ but none of these two jobs is allowed
to be started in this time. The final decision point is s ¼ ft2 ¼ 10
ple obtained by the PSGS.

Table 4
The required notation for SSGS.

Parameters Definitions

RE An ordered set of jobs that are not scheduled in the first run of
Step 2

PLðgÞ gth member of OJ
ns A boolean variable

Fig. 4. Gantt Chart for the partial infeasible schedule of the example obtained by
PSGS.

24 A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31
and there is situation like previous decision point in which
remaining jobs (1 and 5) are not admissible for scheduling and
no feasible solution is found.
3.2. Serial schedule generation scheme (SSGS)

The approach of the SSGS is to schedule each job sequentially
and as soon as possible with regard to the inventory constraints.
Similar to PSGS, the SSGS gets a priority list PL as input to construct
a schedule. In addition to previously introduced notations, we use
the notation introduced in Table 4 to describe this method as given
in Algorithm 2.
Algorithm 2: Pseudo-code for the SSGS
Step 1.
 Let RE ¼ £, jTj ¼ maxfrjg
j2J

þP
j2Jpj, ns ¼ FALSE,

for all t 2 T let It ¼ Iini and AMt ¼ jMj, for all j 2 J let ftj ¼ 0 .

Step 2.
 for g ¼ 1 to jJj

let s ¼ 1;
if dPLðgÞ < 0 then

let s ¼ min t : t P rPLðgÞ; It þ dPLðgÞ P 0;AMt0 > 0 : 8t0 ¼ t; . . . ; t þ pPLðgÞ
n o

.

if s < 1 then
for all t P s let It ¼ It þ dPLðgÞ.
for all t 2 ½s; sþ pPLðgÞ�: let AMt ¼ AMt � 1.
let ftPLðgÞ ¼ sþ pPLðgÞ, ns ¼ TRUE.

else RE ¼ RE [PLðgÞ.
else if dPLðgÞ > 0 then

let s ¼ min t : t P rPLðgÞ; ItþpPLðgÞ þ dPLðgÞ 6 IC;AMt0 > 0 : 8t0 ¼ t; . . . ; t þ pPLðgÞ
n o

.

if s < 1 then
for all t P sþ pPLðgÞ let It ¼ It þ dPLðgÞ.
for all t 2 ½s; sþ pPLðgÞ�: let AMt ¼ AMt � 1.
let ftPLðgÞ ¼ sþ pPLðgÞ, ns ¼ TRUE.

else RE ¼ RE [PLðgÞ .

Step 3.
 if jREj ¼ 0 then

let Cmax ¼ maxðft1; . . . ; ftnÞ.
return feasible schedule and stop.

else if ðns ¼ FALSEÞ
let J ¼ RE;RE ¼ £;ns ¼ FALSE.
go to Step 2.

else no feasible solution can be found, stop.
In the SSGS, the first step is to initialize the main parameters. In
Step 2, which is regarded as the most important stage, the jobs
are selected for scheduling based on priority list PL. To do so,
s is considered to define the appropriate time for starting the
process of each job which is computed with regard to its release
date, availability of the machines and the inventory level of stor-
age space. This step is separated into two parts to distinguish the
modifications made by the positive and negative jobs. Consider-
ing a specific job, if the value of s is limited, the job is scheduled
and the associated parameters such as its finish time, the
inventory level and the number of idle machines are updated.
Otherwise, the given job is put into RE set to be considered to
scheduling in the next round. If no unscheduled job remains,
Cmax is calculated in Step 3. Otherwise, the jobs in set RE are
investigated to be scheduled. In this regard, we place the
elements of RE in J, let RE ¼ £ and go to Step 2. In this stage,
various cases may happen. If all the remaining jobs are
scheduled, the procedure returns a feasible schedule and stops.
In some situations where there are still some unscheduled jobs
remained after the repetition of Step 2, this step is iteratively
repeated to reach a feasible solution. It is to be mentioned that
if this step leads to no further changes in the partial schedule,
ns is set to FALSE and the algorithm is unable to find a feasible
schedule according to the given priority list.

Fig. 5. Gantt Chart of the example obtained by the SSGS.

A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31 25
According to the priority list PL ¼ ð5;3;1;4;2Þ, job 5 is the first
job to be started at time s ¼ 3. As job 3, which is chosen as the
following job, is not eligible to be started due to the inventory
constraints, this job is added to RE. Thereafter, job 1 starts its
processing at time s ¼ 2. Subsequently, the processing of job 4
begins at time s ¼ 8. Then job 2 starts at time s ¼ 10 and the only
member of set RE (job 3) is then available for processing. Thus, job
3 is scheduled to be started at s ¼ 14 and a feasible schedule with
Cmax ¼ 20, shown in Fig. 5, is obtained.

In the aforementioned example, if the priority list is defined as
PL ¼ ð4;3;2;5;1Þ, the processing of job 4 begins at s ¼ 5. There-
after, jobs 3 and 2 are scheduled at s ¼ 0 and s ¼ 6, respectively.
According to this partial scheduling, depicted in Fig. 6, the remain-
ing jobs (1 and 5) are not permissible to be processed due to the
inventory constraints and there is no feasible schedule for this
instance.
4. Metaheuristic approaches

In this section we develop three metaheuristic approaches
based on the genetic algorithm (GA), the particle swarm optimiza-
tion (PSO) and the cuckoo optimization algorithm (COA). These
methods are provided to improve the solution generated by the
PSGS and SSGS. Based on the ideas developed for the solution
approaches of the well-known resource-constrained project
scheduling problem such as Ranjbar, De Reyck, and Kianfar
(2009) and Ranjbar and Kianfar (2007), each of these three algo-
rithms is combined with either PSGS or SSGS to work. In other
words, our developed metaheuristics generate priority lists where
each priority list is transformed to a schedule using one of the
developed schedule generation schemes.
Fig. 6. Gantt Chart for the partial infeasible schedule of the example obtained by
SSGS.
4.1. Genetic algorithm

A genetic algorithm is a population-based metaheuristic opti-
mization method inspired by biological evolution, which is
invented by Holland (1975). To optimize a problem, a population
is constructed in which each solution’s quality is evaluated by a
predefined ‘‘fitness function”. The algorithm repeatedly modifies
the population by forming new generations and explores the
search space to move into a favorable direction.

In the problem Pmjrj; invjCmax, a solution (chromosome) is rep-
resented as a priority list of jobs and a population is constructed by
a set of such lists.

Algorithm 3 demonstrates the framework of the GA in several
steps.
Algorithm 3: Pseudo-code for the GA
Step 1.
 Initialize population Pop by randomly generating
jPopj solutions.
Step 2.
 for all i 2 Pop calculate Cmax using PSGS or SSGS.

Step 3.
 Let i ¼ 1 .

Step 4.
 Consider the ith member of Pop as the first parent

and select its partner, namely j 2 Popwhere j–i, via
Roulette wheel selection strategy.
Step 5.
 Perform two point crossover operator over the
selected parents to generate a new child solution.
Step 6.
 Apply the mutation operator over the new
generated child solution with the probability of
Pmut and add it to the new population (NewPop).
Step 7.
 Let i ¼ iþ 1.
if i 6 jPopj then
go to Step 4.

else if the stopping criterion has no met then
replace the worst solution of NewPop with the

best solution of Pop.
let Pop ¼ NewPop, NewPop ¼ £ and go to Step 2.

else Stop.
The developed algorithm is a usual version of GA and includes 7
steps. In the first step, an initial population is constructed, consist-
ing of jPopj randomly generated solutions where each one is a pri-
ority list. In Step 4, two parent solutions are selected to pair using
roulette wheel strategy. The main idea of the roulette wheel is to
associate more chance to better individuals, proportional to their
fitness, to be selected. To do so, in the first step a probability is
assigned to each of the chromosomes to define their chance to be
transferred to the pool of solutions. The probability of chromosome

i is calculated using
1=CmaxiP
i
ð1=Cmaxi

Þ and each chromosome is considered

Fig. 7. An example of two point crossover.

Fig. 8. An example of mutation operator.

Table 5
The required notation for PSO.

26 A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31
as a part of the roulette wheel. In Step 5, a two point crossover oper-
ator is applied on the parents and a new child solution is generated.
Fig. 7 illustrates an example of this operator, whereas cells 1 and 4
are the two crossing points.

Mutation operation is performed in Step 6. This operator is done
on the newly generated child solution with the probability of Pmut ,
such that two random cells of a solution are selected and
exchanged in order to produce a new chromosome. This process
is shown in Fig. 8, where the solution is mutated by shifting cells
2 and 5.

4.2. Particle swarm optimization

Particle swarm optimization is another population-based
search algorithm, designed and introduced by Eberhart and
Kennedy (1995), originated from schooling behavior of fish or
flocking behavior of birds. This algorithm was originally intended
for simulating social behavior of birds or fish, randomly searching
food in an area. A PSO algorithm contains a swarm of particles fly-
ing through a search space where their position is adjusted accord-
ing to their own experience and the experience of their neighbors.
Hence, the movement of the particles is guided by the entire
swarm’s best known position. Considering the particles as the can-
didate solutions to the problem, in PSO particles move toward
optima by updating the knowledge gained by the entire swarm.
The features of each particle are their velocity and position, such
that a particle’s position is modified based on its velocity, and
the velocity is determined by regarding both local and global best
information and defined by the following elements.

� The personal best solution (the best position particle k has vis-
ited, denoted by Pbestk).

� The global best (the best position visited by the entire swarm,
demonstrated by Gbest).

4.2.1. Solution representation
Representation of a solution is a key issue in any optimization

problem and has a great influence on the algorithm performance.
Fig. 9. Position matrix of a particle.
In PSO, we use two types of solution representations. The first
one is similar to the solution representation proposed for the GA
approach, depicted in Fig. 1, in which a list of prioritized jobs is
considered where the sequence of jobs shows their priority. In
the second representation, see Fig. 9, a solution is illustrated as a
jJj � jJj binary matrix, namely position matrix, in which each col-
umn accounts for a job and each row represents the priorities,
whereas only one element has the value of 1 in each column.
Assume that ði; jÞ is the cell associated with the ith row and jth col-
umn in the kth particle’s position matrix. If this element is equal to
1 then ith priority is assigned to the jth job among all jobs. Fig. 9
corresponds to the priority list shown in Fig. 1.
4.2.2. Velocity and position of particles
Velocity of each particle is determined based on both local and

global best information and presented as a jJj � jJj matrix whose
elements are in range ½�Vmax;Vmax�. At the beginning of the algo-
rithm, this matrix is initialized randomly so that the velocities will
be uniformly disturbed in the interval ½�Vmax;Vmax�. Thereafter, the
velocity matrix is updated in each iteration using Eq. (12), intro-
duced in Izakian, Ladani, Abraham, and Snasel (2010), where the
local and global best positions are employed as well as the current
position of the given particle. The position matrix is then obtained
according to Eq. (13). The required parameters for the PSO
approach is summarized in Table 5.
Vitrþ1
k ði; jÞ ¼ Vitr

k ði; jÞ þ c1r1ðXitr
Pbestk

ði; jÞ � Xitr
k ði; jÞÞ

þ c2r2ðXitr
Gbestði; jÞ � Xitr

k ði; jÞÞ ð12Þ
Xitr
k ði; jÞ ¼ 1 if Vitr

k ði; jÞ ¼ maxfVitr
k ði; jÞg; 8i 2 J

0 otherwise

(
ð13Þ
In Eq. (12), c1 and c2 are considered as the positive constants to
determine whether the local position or the global one has the pri-
ority rather than the other. Moreover, r1 and r2 are chosen ran-
domly from the interval ½0;1�.
4.2.3. The PSO framework for the problem Pm|rj, inv|Cmax

The scheme of the PSO method in this paper, consisting of two
phases, is sketched as presented in Algorithm 4.
Parameters Definitions

Xitr
k

The position matrix of kth particle in itrth iteration

Xitr
Pbestk

The position matrix of Pbestk in itrth iteration

Xitr
Gbest

The position matrix of Gbest in itrth iteration

Vitr
k

The velocity matrix of kth particle in itr th iteration

ER Sum of eligible rows in the velocity matrix
c1, c2 Positive constants by which the influence or priority of local

and global positions is controlled
r1, r2 Random values in range ½0;1�

A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31 27
Algorithm 4: Pseudo-code for the PSO

Phase 1: Initialize a swarm by randomly generating jPopj particles

Step 1.
 Generate the elements of velocity matrix from a discrete uniform distribution in the interval ½�Vmax;Vmax� and set ER ¼ J .

Step 2.
 Let j ¼ 1 .

Step 3.
 if Vitr

k ði0; jÞ ¼ maxi2ERV
itr
k whereas i0 2 J then

let Xitr
k ði0; jÞ ¼ 1.

omit i0 from ER and for all i 2 J n fi0g let Xitr
k ði; jÞ ¼ 0.

if j < jJj then
let j ¼ jþ 1 and go to Step 3.
Phase 2: PSO implementation

Step 4.
 Let itr ¼ 0, for all i; j 2 ½0; jJj� let Xitr

Gbestði; jÞ ¼ Xitr
0 ði; jÞ .
Step 5.
 for all i; j 2 ½0; jJj�; k 2 ½0; jPopj� let Xitr
Pbestk

ði; jÞ ¼ Xitr
k ði; jÞ:

if CmaxðXitr
k Þ < CmaxðXitr

GbestÞ then
for all i; j 2 ½0; jJj� let Xitr

Gbestði; jÞ ¼ Xitr
k ði; jÞ .
Step 6.
 for all i; j 2 ½0; jJj�; k 2 ½0; jPopj� let
Vitrþ1
k ði; jÞ ¼ Vitr

k ði; jÞ þ c1r1 Xitr
Pbestk

ði; jÞ � Xitr
k ði; jÞ

� �
þ c2r2 Xitr

Gbestði; jÞ � Xitr
k ði; jÞ

� �
:

Let j ¼ 1 .

Step 7.
 if Vitr

k ði0; jÞ ¼ maxi2ERV
itr
k ði; jÞ whereas i0 2 J then

let Xitr
k ði0; jÞ ¼ 1.

omit i0 from ER and for all i 2 J n fi0g let Xitr
k ði; jÞ ¼ 0.

if j < jJj then
let j ¼ jþ 1 and go to Step 7.
Step 8.
 Let itr ¼ itr þ 1.

if CmaxðXitr
k Þ < CmaxðXitr

Pbestk
Þ then

for all i; j 2 ½0; jJj� let Xitr
Pbestk

ði; jÞ ¼ Xitr
k ði; jÞ.

if CmaxðXitr
k Þ < CmaxðXitr

GbestÞ then
for all i; j 2 ½0; jJj� let Xitr

Gbestði; jÞ ¼ Xitr
k ði; jÞ .
Step 9.
 if the stopping criterion has not met then
let ER ¼ J and go to Step 8.

else Stop.
The developed algorithm of this section initializes the population by
randomly generating the velocity matrix of particles and the parti-
cles’ positions are determined according to the given equation in
Step 3. In this step, in order to avoid assigning a priority to more
than one job, having determined the maximum value of each
column, we then omit the associated row from the set of eligible
rows.

In the second phase, the position matrix of Pbestk and Gbest for
k 2 ½0; jPopj� is determined by the current information and the
velocity matrix of particles is updated in Step 6, afterwards. There-
after, the position matrix of particles, Pbestk and Gbest are updated
in Step 7 and 8, respectively. It is to be noted that Cmax, defined in
Steps 5 and 8, is calculated using one of the two developed sched-
ule generation schemes.

4.3. Cuckoo optimization algorithm

Cuckoo optimization algorithm is one of the latest evolutionary
algorithms developed by Rajabioun (2011). This population-based
metaheuristic is inspired by the life of a bird family, called Cuckoo,
and starts with an initial population of these birds. Based on the
brood parasitism of these species, cuckoos lay their eggs in the
habitats of other host birds. Whilst some of these eggs are detected
and expelled out by the host birds, some have the opportunity to
grow up. The number of survived eggs in each area indicates the
nest suitability of that area. Therefore, the best environment in
which more eggs survive will be the term that COA is going to opti-
mize. In this process, the remained eggs turn into mature cuckoos
and make some groups with specific habitat regions. As the best
habitat of all groups turns into a destination for cuckoos in other
societies, they move toward this area and reside in some places
near the best area. The number of eggs each cuckoo has and its dis-
tance to the best residence are calculated to consider some egg lay-
ing radius, and the cuckoos start to lay eggs in some random nests
inside this radius. Iterating this process, the best position with the
maximum profit, in where the most of cuckoo population is gath-
ered, is obtained.

In this approach, k�mean clustering method is used for group-
ing the cuckoos. This partitioning process is the first and simplest
of all clustering algorithms, introduced by MacQueen (1967),
which is applicable to various problems. The procedure starts with
partitioning a population into k sets. Computing the means of the
points in each set, a new partition of points is formed and the
points are put into other groups. This process continues in order
to minimize the average square distance of each group’s point from
its mean. In the following, the parameters required for proposing
the COA method are introduced in Table 6.

In this method, by the best solution, we mean the center of a
cluster with the minimummean. Similar to the GA and PSO, a solu-
tion, representing a habitat that shows the current living position
of a cuckoo, is defined by a priority list of activities and a randomly
generated set of these solutions forms the initial population.

Table 6
The required notation for COA.

Parameters Definitions

NumEi The number of i th cuckoo’s eggs
MinEi Minimum number of eggs for ith cuckoo which is a constant

number
MaxEi Maximum number of eggs for ith cuckoo which is a constant

number
ELRi Egg laying radius for ith cuckoo

Popitri The ith habitat in the itrth iteration

Popitrbest The best habitat in the itrth iteration

CN Total number of clusters
F Movement coefficient, a random number between 0 and 1
MIij The distance between habitat i and j
MIibest Distance of habitat i to the best habitat

Fig. 10. Two example of habitats.

Fig. 11. Popitrþ1
ik

.

28 A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31
4.3.1. The COA framework for the problem Pm|rj, inv|Cmax

We outline the framework for the COA approach as given in
Algorithm 5.
Algorithm 5: Pseudo-code for the COA
Step 1.
 Randomly generate jPopj cuckoo habitats as the
initial population Pop .
Step 2.
 Dedicate some eggs to each cuckoo.

for all i 2 Pop let
NumEi ¼ ðMaxEi �MinEiÞ � rand½0;1� þMinEi .
Step 3.
 Calculate the egg laying radius for each cuckoo
i 2 Pop as ELRi ¼ NumEiP

i
NumEi

� jJj .

Step 4.
 Define the position of a cuckoo’s eggs inside its

corresponding radius.

Step 5.
 Evaluate the habitat of each egg by calculating Cmax

using PSGS or SSGS.
If the number of eggs is more than jPopj then
omit those who live in worse habitats.
Step 6.
 Cluster cuckoos using k�mean method and find the
center of the best habitat (the cluster with the
minimum mean) as the best solution found.
Step 7.
 Move the new cuckoo population toward the best
habitat.
Step 8.
 If stopping criterion (maximum number of iteration)
is met then
Stop.

else go to Step 2.
Regarding the problem Pmjrj; invjCmax, the value of ELRi, calculated
in step 3, determines the maximum number of jobs allowed to be
shifted in the priority list. In step 4, for all i 2 Pop generate NumEi

random numbers, uniformly distributed in interval ½1; ELRi�. Next,
for all i 2 Pop choose NumEi pairs of jobs and then exchange the
position of each pair in the priority list.

To develop the clustering technique mentioned in Step 6, we
randomly choose CN elements as the centers of clusters. In this
paper, this parameter is computed using Eq. (14).

CN ¼ maxi2½0;jPopj�CmaxðPopitr
i Þ �mini2½0;jPopj�CmaxðPopitr

i Þ
4

þ 1 ð14Þ

Afterwards, the distance of each member from the center of its clus-
ter is determined. Considering MIij as the distance between ith
member and center j, this parameter is represented by a triple
ða; b; cÞwhere a is a specific priority that is assigned to different jobs
in i and j and b and c are the jobs associated with the a th priority in
i and j, respectively. To elaborate more, assume i and j as depicted in
Fig. 10 in which MIij is then determined as
MIij ¼ fð1;1;2Þ; ð2;4;3Þ; ð3;3;1Þ; ð4;2;4Þg.

Having calculated the distances, we then dedicate each member
to a cluster where its center is nearest to the position of mentioned
member in comparison with other clusters. Subsequently, the
average of Cmax is computed and the element with the nearest
value to the average is considered as the related cluster’s center.
Evaluating the new distance, the process is performed repeatedly
till no change in the clusters is occurred.

In Step 7, in order to move kth egg of the ith cuckoo (generating

Popitrþ1
ik

), we choose the first ½F � jMIibestj� elements of MIibest and

apply the required changes on Popitr
ik
. In the following, an example

is presented for further explanation.

Let us assume that Popitr
best is the jth member given in Fig. 10 and

F is equal to 0.6. The first two elements of MIibest , ð1;1;2Þ and

ð2;4;1Þ, are chosen and Popitrþ1
ik

is updated by replacing job 1 with

job 2 and job 4 with job 1 in Popitr
ik
. Exchanging the jobs, Popitrþ1

ik
is

obtained as shown in Fig. 11.
5. Computational experiments

To investigate the performance of the developed solution
approaches, we generated 870 random test instances in three
groups, including small, medium and large size data. The algo-
rithms were coded in C++ and ran on a portable computer with
an Intel Core i3 and 4 GB of RAM, and Microsoft Windows 8.1 oper-
ating system. The integer programming model is also solved by the
ILOG CPLEX 12.6. All test instances and detailed computational
results can be found at http://www.m_ranjbar.profcms.um.ac.ir/
index.php/submited-articles/11357.
5.1. Data set generation

We designed the test instances based upon the following
parameters. The number of jobs (jJj) for small, medium and large
size instances is taken from sets f5;10;15;20g, f30;35;40g, and
f50;55;60g, respectively, and the number of machines are ran-
domly chosen from sets f1;2g, f2;3;4g and f2;3;4;5g, sequen-
tially. The processing time of each job (pj) is uniformly
distributed in the interval ½1;10�. Having generated the processing
times, we then choose the release dates randomly from the dis-
crete uniform distribution U½0;1=4 �Pipi�. Moreover, the inven-
tory modification made by each job (dj) is created randomly from
integer values in ½1;10�. Consequently, the initial inventory level

(Iini) is an integer value drawn from U max 0;
P

j2J�dj
n o

;
P

j2J�dj
h i

and the storage capacity (IC) follows a discrete uniform

distribution in the interval Iini þmax
P

j2Jþdj �
P

j2J�dj
� �

;0
n o

;
h

Iini þP
j2Jþdj�.

To determine the set of positive and negative jobs,
a 2 f0:4;0:5;0:6g is regarded as the percentage of positive ones.
Finally, for each of these 87 combinations, we generated 10

http://www.m_ranjbar.profcms.um.ac.ir/index.php/submited-articles/11357
http://www.m_ranjbar.profcms.um.ac.ir/index.php/submited-articles/11357

Table 7
The run time of model using CPLEX.

Number of machines Number of jobs Average

5 10 15 20 20

1 0.196 0.688 7.899 266.648 68.857
2 0.263 1.257 12.555 358.886 93.240
Average 0.229 0.972 10.227 312.767 81.048

Table 10
The setting of parameters of metaheuristic algorithms.

Algorithm Parameter Value

TL = 1 TL = 10 TL = 30

GA Pmut 0.03 0.05 0.05
jPopj 50 100 250

PSO Vmax 4 4 4
c1; c2 2 2 2
jPopj 50 100 250

COA MaxEi 2 2 2
MinEi 1 1 1
jPopj 50 100 250

A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31 29
random instances, so that 870 test instances are considered when
evaluating the developed solution methods.
5.2. Performance of the model

In this section, we investigate the performance of the developed
integer linear programming model. Since the optimal results,
obtained by ILOG CPLEX, are only achievable for all small size
instances and some of medium size instances, the results of the
three metaheuristic algorithms for the mentioned test sets are
compared to the optimal solutions while the results of other
instances are compared to the best found solution among all devel-
oped approaches.

In Table 7, the average CPU run time of the mathematical model
is provided for the small size data. As expected, increasing the
number of jobs or machines leads to larger run time of the model.

Since reaching the optimality using CPLEX is considerably time
consuming for medium and large size instances, we imposed a
limit of 1800 s and 3600 s on the CPU Run times for these data sets.
As given in Table 8, for some instances, CPLEX is not able to find
optimal solution, or even a feasible one, within the prescribed time
limits. Tables 8 and 9 contain the number of optimal and feasible
solutions obtained for each class of instances, in terms of the num-
ber of jobs and machines, where the first values indicate the total
number instances solved optimally and the second ones reports
the number of instances for which at least a feasible solution has
been found. It is to be mentioned that there is 30 instances for each
group of test sets categorized in a cell.

As is evident in the above tables, the computational complexity
of the problem is increased with increasing the number of jobs,
while it is not inversely dependent to the number of machines. Fol-
lowing the given information, we can easily observe that in case of
Table 8
Number of optimal and feasible solutions with TL = 1800 s.

Number of machines Medium Large

Number of jobs Number of jobs

30 35 40 50 55 60

2 7/30 1/22 13/30 0/3 0/1 0/0
3 20/30 12/30 8/28 2/10 0/6 0/2
4 28/30 28/30 30/30 17/23 12/18 9/15
5 28/28 26/29 26/26

Table 9
Number of optimal and feasible solutions with TL = 3600 s.

Number of machines Medium Large

Number of jobs Number of jobs

30 35 40 50 55 60

2 13/30 13/30 1/29 0/9 0/4 0/3
3 22/30 17/30 9/28 3/14 0/10 0/5
4 28/30 30/30 30/30 19/26 11/25 17/20

29/30 28/30 28/30

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

PC PP PG SC SP SG

AP
D

Algorithm

TL=1 TL=10 TL=30

Fig. 12. Performance of algorithms for small size instances.
larger values for number of jobs, it would be much harder to solve
the problems with the less number of machines.
5.3. Comparison of metaheuristic algorithms

To analyze the performance of the developed algorithms, we
have imposed CPU run time limits (TL) of 1, 10 and 30 s as the stop-
ping criterion and obtain proper values for parameters of algo-
rithms based on the design of experiments (DOE) techniques, as
given in Table 10.

In what follows, the average percentage deviation (APD) of the
obtained solutions by each algorithm (in a given time limit) from
the best found solution available is demonstrated for various scales
of problems.

As is evident in Fig. 12, in the small scale instances the perfor-
mance of all the algorithms is improved by increasing the time
limit and SC algorithms outperforms the other methods, abbrevi-
ated as given.

We can also compare the CPLEX performance with the devel-
oped metaheuristics based on the small size instances and with
TL = 30 (For larger size instances and also for shorter run times,
we do not have any feasible solution for many of the test
instances). Computational results indicate that for 218 out 240
small size test instances we have found at least a feasible solution
and APD = 0.04 based on these test instances. This vale of APD
implies that CPLEX is much better in this special case rather than
the metaheuristics but for harder cases, i.e. shorter run times and
larger size, CPLEX is outperformed by the metaheuristics.

Considering the APD obtained for medium and large instances,
see Figs. 13 and 14, the comparative analysis of algorithms shows
the superiority of PC algorithms over the other approaches. It is to
be noted that since the optimal solution is not achievable for the
mentioned instances, APD is measured based on the best available
solution, hence this value is not directly proportional to the size of

0

0.5

1

1.5

2

2.5

3

3.5

4

PC PP PG SC SP SG

AP
D

Algorithm

TL=1 TL=10 TL=30

Fig. 13. Performance of algorithms for medium size instances.

0

0.5

1

1.5

2

2.5

3

PC PP PG SC SP SG

AP
D

Algorithm

TL=1 TL=10 TL=30

Fig. 14. Performance of algorithms for large size instances.

Fig. 15. Impact of a on APD.

30 A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31
the problem. It is also concluded that larger TL leads to the less APD
in all the three groups of instances.

Having studied the results, we can conclude that among the two
schedule generation schemes, PSGS provides better performance
than SSGS. Furthermore, the superiority of COA over other meta-
heuristic algorithms is inferred.
Fig. 16. Impact of a on POF.
5.4. Statistical analyses

In this section, some statistical analysis is done in order to
investigate the efficiency of the two schedule generation schemes.
We also make a comparison between the metaheuristic
approaches. Hence, for each instance and in each time limit, we
have six solution for each instance, obtained by the algorithms
SP, SC, SG, PP, PC and PG.

To evaluate the performance of SSGS and PSGS, we first com-
pare the average of solutions reached by SG, SC and SP with the
average of obtained solutions by PG, PC and PP. To do so, a
paired-t test is used, in which the null hypothesis is defined for
the equality of performance (makespan) of the two mentioned
schemes, and the alternative hypothesis states the better perfor-
mance (less makespan) of PSGS rather than SSGA. Having checked
the data to be normally distributed, we use MINITAB to test the
hypothesis for TL = 1, 10, 30. Since for the paired-t test P-value is
reported as equal to P-value < 0.001, the null hypothesis is rejected
and the alternative hypothesis is accepted in its place.

To compare the efficiency of the metaheuristics, we have per-
formed three paired-t tests in a similar manner illustrated in the
previous paragraph. The concluded results, depicted in the Figs. 12–
14, show the superiority of COA and the weaker performance of GA
among this group of methods. For further explanation, let us first
compare the efficiency of COA and PSO for TL = 1. Ignoring the
results of GA, we are then given four solutions obtained by SP,
SC, PP and PC. Thereafter, for each instance, we compare the mean
obtained makespans of PP and PC with those obtained by applying
SP and SC. Having considered the alternative hypothesis as the less
makespan value of COA rather than PSO vs. the null one, denoting
the equality of the two mentioned parameters, the aforementioned
procedure is implemented in order to check the statistical test. By
applying this test for TL = 1, 10, 30, we obtained P-value < 0:001
for each of the nine test. Consequently, we conclude that COA out-
performed two other metaheuristics and also PSO has better per-
formance than GA.
5.5. Impact of a parameter on APD

Computational results show that the value of a influences APD
as well as the percentage of feasibility (POF), indicating the per-
centage generated feasible solutions by PSGS or SSGS. Figs. 15
and 16 depict the impact of this parameter on the mentioned
measures.

Considering the trend observed in Fig. 15, it is concluded that
the obtained results for the PSGS is not dependent on the parame-
ter a and outperforms the SSGS for all values of a. On the other
hand, SSGS shows better performance in the cases with smaller
value of a than larger values of this parameter.

As presented in Fig. 16, except for the PP and SG, POF is 100% in
the developed methods, while in the two mentioned ones, this
measure decreases by increasing the value of a. The influence of
the percentage of positive jobs on the complexity of the problem
is also investigated in Van Belle et al. (2012), where a single
machine scheduling problem subject to inventory constraints and
regardless of the release dates is studied. Based on the comparative
results, a higher percentage of positive jobs leads to harder
instances to be solved.
5.6. Impact of |M| on APD

To show the effect of the number of machines on the results, we
conducted some computational experiments on the instances with

Fig. 17. Impact of jMj on APD.

Fig. 18. Impact of jJj on APD.

A. Bazgosha et al. / Computers & Industrial Engineering 106 (2017) 20–31 31
jJj ¼ 200 and a ¼ 50%. As provided in Fig. 17, the modifications of
this parameter have no effect on APD obtained by applying PSGS,
while in SSGS a considerable growth in APD is observed when
jMj is increased to 4.

5.7. Impact of |J| on APD

Similar to the aforementioned analysis, we consider the
instances with jMj = 4 and a ¼ 50% to analyze how far larger val-
ues for jJj have an impact on APD. Fig. 18 shows that this parameter
is an effective one in SSGS, so that the increasing amount of this
parameter results in the larger values of APD.

6. Conclusions

In this paper, a transshipment scheduling problem with multi-
ple identical stations has been discussed, where inventory and
release date constraints are taken into account. This problem has
been formulated as an integer linear programming model with
an objective of minimization of makespan. Due to the complexity
of the developed model, two constructive heuristics, named paral-
lel and serial schedule generation schemes, and three metaheuris-
tic algorithms have been developed based on GA, PSO and CO
approaches. Concluding our computational study shows that com-
bination of the PSGS and the COA shows the best performance
among all developed algorithms.

For future research, we believe the following directions to be
promising. First, the exact methods can be applied for this problem
to be solved to optimality. Second, generalizing the problem set-
ting to more than one type of product can be motivated from real
world applications in order to model a more realistic extension.

References

Alpan, G., Bauchau, S., Larbi, R., & Penz, B. (2008). Optimal operations scheduling in
a crossdock with multi strip and multi stack doors. International Conference on
Computers and Industrial Engineering (Vol. 2, pp. 1168–1176). .

Alpan, G., Ladier, A. L., Larbi, R., & Penz, B. (2011a). Heuristic solutions for
transshipment problems in a multiple door cross docking warehouse.
Computers & Industrial Engineering, 61(2), 402–408.

Alpan, G., Larbi, R., & Penz, B. (2011b). A bounded dynamic programming approach
to schedule operations in a cross docking platform. Computers & Industrial
Engineering, 60(3), 385–396.

Boysen, N., & Fliedner, M. (2010). Cross dock scheduling: Classification, literature
review and research agenda. Omega, 38(6), 413–422.

Boysen, N., Fliedner, M., & Scholl, A. (2010). Scheduling inbound and outbound
trucks at cross docking terminals. OR Spectrum, 32(1), 135–161.

Briskorn, D., Choi, B. C., Lee, K., Leung, J., & Pinedo, M. (2010). Complexity of single
machine scheduling subject to nonnegative inventory constraints. European
Journal of Operational Research, 207(2), 605–619.

Briskorn, D., Jaehn, F., & Pesch, E. (2013). Exact algorithms for inventory constrained
scheduling on a single machine. Journal of Scheduling, 16(1), 105–115.

Briskorn, D., & Leung, J. Y. (2013). Minimizing maximum lateness of jobs in
inventory constrained scheduling. Journal of the Operational Research Society, 64
(12), 1851–1864.

Briskorn, D., & Pesch, E. (2013). Variable very large neighbourhood algorithms for
truck sequencing at transshipment terminals. International Journal of Production
Research, 51(23–24), 7140–7155.

Debels, D., De Reyck, B., Leus, R., & Vanhoucke, M. (2006). A hybrid scatter
search/electromagnetism metaheuristic for project scheduling. European
Journal of Operational Research, 169(2), 638–653.

Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory.
Proceedings of the sixth international symposium on micro machine and human
science (Vol. 1, pp. 39–43). .

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of
Discrete Mathematics, 5, 287–326.

Holland, J. H. (1975). Adaptation in natural and artificial systems. An introductory
analysis with application to biology, control, and artificial intelligence. Ann Arbor,
MI: University of Michigan Press.

Izakian, H., Ladani, B. T., Abraham, A., & Snasel, V. (2010). A discrete particle swarm
optimization approach for grid job scheduling. International Journal of Innovative
Computing, Information and Control, 6(9), 4219–4233.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling
methods revisited: Theory and computation. European Journal of Operational
Research, 90(2), 320–333.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability (Vol. 1(14), pp. 281–297). .

Madani-Isfahani, M., Tavakkoli-Moghaddam, R., & Naderi, B. (2014). Multiple cross-
docks scheduling using two metaheuristic algorithms. Computers & Industrial
Engineering, 74, 129–138.

Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11(8),
5508–5518.

Ranjbar, M., De Reyck, B., & Kianfar, F. (2009). A hybrid scatter search for the
discrete time/resource trade-off problem in project scheduling. European
Journal of Operational Research, 193(1), 35–48.

Ranjbar, M. R., & Kianfar, F. (2007). Solving the discrete time/resource trade-off
problem in project scheduling with genetic algorithms. Applied Mathematics and
Computation, 191(2), 451–456.

Vahdani, B., & Zandieh, M. (2010). Scheduling trucks in cross-docking systems:
Robust metaheuristics. Computers & Industrial Engineering, 58(1), 12–24.

Van Belle, J., Valckenaers, P., & Cattrysse, D. (2012). Cross-docking: State of the art.
Omega, 40(6), 827–846.

http://refhub.elsevier.com/S0360-8352(17)30042-6/h0005
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0005
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0005
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0010
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0010
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0010
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0015
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0015
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0015
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0020
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0020
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0025
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0025
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0030
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0030
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0030
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0035
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0035
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0040
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0040
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0040
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0045
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0045
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0045
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0050
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0050
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0050
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0055
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0055
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0055
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0060
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0060
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0060
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0065
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0065
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0065
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0070
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0070
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0070
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0075
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0075
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0075
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0080
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0080
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0080
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0085
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0085
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0085
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0090
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0090
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0095
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0095
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0095
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0100
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0100
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0100
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0105
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0105
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0110
http://refhub.elsevier.com/S0360-8352(17)30042-6/h0110

	Scheduling of loading and unloading operations in a multi stations transshipment terminal with release date and inventory constraints
	1 Introduction
	2 Problem statement and modeling
	3 Constructive heuristics
	3.1 Parallel schedule generation scheme (PSGS)
	3.2 Serial schedule generation scheme (SSGS)

	4 Metaheuristic approaches
	4.1 Genetic algorithm
	4.2 Particle swarm optimization
	4.2.1 Solution representation
	4.2.2 Velocity and position of particles
	4.2.3 The PSO framework for the problem Pm|rj,inv|Cmax

	4.3 Cuckoo optimization algorithm
	4.3.1 The COA framework for the problem Pm|rj,inv|Cmax

	5 Computational experiments
	5.1 Data set generation
	5.2 Performance of the model
	5.3 Comparison of metaheuristic algorithms
	5.4 Statistical analyses
	5.5 Impact of α parameter on APD
	5.6 Impact of |M| on APD
	5.7 Impact of |J| on APD

	6 Conclusions
	References

