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Abstract Studies of biological evolution have generally

focused on nucleotide or amino acid sequences of certain

genes related to specific enzymes. Most phylogenetic tree

constructions have been carried out using amino acid

sequences and are used as a predictor to show evolutionary

relationships. Phylogenetic analysis is usually performed

based on multiple sequence alignment of a gene from

different organisms including fungi. A number of programs

have been introduced for gene clustering and phylogenetic

analysis. For example, the most popular web-based pro-

gram is Clustal Omega which is commonly used by biol-

ogists. When the number of uploaded sequences increases,

this program not only works slowly but also the final

constructed cladogram is confusing and incorrect from

evolutionary point of view. In the present study, we used

fungal hexosaminidases which are extracellular enzymes

with a lot of applications in biotechnology but extremely

varied and confusing in evolutionary terms. A standard

taxonomy-based phylogenetic tree was constructed for 835

FH amino acid sequences retrieved from National Center

for Biotechnology Information (NCBI) on March 16, 2015.

Then a supervised multilayer perceptron (MLP) neural

network was used to discriminate FH sequences. Based on

relative frequency of amino acid in FH sequences, 41

neural networks were designed for seven levels from the

phylum to family. Minimum accuracy of the neural net-

work was equal to 99% at all seven discrimination levels.

As a final step, an additional evaluation was performed on

the designed model with 143 new released FH sequences

extracted on July 1, 2015. The clustering results have

shown a proper match with fungal taxonomy to show

evolutionary relationships.

Keywords Fungal hexosaminidases � Clustering � MLP

neural network

1 Introduction

The enzymes b-N-acetyl-D-hexosaminidases (EC 3.2.1.52,

Hex) belong to the glycoside hydrolase family 20 and

catalyze the removal of N-acetyl-D-glucosamine (GlcNAc)

or N-acetyl-D-galactosamine (GalNAc) from the non-re-

ducing ends of a sort of physiological substrates, like

oligosaccharides, glycoproteins and glycolipids. These

enzymes are present in numerous species of various

organisms such as bacteria, fungi, yeasts, plants, actino-

mycetes, arthropods and humans in which they play dif-

ferent physiological roles [5, 7, 14]. Among the

hexosaminidase family, fungal hexosaminidases are

extracellular enzymes which like other chitinases have lots

of applications in biotechnology. This includes bio-con-

version of chitin to useful products such as fertilizer, the

production of non-allergenic, non-toxic, biocompatible and

biodegradable materials and development of insecticides

and fungicides. Possible future applications of hex-

osaminidase are as food additives to increase shelf life,

therapeutic agent for osteoarthritis, asthma and chronic
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rhinosinusitis, as an antifungal pesticide, an anti-tumor

drug and as a general ingredient to be used in protein

engineering [5]. Unfortunately, these enzymes are extre-

mely varied and confusing in evolutionary terms.

Several mathematical algorithms have been proposed

for the clustering of these enzymes, but most of them seem

to be confusing and sometimes create incorrect results.

They basically make a simple cross-correlation among

analogous amino acid sequences based on their multiple

sequence alignment, and finally, the interpretation of con-

structed cladogram is confusing from the evolutionary

point of view [10].

Studies of biological evolution have generally per-

formed by construction of phylogenetic tree using

nucleotide or amino acid sequences of certain genes [15].

Phylogenetic trees are mathematically constructed based

on comparative similarity among different samples using

several multiple sequence alignment software such as

ClustalX, ClustalW and Clustal Omega [8, 13]. Mathe-

matical calculations sometimes lead to coincidental simi-

larity while there are no genetic relationships among

independent or even related samples. Sometimes, related

genes from related organisms were unexpectedly placed in

the wrong or unrelated cluster. This is a consequence of the

used algorithms and not a logical error. This problem could

also be emerged when alignment base phylogenetic trees

are constructed for one specific enzyme from different

organisms [10].

Many efforts have been concentrated on the potential

of neural networks for enzyme and protein clustering

using their amino acid sequences. For example, a neural

network was trained to identify the catalytic residues

found in enzymes, based on an analysis of the structure

and sequence [4]. Their neural network output was then

used to predict the location of the active site in

enzymes.

In some studies, the potential of support vector machi-

nes (SVM) has been suggested for the enzyme family

classification and for facilitating protein function predic-

tion. The classification accuracy for enzymes families was

in the range of 50.0–95.7% [2]. Moreover, the performance

of SVM classifiers and neural network was accurately

predicted lipid-binding proteins irrespective of sequence

homology [1]. Their combination was successfully used for

classification of different LBPs classes (about 92% in

average).

CLUSS was another tool which has been developed for

clustering of protein sequences to meet the needs of biol-

ogists in terms of phylogenetic analysis and also prediction

of biological functions [6]. They have claimed their

method accurately highlighted the functional characteris-

tics of the clustered families compared to the other clus-

tering methods in that time.

Recent publications were more focused on using bio-

logical information and alignment-free methods for

enzyme clustering. For example, an unsupervised gene

clustering algorithm has been proposed based on the inte-

gration of external biological knowledge, such as gene

ontology annotations, into expression data. Therefore, two

genes are considered close if they have both similar

expression and similar functional profiles at the same time

[17].

Classification of proteins (CLAP) was another align-

ment-free software for automatic classification of protein

sequences. It is utilized a pattern-matching algorithm that

assigned local matching scores (LMS) to residues which

were a part of the matched patterns between two sequences

being compared [3].

Recently, a two-dimensional graphical representation of

protein sequences has been introduced based on the two

physicochemical indexes (hydrophobicity and

hydrophilicity of amino acids); meanwhile, a numerical

characteristic has been proposed to compute the distance of

different sequences for analysis of sequence similarity/

dissimilarity on the basis of this graphical representation

[18].

Finally, pattern recognition strategy was used to unravel

the evolution of Nanog, which is a key transcription factor

involved in self-renewal of undifferentiated embryonic

stem cells [11]. They have extracted 47 Nanog genes

sequences from various species, and two datasets of fea-

tures were computationally extracted from these sequences.

They used various data mining algorithms such as decision

tree models which were applied on these datasets to find

the evolutionary pathways of Nanog diversion. The out-

comes of their study unraveled the importance of particular

genomic features in Nanog gene evolution [11].

In this paper, we suggest a free alignment clustering

method in order to construct a robust and uncomplicated

cladogram for all the 835 known fungal hexosaminidases

which have been submitted in the National Center for

Biotechnology Information (NCBI) gene bank so far. Our

suggested clustering approach is able to show a good

evolutionary relationship among fungal hexosaminidase

genes with minimum error even at the family level. We

also believe this method could be used for the other

fungal hexosaminidases which will be released in the

future.

2 Materials and methods

2.1 Amino acid sequences

All known fungal hexosaminidases (FH) which were about

835 amino acid sequences from the diverse fungi retrieved
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from NCBI (http://www.ncbi.nlm.nih.gov/) databases on

March 16, 2015, are used in the present study. Some of

these sequences were already used in our previous publi-

cation [10]. The FASTA format of these amino acid

sequences and their accession numbers are presented in

complimentary material where could be down loaded at:

https://www.dropbox.com/s/q2irc46g0wsj43k/soft%20ware.

zip?dl=0.

2.2 Clustal analysis

As a first step in this study, all 835 FH amino acid

sequences were submitted in Clustal Omega [13] which

is a new multiple sequence alignment program for pro-

teins that uses seeded guide trees and HMM profile–

profile techniques to generate alignments between three

or more sequences. As it has been mentioned in the

program literature, this program is able to produce the

biologically meaningful multiple sequence alignments of

divergent sequences and evolutionary relationships can

be seen via viewing cladograms or phylograms [9]. The

constructed tree made by this software has been pre-

sented in complementary material (abovementioned

link). This tree was compared to our constructed tree in

the result section.

2.3 Taxonomy base clustering

We have suggested a clustering method based on recent

fungal taxonomy which has been used in NCBI and other

databases for fungal classification. In the other words,

clustering of fungal hexosaminidase enzymes was per-

formed based on fungal taxonomy. We put 835 amino acid

sequences belonging to fungal hexosaminidase in their

fungal taxonomical group using a classifier neural network

(Fig. 1).

2.4 Classifier neural network

The structure of neural network with two hidden layers

used in this study is presented in Fig. 2. The duty of each

neuron (node) is the calculation of its inputs total weight

and passing them from a soft nonlinear function. Log

activation sigmoid function and hyperbolic tangent sig-

moid were chosen for the first and second hidden layers,

respectively, and a linear function was chosen for the

output layer. Back propagation with Declining Learning

Rate Factor (BDLRF) algorithm based on total sum square

error (TSSE) was used for the network learning and for the

finding of proper weights between layers [12]. Multilayer

perceptron (MLP) neural network works in the forward and

backward phases. The features X insert to the network in

the forward phase. The output (y) and the net output for

each layer are calculated based on Eqs. 1 and 2:

net ¼
X

XW ð1Þ

y ¼ 1

1þ e�net
ð2Þ

The weights W1, W2 and W3 were updated in the back-

ward phase. The weights in each layer were similarly

updated using Eq. 3:

W nþ 1ð Þ ¼ W nð Þ � g
oE

oW
þ a W nð Þ �W n� 1ð Þð Þ ð3Þ

where g and a are learning rate and momentum factor,

respectively. Their amount will be different from 0 to 1. W

is the weight matrix between the neurons.

2.5 Features extraction

Fungal hexosaminidases like all other enzymes are made of

amino acids where each amino acid is bonded to the next

by chemical bonds. The vast majority of enzymes including

Fig. 1 Fungal hexosaminidase enzymes clustering based on fungal taxonomy
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FH are made of only 20 different kinds of amino acid (A R

N D C Q E G H I L K M F P S T W Y V) where the

structure and function of the enzyme are determined by the

order of the amino acids. As 835 FH sequences retrieved

from NCBI had different length, the number of amino acid

was also different in each sequence. The following equa-

tion was used for calculation of sequence features based on

the number of amino acid in each sequence:

x ¼ 100� LA

Lseq

LR

Lseq
� � � LV

Lseq

� �T

1�20

ð4Þ

where LA is the number of amino acids A and Lseq is the

total number of amino acids in each sequence. As there

were 20 extracted features in each sequence, therefore the

input number of neural network was also equal to 20. To

optimize neural network behavior during the learning

process, the extracted features were normalized with the

following equation:

xn ¼
2 x� xminð Þ
xmax � xmin

þ 1 ð5Þ

Finally, 41 MLP neural networks were designed which

had 1, 2, 3, 5, 9, 12 and 9 neural networks from the phylum to

family level, respectively (Fig. 1). The responsibility of each

neural network was discrimination and recognition of FH

sequences at the same levels from the phylum to family. For

training of each network at every level, their related patterns

were separated from the total patterns. The used sequences in

each network were independently selected among 835 FH

amino acid sequences. 80%of the total patternswere used for

network training, and the rest of them were used for the

network validation and test. The steps of this study are

illustrated in Fig. 3 to make a better perception for readers.

3 Results

We assumed that taxonomy-based clustering could be

considered as a standard method for all known fungal

hexosaminidases which have been identified so far. We

also believe that this method could be used for the other

fungal hexosaminidases which will be released in future.

Our designed software and its guide are provided in sup-

plementary information to give users an opportunity to try.

The link for software is also freely available on the web at:

https://www.dropbox.com/s/q2irc46g0wsj43k/soft%20ware.

zip?dl=0.

As it has been presented in Fig. 1, the constructed tree

has three main branches (number 1, 2 and 3) at the

beginning level. As branches go forward, a numerical code

was dedicated to each sub-branch and these codes get

longer and longer and finally all fungal hexosaminidases

were distributed in 86 clusters at the last level of clustering.

Each cluster might be attributed to one or more fungal

hexosaminidase sequences from different fungal families.

The number at the end of branches shows the number of

sequences which are located in each cluster. Black square

nodes indicate the positions on the constructed tree where

clustering has to be performed from these places. In fact,

each position indicates a classifier neural network model.

3.1 Clustal Omega versus neural network clustering

First of all, if numerous sequences (like 978 FH) being

uploaded in Clustal Omega, the processing time for the

clustering and phylogenic analysis will be too long, while

the responding time for our suggested software is less than

10 s for processing of 978 FH sequences. Furthermore,

Clustal Omega works online while our software package is

able to work offline. Discrimination of FH at the phylum

level was conducted based on the percent of amino acid

content in each sequence using MLP neural network with

three outputs. In constructed tree, each output shows the

main branches number 1, 2 and 3 which were Fungi

incertae sedis, Dikarya and Glomeromycota, respectively.

Randomized selection of sequences was carried out in the

two working steps of neural network. The result is pre-

sented in Table 1 and confirms that the designed neural

network has properly been able to separate the FH

sequence in three phyla. As Glomeromycota has only one

subdivision, this phylum was completely identified in this

step. Since the weight of each of neural network layers and

also the used sequences in each working step of neural

network were randomly chosen, the result of neural net-

work will be different. The standard deviation for correct

recognition percent at the phylum level was equal to 2% for

20 different runs. Therefore, at the phylum clustering step

to the tolerance of neural network versus mutability could

be trusted. The neural network convergence diagram for

the phylum level recognition has been presented in Fig. 4.

Neural network training was stopped based on Sum

Squared Error (SSE) scale in 12th epoch.

Fig. 2 Configuration of the MLP with two hidden layers
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Different clustering result was obtained using Clustal

Omega software (presented in complementary information

at abovementioned link). Constructed tree for 835 FH made

by Clustal Omega showed that although FH sequences

were clustered in three main phyla, the result was entirely

incorrect. In Clustal Omega analysis, FH belonging to

Fungi incertae sedis and Glomeromycota were incorpo-

rated to Dikarya where as some of FH belongs to Dikarya

were situated in the position of Fungi incertae sedis and

Glomeromycota so that Dikarya (Ascomycota and Basid-

iomycota) was properly clustered by Clustal Omega with

91.34% accuracy at the subkingdom level. Furthermore, by

going forward to the lower level, the number of branches

was incredibly increased and this caused much more error.

Therefore, the cladogram made by Clustal Omega had a

little similarity with Fig. 1.

At the phylum level, subkingdom of Dikarya was

divided into Ascomycota and Basidiomycota but 5.97% of

201 FH sequences belonging to Basidiomycota were

correctly clustered in their right phylum. The noticeable

point is that 2 FH sequences belonging to Basidiomycota

were placed as an individual phylum and 30 FH

sequences again belonging to Basidiomycota were located

as another individual phylum. In the real life, the phylum

of Basidiomycota has four subphyla while only two

subphyla have been predicted for that by Clustal Omega.

Moreover, in the fungal taxonomy Ascomycota has three

subphyla but only two subphyla have been considered for

Ascomycota by the Clustal analysis of FH enzyme. In the

other words, the subphylum Taphrinomycotina was

merged in Saccharomycotina and Pezizomycotina by

Clustal analysis.

In general, when we move forward from the subphylum

and class to the order and family level, the number of

families becomes more and more and far from the reality,

so that FH enzymes were located at 225 families by Clustal

analysis while they have to be placed in 87 fungal families

based on taxonomy. The result of correct recognition per-

cent with the number of patterns at each of seven levels is

presented in Table 2. All 41 neural networks have inde-

pendently been trained and tested. As it could be observed,

the accuracy of correct recognition is about 100% at all

cases (Table 2). Because of the lacking sufficient pattern

for network training, the recognition percent became less

than 100% at the lower level (Family).

Fig. 3 Steps of the present study

Table 1 Number of FH sequences at the phylum level with the identified number in train and test phase including their recognition percent

Kingdom Phylum Number of

sequences

n (% Recognition)a Clustal Omega

Train phase Test phase

Fungi Fungi incertae sedis 32 29 (100) 3 (100) 0 (0)

Ascomycota and Basidiomycota (Subkingdom of Dikarya) 797 637 (100) 160 (100) 728 (91.34)

Glomeromycota 6 4 (100) 2 (100) 0 (0)

a n the number of patterns, % Recognition the percent of correct recognition

Fig. 4 Neural network convergence diagram for the phylum level

identification
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Table 2 Number of FH sequences from the phylum to family level with the identified total number and their recognition percent

Phylum Subphylum Class Subclass Order Family

Fungi incertae

sedis 32 (100)

Mortierellomycotina

4 (100)

– – Mortierellales Mortierellaceae

Mucoromycotina 28

(100)

– – Mucorales Cunninghamellaceae 6

(100)

Lichtheimiaceae 3

(66.7)

Mucoraceae 3 (100)

Rhizopodaceae 16

(100)

Glomeromycota 6

(100)

– Glomeromycetes – Glomerales Glomeraceae

Dikarya-

Ascomycota 596

(100)

Pezizomycotina 533

(100)

Dothideomycetes 64

(100)

Dothideomycetidae 13

(100)

Capnodiales 10 (100) Mycosphaerellaceae 7

(100)

Teratosphaeriaceae 3

(100)

Dothideales3 (100) Aureobasidiaceae

Pleosporomycetidae 47

(100)

Pleosporales Leptosphaeriaceae 4

(100)

Phaeosphaeriaceae 4

(100)

Pleosporaceae 39 (100)

Dothideomycetes

incertae sedis 4 (10)

Botryosphaeriales Botryosphaeriaceae

Eurotiomycetes 192

(100)

Eurotiomycetidae 160

(100)

Eurotiales 71 (100) Aspergillaceae 55

(100)

Thermoascaceae 1

(100)

Trichocomaceae 15

(100)

Onygenales 89 (100) Onygenaceae 4 (100)

Ajellomycetaceae 22

(100)

Arthrodermataceae 39

(100)

Mitosporic onygenales

24 (100)

Chaetothyriomycetidae

32 (100)

Chaetothyriales 30

(100)

Herpotrichiellaceae 30

(100)

Cyphellophoraceae 2

(100)

Verrucariales 2 (100) Verrucariaceae

Leotiomycetes 55

(98.18)

– Erysiphales 3 (100) Erysiphaceae

Helotiales 17 (100) Sclerotiniaceae 8 (100)

Helotiaceae 3 (100)

Dermateaceae 6 (100)

Leotiomycetes

incertae sedis 35

(100)

Pseudeurotiaceae

Sordariomycetes 211

(100)

Hypocreomycetidae

165 (100)

Hypocreales 147

(100)

Mitosporic hypocreales

7 (85.71)

Cordycipitaceae 16

(100)
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Table 2 continued

Phylum Subphylum Class Subclass Order Family

Clavicipitaceae 24

(100)

Bionectriaceae 1 (100)

Nectriaceae 69 (100)

Ophiocordycipitaceae 2

(100)

Hypocreaceae 28 (100)

Glomerellales 17

(100)

Glomerellaceae 11

(100)

Plectosphaerellaceae 6

(100)

Microascales 1 (100) Microascaceae

Sordariomycetidae 39

(97.44)

Sordariales 23 (100) Chaetomiaceae 8 (100)

Sordariaceae 12 (100)

Lasiosphaeriaceae 3

(100)

Magnaporthales 6

(100)

Magnaporthaceae

Ophiostomatales 4

(100)

Ophiostomataceae

Calosphaeriales 6

(100)

Calosphaeriaceae

Xylariomycetidae 4

(100)

Xylariales Diatrypaceae 2 (100)

Amphisphaeriaceae 2

(100)

Orbiliomycetes 8

(100)

– Orbiliales Orbiliaceae

Pezizomycetes 3

(100)

– Pezizales Tuberaceae 2 (100)

Pyronemataceae 1

(100)

Saccharomycotina 62

(100)

Saccharomycetes – Saccharomycetales Debaryomycetaceae 60

(100)

Pichiaceae 1 (100)

Saccharomycetales

incertae sedis 1 (100)

Taphrinomycotina 1

(100)

Taphrinomycetes – Taphrinales Taphrinaceae

Dikarya-

Basidiomycota

201 (99)

Pucciniomycotina 20

(100)

Pucciniomycetes 12

(100)

– Pucciniales Pucciniaceae 6 (100)

Melampsoraceae 6

(100)

Microbotryomycetes

6 (100)

– Microbotryales Microbotryaceae

Mixiomycetes 2

(100)

– Mixiales Mixiaceae

Ustilaginomycotina

15 (100)

Ustilaginomycetes

14 (100)

– Ustilaginales Ustilaginaceae

Exobasidiomycetes 1

(100)

– Georgefischeriales Tilletiariaceae
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Therefore, according to the obtained results, a neural

network was created which had 41 MLP neural models

(Fig. 1). This network could be used for clustering of FH

sequences based on fungal taxonomy from the phylum to

family level.

3.2 New released FH clustering

In the last stage, each neural network was independently

trained and tested for the recognition of 835 FH from the

phylum to family level. Beside the last sequences, 143 new

Table 2 continued

Phylum Subphylum Class Subclass Order Family

Agaricomycotina 162

(100)

Agaricomycetes 141

(100)

Agaricomycetidae 55

(100)

Agaricales 41 (100) Agaricaceae 16 (100)

Psathyrellaceae 4 (100)

Strophariaceae 3 (100)

Tricholomataceae 4

(100)

Marasmiaceae 9 (100)

Pleurotaceae 1 (100)

Schizophyllaceae 4

(100)

Boletales 12 (100) Coniophoraceae 6

(100)

Serpulaceae 6 (100)

Jaapiales 2 (100) Jaapiaceae

– Auriculariales 4 (100) Auriculariaceae

Cantharellales 7

(100)

Botryobasidiaceae 2

(100)

Ceratobasidiaceae 5

(100)

Polyporales 35 (100) Polyporaceae incertae

sedis 19 (100)

Polyporaceae 8 (100)

Meruliaceae 2 (100)

Phanerochaetaceae 6

(100)

Hymenochaetales 15

(100)

Hymenochaetaceae

Gloeophyllales 8

(100)

Gloeophyllaceae

Russulales 4 (100) Stereaceae

Sebacinales 7 (85.71) Sebacinales group B 1

(100)

Bondarzewiaceae 6

(100)

Corticiales 6 (100) Punctulariaceae

Tremellomycetes 19

(100)

– Tremellales Tremellaceae 17 (100)

Mitosporic tremellales

2 (100)

Dacrymycetes 2

(100)

– Dacrymycetales Dacrymycetaceae

Basidiomycota

incertae sedis 4

(100)

Wallemiomycetes – Wallemiales Wallemiales incertae

sedis
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FHs were released by NCBI from the March 16, 2015, to

July 1, 2015 (presented in complementary information at

abovementioned link). The new released sequences were

used to the final test of neural network model. Among the

new FHs, 85 sequences which had some background in the

last sequences were clustered compatible with Fig. 1 but 58

sequences had no background and were completely new

from the subclass to the family level. The percent of correct

recognition in each clustering phase has been presented in

Table 3. Obviously, the percent of correct recognition has

been decreased from the phylum to family level.

4 Discussion

Clustering of enzymes into phylogenetically correct groups

is a difficult dilemma, especially for those whose alignment

is not biologically validated and not definitively performed

[6]. Our results and experiences have shown that the amino

acid frequency could be an appropriated feature for FH

sequences clustering at the all seven levels from the phy-

lum to family. Furthermore, the neural network recognition

accuracy was highly dependent on the number of patterns

which have been used for the network training in each

level. Verbanck et al. proposed an unsupervised gene

clustering algorithm based on the integration of external

biological knowledge. They have claimed the simulation of

dataset was varied according to the number of samples

[17]. As the number of FH sequences is getting fewer from

the higher (phylum) to lower (family) levels, the neural

network extendibility will also be decreased at the test

phase. Clustering by supervised method is based on real

taxonomy, and the prediction will just be according to what

the network has been trained. Therefore, unlike to Clustal

Omega the number of branches in the cluster would not

illusively be increased. Anyway, for the some levels such

as class or order, correct predictions would be occurred and

wrong prediction might happen afterward.

Although Clustal Omega software could discriminate

fungal hexosaminidase in three main groups, this dis-

crimination was not shown as a proper match with real

fungal taxonomy, whereas our approach makes a good

discrimination result which have had a good match with

fungal taxonomy for showing evolutionary relationships.

Along with our study, a comparative study was performed

on 874 protein attributes of ammonium transporters in

different organisms by study of a large number of structural

protein features via data mining algorithms to create a link

between protein characteristics and the organism [16].

They applied various weighting and modeling algorithms

to determine how structural protein features change

between organisms. Their result showed that within dif-

ferent tested models, the C5.0 model was the most efficient

and precise model for discrimination of organism type,

based on ammonium transporter sequence, with the preci-

sion of 94.85%. They have claimed that dissecting a large

number of structural protein characteristics through data

mining algorithms provides a novel functional strategy for

studying evolution and phylogeny [16].

The potential of SVM for enzyme family classification

and lipid-binding proteins prediction was reported in dif-

ferent studies [1, 2]. The classification accuracy for

enzymes families and lipid-binding proteins was in the

range of 50.0–95.7% and around 92%, respectively, which

are comparable to our 100% recognition accuracy.

As some of FH sequences have been submitted as partial

coding sequences in NCBI, their recognition was more

difficult by neural network and lower percent of recogni-

tion was observed for them. Moreover, the cladogram

made by Clustal Omega had numerous branches and each

branch included a few FH sequences but in our suggested

cladogram (Fig. 1) there were sometimes about 70 FH

sequences which have correctly been located in the correct

branch from the phylum to family level. Concerning 143

new released FH clustering, the percent of correct recog-

nition has been decreased from the phylum to family level

(Table 3). As the higher levels of neural networks (like

phylum level) gained more training experience from the

numerous patterns, they show more resistance against

value range of feature extraction obtained from the new

sequences. Therefore, they have shown much more accu-

racy than lower level (like subclass to family level). Fur-

thermore, error propagation from the higher to the lower

level could increase the error in the lower level. However,

Table 3 Network clustering results for the new released FH sequences

Number of new released

FH sequences

Correct recognition %

Phylum Subphylum Class Subclass Order Family

Total 143 98.62 90.28 88.19 67.36 50.69 45.14

With background 85 100 98.82 95.29 77.64 69.41 65.88

Without background 58 96.61 77.96 77.96 52.54 23.72 0

Retrain ANN 143 100 100 100 * * *
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reduction of correct recognition percent at the phylum level

was arisen from lack of correct recognition for the two

completely new sequences. This fact became clearer when

85 sequences were clustered. As these sequences had some

background in the last sequences, the recognition percent

for them was equal to 100% at the phylum level (Table 3).

There were 58 completely new released FHs among 143

sequences. Fortunately, an acceptable percent of correct

recognition has been calculated for them which was about

78% at the phylum to class level. It means the result of

clustering could well be trusted. Because of lack of family

definition for 58 FH sequences in the last step, the percent

of correct recognition for them was zero. Therefore, Fig. 1

has to be improved and new information needs to be

inserted on it. As it has been known, artificial neural net-

works were inspired by the human brain. Human needs

knowledge and experiences to make a decision. Neural

network should also be obtained some experiences to

confront with new conditions. Therefore, the last networks

were again trained by 978 FH sequences for the three levels

(phylum, subphylum and class). The trained and new

experienced neural networks were able to fully recognize

all 143 new FH sequences at three levels (100% recogni-

tion). Therefore, neural networks could develop their

knowledge by getting experience from the new sequences

and they might be used in the future prediction with much

more reliance. We believe that our suggested method can

become an effective tool for clustering other enzymes to

meet the needs of biologists in terms of phylogenetic

analysis and evolutionary relationships. Finally, the tool

can also be easily adapted to cluster other types of

enzymes.

5 Conclusion

Neural networks have this potential to be used as powerful

and rapid tools for clustering of fungal hexosaminidases

and most likely other type of enzymes. Our software is

presented in complementary information and could also be

easily adapted and used to cluster new released FH

enzymes. The clustering results and constructed tree have

demonstrated a suitable match with fungal taxonomy to

show evolutionary relationships. Although the emphasis of

this paper was on supervised neural network for FH clus-

tering, two other options could also be suggested for this

purpose. The first option is to use supervised methods

based on free alignment techniques such as neural net-

works, support vector machines and the second one will be

based on the combination of supervised and unsupervised

alignment-based techniques for enzyme clustering. For

example, in the case of FH, supervised methods could be

used till class level and after that unsupervised method will

be used for the lower level which has fewer patterns.
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