
 

AERO2017AE10102390127 

 

WENO families in accuracy and computational costs 
 

 
Alireza Moghaddasi 1, Mohammad Hassan Djavareshkian2 

1,2- Ferdowsi University of Mashhad (FUM), Faculty of Engineering, Aerospace Department 

 
 

 

                                                 
1 Aerospace MSc., alireza.moghaddasi@mail.um.ac.ir 
2 Associate Professor, javareshkian@um.ac.ir ,Tel: 05138805037(corresponding author) 

http://um.ac.ir/
mailto:alireza.moghaddasi@mail.um.ac.ir
mailto:javareshkian@um.ac.ir


 

Abstract 

In this paper a comparison of Weighted Essentially 

Non-Oscillatory (WENO) scheme is presented and 

different kinds are compared. High resolution schemes 

are one of the best ways decreasing the cost of processes 

and also increasing the resolution as is clear. Different 

WENO’s influence on the weights that applies on the 

neighborhood of the cells that is supposing to be 

calculated. Mentioned schemes, were tested on wave 

equation at first and in continued with the first and 

second dimension test cases. 3rd ,5th, 7th and 9th order 

of JS-WENO, MWENO, ZWENO and MZWENO are 

compared in Goethe tests. This scheme was applied in 

finite volume characteristic wise algorithm in order to 

reach much more accuracy. Buckley-Leverette, Sod 

shock tube, Shu-Osher, Lax test, Riley-Taylor 

instability and double Mach reflection test cases was 

compared. As the result, MZWENO in equal order with 

the other ones would report more accurate reply. But as 

a new research here we showed that e.g. although 

MZWENO 5th order could promote the accuracy of the 

scheme up to about two times higher, but the cost of 

computing will increase more than the JS 7th order one. 

So, it is concluded that employing 7th order of JS-

WENO leads to higher accuracy with less computational 

costs. 

Keywords: WENO, Characteristic, finite volume, Lax 

Friedrich flux splitting, computational costs 

 

 Introduction  

Hyperbolic conservation laws arise in a wide range of 

applications in science and engineering, such as 

aerodynamics, meteorology and weather prediction, 

astrophysical modeling, multi-phase flow problems, and 

the study of explosion and blast waves.[1] 

Numerical stability is one of the problematic 

criteria for solving flow equations that would be 

decreased in increasing of resolution. First order 

methods will not predict exact results as they include 

numerical dissipation. In the other hand if high 

resolution one’s does not have limiters they would 

suffer from nonphysical oscillations in high gradient 

situations. In last three decades, plenty of high 

resolution schemes was presented and developed to 

capture discontinuities such as shock waves based on 

Riemann solution in finite volume and finite difference 

discretization. These methods rarely were extended in 

finite element. 

Another gist in numerical methods is interpolating 

and extrapolating of variables which are not solved; that 

may UPWIND be the simplest way which has high 

dissipation. HYBRID and POWERLOW methods are 

created to diminishing these dissipations [2], [3]. 

Appliance of these limiters on high resolution schemes 

leads to reach high accuracy and also reliable answers 

in sophisticated phenomenon. Some limiters are such as: 

Total Variation Diminishing (TVD), NVD, NVF and 

also BVD has been presented. 

Negative density and pressure are the problems that 

may be interfaced with in solving equation process. First 

solution that is considered to be nice is the replacement 

of these nonphysical negatives with the positive ones. 

But these replacements are nor conservative and a 

logical solution for stability. So, solution method should 

be intrinsically positive and in order to satisfy this 

condition positivity preserving methods were presented 

such as: Godunov-Type[4], flux vector splitting[5], 

Lax-Friedrich flux splitting [6], [7], HLLC[8], Gas 

kinetic schemes [9], [10] and recently Yan Guo 

presented a new WENO finite volume positivity 

preserving scheme[11]. 

Accuracy, stability and low computing process are 

the criterion of worth numerical methods. Accuracy 

generally will increase by further ways: Employing 

more node in meshes, high order interpolating formulas 

control on some characteristics of the mesh like 

queuing. 

But applying each of them leads to high 

computational costs. Although there are a lot of attempts 

to improve these brainstorming’s. In dealing with severe 

gradients to preventing oscillations in high order 

methods some new technics were introduced that are 

grouping in two categories: Artificial viscosity methods, 

Total variation diminishing methods, That the second 

option is the selected one we have chosen in this paper. 

As the former works of each research is the basic 

principle of the study such these papers are mentioned 

here. Unlike TVD and NVD schemes that change to first 

order interpolating in sever gradients, ENO and WENO 

schemes use high order ones. WENO has been 

interested for researchers in recent decades that was first 

introduced by Liu[12]. Instead of choosing one stencil 

as in ENO do, WENO use all proportional one’s in order 

to achieve higher accuracies. The resulting weighted 

ENO schemes based on cell averages and a TVD Runge-

Kutta time discretization [12]. 

Levy et al based on a centered version of the 

WENO presented a family of high-order ENO, central 

schemes for approximating solutions of hyperbolic 

systems of conservation laws [13].  

As JS-WENO scheme may not always be 

monotonicity preserving but coupled with the 

monotonicity preserving bounds of Suresh (1997) they 

perform very well. Balsara et al. presented a newer 

version. They introduced MPWENO that the resulting 

monotonicity preserving weighted essentially non-

oscillatory schemes had high phase accuracy and high 

order of accuracy. Presented scheme were also efficient 

and do not have a computational complexity that is 

substantially greater than that of the lower-order 

members of this same family of schemes[14].  

Henrick et al. developed a fifth-order WENO 

scheme. Necessary and sufficient conditions on the 

weights for fifth-order convergence are derived; one 

more condition than previously published is found. 

They founded magnitude of a parameter which keeps 

the weights bounded. A simple modification of the 

original scheme were founded to be sufficient to give 

optimal order convergence even near critical points[15]. 

 Huankun Fu added WENO to WCS so that the 

scheme has appropriate dissipation and to eliminate 

oscillations; and also instead of using a black box 

subroutine for derivative, they only calculate the 

weights for pressure and density outside the subroutine 

at each time step[16], [17]. 



 

 Yan Guo et al by combining lower order compact 

stencils with WENO nonlinear weights to reach a higher 

order finite volume compact-WENO scheme[11]. 

Gerolymos et al. tabulated WENO coefficients up to r=9 

(WENO17) [18]. Improved WENO schemes originally 

have been designed to capture sharper discontinuities 

than the classical fifth order Jiang–Shu scheme does, 

were evaluated for the purpose of implicit large eddy 

simulation of free shear flows that was researched by 

Zhao et al [19]. 

Tao et al. proposed a central finite volume 

framework that involves Hermite WENO. Compared 

with central WENO methods, the spatial reconstruction 

used there is much more compact; and unlike the 

original HWENO methods, their proposed schemes 

require neither flux splitting nor the use of numerical 

flux [1]. Mullenix et al.  developed a fifth order scheme 

that maintains the design order of accuracy of the 

underlying scheme while maximizing the bandwidth 

resolving efficiency[20]. 

Sun et al. used characteristic WENO forms for 

computing inviscid fluxes in direct numerical 

simulations of compressible turbulent flow over wavy 

wall geometries that have been carried out by solving 

N–S equations on general curvilinear coordinates [21].  

San et al. presented several joint solvers that were 

developed within the framework of the reconstruction 

and flux-splitting approaches using the underlying 

MUSCL and WENO frameworks. The modular 

development of these joint solvers provides an ease in 

characterizing the solution procedures. Demonstration 

of the reconstruction based WENO scheme with Roe 

solver was more accurate than all the versions of the 

flux-splitting WENO solvers tested in that study was 

illustrated. Proving that the results are highly dependent 

on the choice of the flux limiter and the tests on 

capturing Kelvin–Helmholtz instability were illustrate 

there. [22]. 

In this paper, implementation of WENO in 

characteristic and conservative variable forms are going 

to be explained. Although the way that the scheme 

should be applied to these variables are available but the 

comparisons and detail of each application and 

computational costs is not available within a paper to 

compare. Here, characteristic variables are employed to 

solve Euler equations and different WENO types with 

their computational costs are illustrated to demonstrate 

whether these new cousins are noteworthy in wrapped 

cases or not. 

 

 Algorithm 

Characteristic variables which are based on the 

conservative differences are explained to be enlisted in  

WENO scheme [23].  

Characteristic Algorithm 

For all (i+1/2): Right and Left eigenvectors and 

eigenvalues. 

For all (i+1/2): compute divided differences of 

fluxes (∆𝐹) and conservative variables (∆𝑈) coincident 

order of accuracy e.g.  for 5th order five divided 

differences are needed. 
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(3) 

Use WENO to compute the corresponding fluxes 

of characteristic variables and transform back them into 

the conservative form. Solve Euler equation by using 

cell faces which was earned from WENO. 

Now but haw should WENO be implied into 

characteristic forms? In the smoothness indicator 

equation forms, there is an expression that 

acknowledging differences. This is the main distinct 

part between employing conservative and characteristic 

WENO. In fact, the differences on i+1/2 could be simply 

define as [(i+1)-(i)]. So, the corresponding characteristic 

variable could be alternate with the expression of 

distinct in smoothness indicators and polynomials 

proportionate. In the following paragraph the formulas 

for the 5th order accuracy is given. 

Allocate each characteristic variable appropriate 

with the differences of conservative one’s and construct 

smoothness indicators (𝐼𝑆±). 
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(4) 

Alpha (𝛼𝑟
±)  and weights ( 𝜔𝑟

±)  should be 

calculated by the matching (𝑑𝑟
±) coefficients. 
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(5) 

These weights should be multiplied to proportional 

polynomials. 

Because of simplicity of WENO, after Liu et al 

brought up this scheme in 1994 a lot efforts have been 

done to improve this kind of scheme. Although these 

schemes are all based on the former scheme that was 

mentioned in the last section, but there are some changes 

specially in calculating alphas. In the other hand some 

other publications all over the world combined this 

scheme with other schemes that leads to higher order of 

accuracies [11], [24], [25], [13], [26], [20], [27] and [16] 

but here we are not going to discuss around them. 

Henceforth, we call the mentioned scheme as JS-WENO 

and other kinds formulation such as M-WENO, Z-

WENO and the combination of these two’s, MZ-WENO 

is considered forward. 
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Z-WENO: 
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MZ-WENO: 
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 Results 

Test cases are a method to distinguish how the schemes 

are accurate and the CPU time that each one takes long. 

1D and 2D inviscid test cases are presented in this 

literature. Euler equation in form of characteristic 

variable was employed for solving the algorithm of 

these tests. 

 

3.1 Sod shock Tube 

Sod shock tube was tested with the conditions that is 

explained further[28]. Where 𝑥 ∈ (0.1)  and the 

responds were compared at time t=0.25. Fig. 1 

 

3.2 Shu-Osher Problem 

Shu-Osher is another 1-dimension test case to 

comparison of different schemes [29]. The initial 

condition for this Riemann problem is mentioned 

bellow. Where 𝑥 ∈ (−5~5) that in Fig. 2 density plot is 

zoomed at the neighborhood of 1.5 for more obvious 

shown. 

 

3.3 Lax Shock Tube 

Lax shock tube [30] is another test case that is going to 

be examined to distinguish whether the most accurate 

scheme is like the former ones or not, initial conditions 

are mentioned further then the consequent results are 

shown in Fig. 3. 
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Fig.1a: Density plot of sod shock tube 

 
Fig. 1b: Zoomed density plot of sod shock tube 
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Fig.2a: Density lines of Shu-Osher problem 

 

As could be seen from Fig.1b WENO-JS 7 and 

WENO-MZ are completely as accurate as and there is 

no superiority over each other. However, in Fig2.b and 

also Fig3.b the JS7 is much more prices than the MZ as 

respects to ability of capturing sharp discontinuities. 

 

 
Fig. 2b: Zoomed density lines of Shu-Osher problem 

 
Fig. 3a: density of Lax Shock tube 

 
Fig.3b: Zoomed density lines of Lax Shock tube 

 
3.4 Rayleigh‐Taylor instability 

Rayleigh-Taylor instability details that is defined at [31] 

is compared as a two-dimension test case that is a kind 

is validation to our code. Different schemes are 

obviously distinguishable for our goal. [120×480]  

 

 
Fig. 4: density contour of Rayleigh-Taylor instability 

resolution at time t=1.95 with CFL=0.5 and 𝛾=5/3 is 

tested here. Fig. 4 is the results illustration. 
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In this case as the comparison benchmark for the 

exact one [360×1440] resolution by WENO-9 has been 

handled. Form Fig.4 it could be concluded that MZ is 

able to capture more details of turbulences than JS7. 

 
3.5 Lax Configuration 

Two LAX configurations were employed that the initial 

conditions are mentioned at [32]. Configuration number 

4, 6, 8 and 17 that are compared has the grid [400×400] 

that the results where compared at time t=0.3(s) and 

CFL number were adopted equal to 0.2499 Fig. 5 and 

Fig. 6 are monitoring Lax Con number 8 and 17 

respectively. For the exact solution, grid [1200×1200] 

were emplyed as a comparison benchmark. 

 

 

 

 

 

 
 

Fig. 5: Density contour of Lax number 8. 
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Fig. 6: Density contour of Lax number 17. 

As illustrated in former pictures there is not a 

significant difference between those schemes that are 

mentioned, albeit a bit higher accuracy could be 

extracted from Fig.6 for the 7th one. 

 

3.6 Double Mach Reflection 

Double Mach Reflection test case were first analyzed by 

H. Li [33]. The resolution of the mesh was adopted as 

[960×240] that the result was compared at t=0.2 (s). 

proportional results are shown in Fig. 7 and the results 

of those two schemes are somewhat similar to each 

other.  
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 Conclusion 

The main purpose of the paper is the comparison of 

various WENO families for the sake recognize the most 

affordable scheme. Fig. 8 is the computational cost of 

those schemes proportional to WENO-3. For more 

detail as the MZ one can improve the accuracy up to 

about two times better (5th order to about 7th) the 

research has focused on these two’s. As it can be seen in 

Fig. 8 the CPU time of MZ and 7th order is almost equal, 

however, in most cases it is a bit more. Therefore, from 

the former results (Fig. 1 to Fig. 7) it is obvious that in 

most cases whether the 7th order one is more accurate 

than the MZ one or in some cases they are at least as 

sharp as each other. Accordingly, in general selecting 

the 7th order one as the algorithm scheme seems more 

logical than the MZ one and also could be generalize for 

the other orders. 

 

 

 

 

 

Fig. 7: Density Contour of Double Mach Reflection 
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Table 1: CPU time of WENOJS-3 

Test Case  WENOJS-3 CPU Time 

(second) 

Sod-Shock Tube 0.468 
Lax-Shock Tube 0.1092 

Shu-Osher 2.4492 

Reighly-Tailor 155.2366 
LAX-8 81.29212 

LAX-17 111.3535 

Double Mach Reflection 429.4 

 

 
Fig. 8: Proportional CPU Time 
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