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ABSTRACT
Survival models are used to examine data in the event of an occur-
rence. These are discussed in various types including parametric, non-
parametric and semi-parametric models. Parametric models require a
clear distribution of survival time, and semi-parametric models assume
proportional hazards. Among these models, the non-parametric model
of artificial neural network has the fewest assumptions and can be
often replaced by other models. Given the importance of distribution
Weibull survival models in this study of simulation shape parameter of
the Weibull distribution have been assumed as 1, 2 and 3, and also the
average rate at levels of 0%–75% have been censored. The values pre-
dictedby theneural network forecastingmodelwithparametric survival
and Cox regression models were compared. This comparison consider-
ing levels of complexity due to the hazard model using the ROC curve
and the corresponding tests have been carried out.

1. Introduction

Many different semi-parametric, non-parametric, and parametric regression methods are
evaluated to determine a relation between a related variable and a set of covariates. The choice
of a proper method for modeling depends on the methodology of the study and the nature of
the results and explanatory variables.

A usual research context in medical and industrial studies is a survival analysis in order
to determine if a set of covariates is correlated with the survival time. Survival analysis are
methods for analyzing longitudinal data on the occurrence of events .The events in medical
area may include death, injury, onset of illness, or recovery from illness . Two basic features of
survival data are censoring and lack of normal assumption. Therefore, these are reasons why
multiple regression techniques cannot be applied to this kind of data (Biglarian and Bakhshi,
2013). Subjects are said to be censored if they are lost to follow up or drop out of the study,
or if the study ends before they die or exits from the area of interest. The generated data used
in this study contain right censored data, which is the most common form of censoring. It
occurs if the event is not observed before the prespecified study term unit or competing event
that causes the interruption to follow from the individual experiments. Considering the sur-
vival time distribution, we can use a parametric model. If we have a proportional hazard (PH)
assumption, we can use the Cox model which is known as semiparametric model. Artificial
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NeuralNetwork (ANN) is one of themost accurate andwidely used forecastingmodels. ANNs
are flexible computing frameworks and universal approximations. They can be applied with a
high degree of accuracy to awide range of statistical problems such as a survivalmodel. In par-
ticular, a state that violates proportional hazard ANNs can be used to determine predictions
of survival data (Ciampi and Lechevallier, 1997; Hastie et al., 2012). In this article, simulated
data, covariates and survival time are taken from three models of hazard with different levels
of complexity and many rate of censoring were used to predict the outcome variable using
ANN, parametric regression, and Cox’s regression models. Then, the results of the predic-
tion of ANN are compared with parametric and semiparametric models. This comparison by
using the area under ROC curve and the ROC test have been carried out.

2. Methods

2.1. Parametric survival model

In a parametric survival model, it is supposed that the survival time has known distribution.
Examples of distributions used for survival time are the exponential,Weibull, log-normal, and
log-logistic. The Weibull distribution is the most important and flexible model for survival
data because it provides a sufficient fit in many situations, even when the data do not follow
an exact Weibull distribution (Carroll, 2003).

Suppose that the Weibull distribution including shape parameter α and scale parameter
γ indicates T∼W (γ , α), we know Tα∼E(γ ), Kleinbaum and Klein (2012). The survival
function is

S(t ) = P(T > t ) = exp{−γ α} γ > 0, α > 0.

The hazard function is

h(t ) = f (t )
S(t )

= αγ αtα−1

TheWeibull model provides a wide range of monotonic hazard rates. The hazard rate reduces
when shape parameter α is less than 1. The hazard is constant when α = 1 (exponential dis-
tribution) and it increases for α > 1.

The Weibull model can be fitted to the survival data (ti, δi), if the observation is censored
then δi = 0 and δi = 1 when it is complete.

The parameters of the model are estimated by using the maximum likelihood method.

2.2. Cox regressionmodel (semi-parametric survival model)

The survival time of an event is a continuous, non-negative random variable with survival
function S(t ) and density function f (t ). The related hazard function h(t ) shows the proba-
bility density of an event occurring around time t, provided that it has not occurred before
time t.

Cox regression, which is also called the proportional hazards regression model (PH), is
shown as

hx(t, β) = h0(t )exp(β ′X ) β ′ = (β1, β2, . . . , βp) (1)
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So that β ′ is the regression coefficient vector, h0(t ) is the baseline hazard which is related to
time and an unspecified function (this is the property that makes the Cox model a semipara-
metric model, Lee and Wang 2003). Also, X is a vector of xi elements that are predictors.

This model has properties as follows (Lee and Wang, 2003; Kleinbaum and Klein, 2012):
� The covariates, x1, x2, . . . , xp are assumed to act additively on logx(t, β).
� logx(t, β) has a linear relation with βi.
� The hazard ratio (HR) for a subject with a set of predictors xi compared with a set of
predictors x j is

HR = hxi (t, β)

hx j (t, β)

= exp(β ′xi)
exp (β ′x j)

= exp{β ′(xi − x j)}
which is free of time event.

Given the covariates X , the survival function for (1) is

Sx(t, β) = S0(t )e
β′X

where S0(t ) = e−
∫ t
0 h0(v )dv denotes the baseline survival function.

The Likelihood function is given by Lee and Wang (2003)

L(β) =
n∏
i=1

hxi (ti, β)δi Sxi (ti, β)

=
n∏
i=1

(h0(ti)exp(β ′xi))δi S0(ti)exp(β ′xi)

Parameters estimate in the Cox(PH)model is attained bymaximizing the partial likelihood
with the Newton-Raphson method. The partial likelihood is given by

d∏
i=1

exp(β́xi)∑
j∈R(ti) exp(β́x j)

, d =
n∑

i=1

δi (2)

where R(ti) is the set of risk at time ti. In a particular case (e.g., high-dimensional), this cannot
be used to estimate β and another method need to be used (Kleinbaum and Klein, 2012).

2.3. Neural networkmodel (non-parametric survival model)

ANNs, as an interconnected group of artificial neurons, consist of several layers. Besides, each
layer has a weight indicating the amount of the effect of neurons on one another.

Typically, an ANN model has three layers called the input, hidden, and output layers. The
input layer contains the predictors; the hidden layer contains unobservable nodes and is used
to apply a nonlinear transformation into the linear combination of the input layer. The num-
ber of hidden nodes depends on factors such as the predictors and model complexity. The
output layer contains the outcome which is the functions of the hidden units (Ciampi and
Lechevallier, 1997; Haykin, 1994).

In fact, the ANN model is a nonlinear model including a large number of parameters in
comparisonwith the corresponding statisticalmodel. Variousmethods to learn are postulated
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in ANN. Themost usual method is minimizing the sum of squares error by back-propagation
learning algorithm (Ripley et al., 2004; Ripley and Ripley, 2001).

In this study, we take the activation function (ϕh) to be sigmoid function in hidden and
output layers (ϕo). A Multiple Layer Perceptron (MLP) is given by

ti = ϕo

[
ω0 +

N−1∑
n=1

ωnϕh(X́iαn)

]
+ εi

where Xi is ith row of the input data matrix , ωi is the weights of the hidden to the output
units, and αi is the weights of the input to the hidden units. N is the number of units of the
hidden layer and the sigmoid activation function is

ϕ(τ ) = 1
1 + exp(−aτ )

where a is the slope parameter of the sigmoid function.We take the slope parameter as equal-
ing unit and so

ti =
[
1 + exp

(
−ω0 −

N−1∑
n=1

ωn[1 + exp(−X́iαn)]−1

)]−1

+ εi (3)

Also, we can write

ti = ϕ(Xi, α, ω) + εi

where α, ω are unknown parameter vectors, Xi is a vector of predictors for the ith case, and
εi is residuals. The weights (α, ω) are determined by minimizing some error function, the
most common of which is distance between the target value of the output variables and those
given by (3).

The partial derivatives of the error function regarding the weights can usually be calculated
repeatedly from output to input in the network (a process known as back-propagation) then
we use quasi-Newton method to find a local minimum. MLP allows fitting of very general
nonlinear function relationships between inputs and outputs. The results show a sufficient
number of nodes in the hidden layer can be estimated to be an arbitrary relation function.

TheMLP process is amajor concern of over-fitting. Commonly to control it, a penalty term
is added to criteria optimization. Therefore, least-squares criterion is given by∑

i=1

(ti − t̂i)2 + Penλ(α, ω) =
∑
i=1

(ti − ϕ(Xi, α, ω))2 + Penλ(α, ω)

where the penalty term is Hastie et al. (2012)

Penλ(α, ω) = λ
(∑

α2
i j +

∑
ω2

jk

)
i = 1, . . . , 5 j = 1, . . . , 5 k = 1, 2

where i, j, k are the number of input, hidden, and output units, respectively. The penalty
weight λ (weight decay) controls the amount of over-fitting (a better value of λ is between
0.001 and 0.1)

Unfortunately, no reliable law to determine the number of nodes in the hidden layer of a
neural network exists. In most cases, the number of nodes 5–20 in the hidden layer network
can provide good results. If the number of nodes in the hidden layer is considered low, neural
network model cannot describe the behavior of nonlinear data, where the number of nodes
in the hidden layer is increased, the training process slows down and most of the weight is
concentrated around zero. Usually by increasing the number of inputs and training cases the
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Figure . Neural network for nonlinear hazard model.

number of nodes in the hidden layer increases. The number of nodes in the hidden layer of
the neural network is determined by previous experiences in any academic area (Hastie et al.,
2012). A criterion for selecting the number of nodes in the hidden layer is using of root-mean-
square error (RMSE). The RMSE of a model prediction with respect to the estimated variable
Xm is defined as the square root of the mean squared error:

RMSE =
√∑n

i=1 (Xo,i − Xm,i)
2

n

where Xo,i is observed values and Xm,i is modeled values at time i. In this article, to determine
the number of nodes in the hidden layer we used the average values RMSE in deferent rate
of censorship for each of hazard function and select the number of nodes that this quantity
was the minimum. According to this, the number of nodes in the hidden layer for linear and
non-linear hazard models 3 and 5 in order be considered (Figure 1).

2.4. Simulation

To compare the accuracy of the predictions in the ANNmodel with Cox regression and para-
metric survival regression model, three different simulation schemes, based on Mont-Carlo
simulation, were applied. Simulated data were considered with five covariates as inputs (two
binomials, one normal, and two uniforms).We assume the hazard model as follows (Xianga
et al., 2000)

h(t, x) = h(t )exp

⎧⎨
⎩

p∑
i=1

γixi +
∑
i �= j

γi jxix j +
∑
i �= j �=k

γi jkxix jxk +
∑

i �= j �=k�=l

γi jklxix jxkxl

⎫⎬
⎭

where h(t )is baseline hazard from the Weibull distribution.
The following three schemes were considered which include the main effects without or

with any interaction as simple and complicate model, respectively.
(1)

γ1 = γ4 = 0.25, γ2 = γ3 = γ5 = 0.5 (H1)

(2)

γ1 = γ4 = 0.25, γ2 = γ3 = γ14 = γ25 = γ34 = γ35 = 0.5 (H2)
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(3)

γ1 = γ4 = γ12345 = 0.25, γ2 = γ3 = γ14 = γ25 = γ134 = γ235 = 0.5 (H3)

For each scheme, 1000 independent randomobservationswere generated and then survival
times were simulated using the Weibull model with shape parameter α = 1, 2, 3 and based
on the relation between hazard and survival time (Carroll, 2003).

Then, the survival times were transformed as right censored. In case, the generated time
was greater than the quantile ofWeibull, it was considered as censored observation. The aver-
age rates of censoring reviewed are equal to 0%, 15%, 30%, 45%, 60%, and 75%. In addition, we
assume 75% of each sample is for learning model and the remaining for testing. This process
was repeated 200 times and average results was considered.

In the next step, to compare ANN predictions with Cox regression and survival regres-
sion prediction, we used Receive Operating Characteristics (ROC) curve and concordance
index. This index is the area under the curve of ROC (AUC) and shows that the proportion
of the cases is classified correctly (Fawcett, 2006). Likewise, we used ROC test to compare
ANNmodels with parametric and semiparametric survival models. It is based on the Delong
method that tests AUC for two correlated or uncorrelated ROC curves (Robin et al., 2011).

Simulations, fitting models, and comparison process results are implemented by R 3.3.2
software (Fox and Weisberg, 2011).

3. Results and discussion

In this article, two comparisons for modeling of survival simulated data with different hazard
ratio and different censoring (ANN model with Cox and parametric models) were studied.
AMonte-Carlo simulation from theWeibull distribution was performed to compare the pre-
dictive accuracy of ANNmodels with the other models.

In this study, three different hazard models were considered. They include main effects
model, and a model with maximum of two interactions as well as one with a maximum of
four interaction terms. The rate of censorship in all of the models was considered from 0% up
to 75%.

Table . Results of simulation for Weibull model with Shape Parameter= .

Hazard Censored ANN - COX - SURVReg - P-value P-value
Model Rate AUC AUC -AUC ANN-COX ANN-SURVReg

H % . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .

H % . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .

H % . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .



744 R. MOKARRAM ET AL.

Table . Results of simulation for Weibull model with Shape Parameter= .

Hazard Censored ANN - COX - SURVReg - P-value P-value
Model Rate AUC AUC -AUC ANN-COX ANN-SURVReg

H % . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .

H % . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .

H % . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .

Concordance index from the ROC curve was computed and comparison process was per-
formed by the ROC test.

Calculation results are presented in Tables 1–3with respect to shape parameterα = 1, 2, 3
Key results of the study are as follows:
1. In theWeibull distributionwith shape parameterα = 1 (exponential distribution), the

ANNmodel predicts better than the Cox model and this difference is significant in all
three types of hazard functions.

2. In the Weibull distribution, no significant difference was found between predictions
based on the ANNmodel and predictions based on the parametric survival model.

3. Different levels of censorship have no significant effect on the accuracy of prediction
of three models studied.

Table . Results of simulation for Weibull model with Shape Parameter= .

Hazard Censored ANN - COX - SURVReg - P-value P-value
Model Rate AUC AUC -AUC ANN-COX ANN-SURVReg

H % . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .

H % . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .

H % . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .
% . . . . .
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4. In the hazard function, using terms that include double interaction gives better results
than when using simple linear hazard function or nonlinear including at least double
interactions.

5. Increasing shape parameter of the Weibull distribution improves the accuracy of pre-
dictions in each of the three models. This increase in the accuracy of predictions is
more evident in the state of increasing the shape parameter from α = 1 to α = 2 than
in other states.

4. Discussion and conclusion

In this article, three parametric, semi-parametric, and non-parametric approaches were con-
sidered for modeling survival data on different censor levels . Data were produced by simu-
lation and were used in the three approaches to compare predictions accuracy. In this simu-
lation, three linear hazard models with different complexity levels were considered, and the
predictions strength of this models were compared using ROC-test and concordance index.

The obtained results showwhen it is known that the survival time distribution isWeibull, it
is preferable to use survival parametric model instead of Cox semi-parametric or ANN non-
parametric models. In the case, when (1) there is doubt about survival time distribution, and
(2) nonlinear hazard models with high complexity are used, then using ANNs seems suitable.
Accuracy in predictions based on the survival parametric model in the Weibull distribution
is increased compared to the exponential distribution with increasing shape parameter. Also,
using the nonlinear hazard functionwith a double interaction gives better results compared to
the linear hazard function and the nonlinear hazard function, including at least double inter-
actions. In addition the obtained results show that censor levels difference has no significant
effect on the accuracy of predictions from the three hazard models (H1,H2,H3).

Almost these results with findings obtained by A. Biglarian (Biglarian and Bakhshi, 2013)
are in a direction but more informative due to more general case Weibull distribution and
considering parametric survival models. These results in various fields related to the produc-
tion of survival data are useful. This is due to determine the condition use of Neural Network
model instead of parametric and semi-parametric survival models. In most cases, the use of
the ANNmodel rather than the classic model of survival which has a less restrictive and bet-
ter results. At the end, it is recommended that other distributions survival such as lognormal,
log-logistic, and gamma similarly be compared with the ANNmodel.
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