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Abstract Classification is the most important issues that have gained much attention
in various fields such as health and medicine. Especially in survival models, classifica-
tion represents a main objective and it is also one of the main purposes in data mining.
Among data mining methods used for classification, implementation of the decision
tree due to its simplicity and understandable and accurate results, has gained much
attention and popularity. In this paper, first we generate the observations by using
Monte-Carlo simulation from hazard model with the three degrees of complexity in
different levels of censorship 0 to 70%. Then the accuracy of classification in the Cox
and the decision tree models is compared for the number of samples 1000, 5000 and
10,000 by area under the ROC curve(AUC) and the ROC-test.

Keywords Proportional hazard · Cox model · Decision tree · Classification ·
Non-linear survival model · Non-Parametric model

1 Introduction

A main topic of scientific research in the field of data science is classification [4].
Especially in medical and health area, classification of survival continuous data or
failure times is very important. Two major characteristics of survival continuous data
are censoring and violation of normal assumption for ordinary least squares regressions
[7]. These two characteristics of time variables explain why straightforward logistic
and multiple regression techniques cannot be used.
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Different parametric and semiparametric models for survival data, such as propor-
tional hazards and accelerated life time models, are based on the assumptions which
may be untenable in some situations. Hazard functions may not be proportional and
determining the baseline distribution for the survival timemay be hard to justify.When
classification is required, nonparametricmodels such as decision tree are proposed that
have fewer presuppositions and produce good results. The use of decision trees is one
of the most promising and popular approaches for classification and it is a very com-
mon technique in data mining [2,3]. According to many researchers, decision trees are
popular due to their simplicity and transparency. Decision trees are self-explanatory
and there is no need to be expert in order to follow a certain decision tree. Moreover
decision trees are widely used in areas such as text mining, information extraction,
machine learning, and pattern recognition [2].
In this paper, simulated data by Monte-Carlo method, covariates and survival times,
from three models of hazard with different rates of censoring were used to predict
the outcome using decision trees and Cox’s regression models. Then the predictions
of the models were compared with the area under Receive Operating Characteristics
curve (AUC) and an appropriate statistical test for AUC.

2 Methods

2.1 Decision Trees (Non-Parametric Model)

In the science of machine learning, much attention is given to the research based on
the classification.The goal of classification is to choose the most appropriate class of
default classes available to a case. The main goal of the these researches is to develop
the methods which minimize an error rate.
Considerable progress has been achieved toward this goal in recent decades. Several
methods to allocate a class are now available. Particularly, the use of decision tree is
one of the most favorable and popular methods to classify tree [3]. A decision tree
determines the classification and explains the reasons for selecting a certain case.
This form of the classification approach is of particular importance in areas such as
medical and health. The ability to present a simple and understandable branch structure
is another reason to use a decision tree. This capability has shown the decision tree
to be a more acceptable method compared with the other classifier such as neural
network and support vector machine [2,5].
Simplicity and comprehensibility of a decision tree are reduced as nodes and tree depth
increase and in this case, it is not profitable to use structural graphic. A decision tree is
a classifier which acts on a given space as recursive discriminant. It includes a node in
root without any input, and other nodes in the branches with only one entrance. A node
with at least one output as the internal node and other nodes without the output are
considered as leaves or external nodes. In decision tree, the sample space is divided
into at least two subspace by each internal node. The nodes are selected from the
entries based on a specific property. For non-discrete characteristics, the parts refers
to pre-specified ranges. Each leaf represents the class that has the highest relation with
the target value. It may also show a probability vector representing the probability of
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belonging to the target feature. Training examples are gradually classified from root
to the leaves according to corresponding tests. The process of forming a decision tree
can be briefly stated as follows [5]:

1. In the event all the cases in S are tagged with identical class, giving back a leaf
labeled with this class.

2. Select some tests (not necessarily statistical one) such as T with respect to some
criteria which include two or more mutually exclusive results {P1, P2, . . . , Pr }.

3. Split S into disjoint subsets S1, S2, . . . , Sr so that Si includes those cases getting
outcome Pi with the test T, for i = 1, 2, . . . , r .

4. Repeat this tree-construction process recursively in every subsets S1, S2, . . . , Sr
and suppose the decision trees that are given back by these recursive process named
Si j , i = 1, 2, . . . , r, j = 1, 2, . . . , ri .

5. A decision tree is returned with a node tagged S0 as the root and the trees Si j , i =
1, 2, . . . , r, j = 1, 2, . . . , ri with subtrees under of each node.

2.1.1 Growing Decision Tree

Ordinary supervised learning involves a given training set aiming at formation of an
explanation which would be useful for predicting past unobserved samples. Various
definitions of the training set have been proposed. Often, it is defined as a bag instance
of a specific schematic design. Bag instance contains a set of records or instances
probably containing duplicates. Every individual tuple can be described with the aid
of the values pertaining to its vector of attribute. The attributes and their domains are
described by the bag schema.
Often, the assumption is that, based on a random pattern, the training set tuples are
independently created in accordance with a number of unchanging and unidenti-
fied shared probability distribution. For example, assuming a training set of S =
{〈X1, y1〉 , 〈X2, y2〉 , . . . , 〈Xn, yn〉} with input attributes set of A = {

a1, a2, . . . , ap
}

in relation with covariate X and y nominal target attribute from an F fixed distri-
bution across the labeled instance space, the objective can be an optimum classifier
that generates minimum generalization error. As for the generalization error, it means
the misclassification rate in concerning the distribution F . Considering the nominal
attributes, the generalization error can be obtained by the following phrase [2]:

ε (DT (S) , F) =
∑

F (x, y) ∗ L 〈y, DT (S) (x)〉

where L 〈y, DT (S) (x)〉 is the zero-one loss function which can be defined as below
clause:

L 〈y, DT (S) (x)〉 =
{
0 if y = DT (S) (x)
1 if y �= DT (S) (x)

Regarding to the sum operator over a training set, a decision tree inducer is represented
by the notation DT and the DT (S) is indicative of a classification tree, induced by
operationalizing DT on the training set of S. If the attributes are numeric, then the
sum operator is replaced by the integration operator.
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2.1.2 Decision Trees and Estimation of Probability

The inducer product, i.e., the classifier is useful for classifying the unobserved
tuples through either expressly allocating it to a determined class or preparing a
probability vector indicating the conditional probability of an assumed instance to
be classified in any of the individual classes (probabilistic classifier). The induc-
ers capable of constructing probabilistic classifiers are called “the probabilistic
inducers”. As an outstanding feature, estimating the conditional probability of
P̂DT (S)

(
y = c j |ak = xk,q , k = 1, 2 . . . , p

)
of a given observation

〈
Xq , yq

〉
would be

possible in decision trees. Approximating the probability in classification trees is per-
formed individually for each leaf through class frequency calculation considering the
training instances belonging to the desired leaf [2]. The frequency use entails the
drawback of estimating the probability which could be problematic in cases, a class
will never occur in a given leaf. Obviously, the probability will be zero in such cases.

2.1.3 Algorithmic Outline for Decision Trees

Most of the algorithms of recursive partitioning type can be regarded as the product of
particular cases of a non-complex two-stage algorithm: In the first stage, the observa-
tions are partitioned under the effect of univariate splits in a recursive manner and in
the second stage a constant model is fitted in individual cells of the resulting partition.
As the most prevalent applications of such algorithms, CART (Breiman, Friedman,
Olshen and Stone, 1984) and C4.5 (Quinlan 1993) carry out an elaborative search
concerning all the probable splits; there by a maximization of an information measure
of node impurity is performed and the covariate indicating the best split is selected
[3]. Still, the approach suffers from two major problems, i.e., overfitting and selection
bias in relation with covariates involving too many probable splits.
A recent approach for developing trees is based on the conditional inferences (Hothorn,
Hornik and Zeileis 2006). In the present paper the authors try to implement an inte-
grated framework embedding recursive binary partitioning feature in thewell-adjusted
permutation tests theory hypothesized by Strasser andWeber (1999). The statistics that
measure the relationship between the responses and covariates, when conditionally
distributed, function as the basis for an unbiased selection among covariates that are
measured against different scales. Furthermore, several testing processes need to be
employed to ensure that there would be no major relationship between the individual
covariates, and the response can be described and the recursion must be halted. Using
non-negative integer valued case weightsW = (w1, . . . , wn) can be used to formulate
a generic algorithm for recursive binary partitioning for any given learning sample.
Each tree node is shown and represented by a vector consisting of case weights having
one and zero elements, in case the relevant observations are the node elements and the
otherwise respectively. In the following, the procedure recursive binary partitioning
is given [1]:

1. Regarding to the case weights W , one should test the global null hypothesis of
independence among the p covariate and the response. We should halt in case the
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above hypothesis is acceptable. Otherwise, we can select the covariate X j with
strongest association to Y .

2. Select a � ⊂ χp to split χp into two disjoint sets � and χp\� in which the
p-dimensional covariate vector X = (

X1, . . . , X p
)
is obtained from a sample

space χ = χ1 × . . . × χp . The case weights Wl and Wr specify two sub-
groups with elements wl,i = I

(
X ji ∈ �

)
and wr,i = I

(
X ji /∈ �

)
where

i = 1, . . . , n, j = 1, . . . , p (I(.) denotes the indicator function).

Afterwards you should repeat steps 1 and 2 recursively with modified case weightsWl

and Wr respectively. Step 1 of the generic algorithm is regarded as an independence
problem because we need to decide if there is any information on the response variable
which might be covered by any covariate [1,2].

The segregation of selection of variables and implementing steps 1 and 2 of the
procedure is essential for the construct of the tree structure which is interpretable,
meanwhile avoiding systemic trend toward covariates with many probable splits or
missing values. Moreover, a stopping criterion which is statistically motivated and
intuitive can be employed: stopping at the time when the global null hypothesis of
independence among the response and the p covariates is impossible to be rejected at
a pre-specified nominal level α. The algorithm induces the partition B1, B2, . . . , Br of
the covariate space X , inwhich an individual cell B ∈ {B1, B2 . . . , Br } is accompanied
with a vector of case weights. In the nodes characterized by case weight W , the
overall hypothesis of independence can be formulated by considering the p partial
hypothesis H j

0 :F
(
Y |X j

) = F (Y ) , j = 1, . . . , p and the global null hypothesis

of H0 = ⋂p
j=1 H

j
0 . Where the rejection of H0 at the pre-determined level α is

impossible, we should stop the recursion. If we can reject the global hypothesis, we
should measure the relationship (association) between Y and the covariates X j , j =
1, . . . , p, through p-values that indicate the deviation from partial hypotheses H j

0 [1].
In this paper, for the implementation of this process in the R (version 3.1.3 )software,
we use “ctree” command from “party” package.

2.2 Cox Regression Model (Semi-Parametric Model)

The survival time T associatedwith an event can be a continuous, non-negative random
variable having survival function:

S(t) = P(T > t)

The related hazard function h(t), demonstrates the probability density of an event
occurring around time t, considering that it doesn’t occur prior to time t.

The hazard function is

h(t) = lim
�t→0+

P(t < T < t + �t | T > t)

�t

= f (t)

S(t)
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where, f (t) is survival density function for T . The cox regression, generally known
as the proportional hazards regression (PH), is demonstrated by:

hx (t,βββ) = h0(t)exp(βββ
′X) (1)

where βββ (p-dimensional parameter) is the regression coefficient vector, h0(t) is the
baseline hazard which is related to time and an unspecified function (it is the property
that makes the Cox model a semiparametric model). Here X = (

x1, . . . , xp
)
is a

vector of xi elements that are predictors or covariates [6].

hxi (t,βββ)

hx j (t,βββ)
= h0 (t) exp

(
βββ ′xi

)

h0 (t) exp
(
βββ ′x j

)

= exp
{
βββ ′(xi − x j )

}

Which is independent of the survival time. The Likelihood function will be given by

L(βββ; xxx) =
n∏

i=1

hxi (ti ,βββ)δi Sxi (ti ,βββ)

=
n∏

i=1

(h0(ti )exp(βββ
′xi ))δi S0(ti )exp(βββ

′xi )

where δi is the binary variable, δi = 1 if a case is observed and δi = 0 if censored.
Considering that the baseline distribution is usually unknown, this likelihood function
cannot be used to obtain estimates for βββ [7]. Cox (1972) suggested to maximize the
so-named partial likelihood function. In order to introduce this concept we will denote
the observed ordered event times by t(i), i = 1, 2, . . . , d

t(1) < t(2) < . . . < t(d), d =
n∑

i=1

δi .

The covariate linked to the case observed to failure time in ti can be through by
x(i). The partial likelihood proposed by Cox, is given by [6]

d∏

i=1

exp(βββ ′x(i))∑
j∈Ri exp(βββ

′x j )
.

By maximizing this partial likelihood through utilizing the Newton-Raphson tech-
nique, we could match the Cox regression and estimate parameter βββ.
In this paper, for the implementation of this process in the R software, we use “coxph”
command from “survival” package [9].
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Table 1 Results of simulation data

ID Age Sex Social welfare(SW) Postoperative
Care-1(PC1)

Postoperative
Care-2(PC2)

1 49 Male Mw 22 27

2 36 Female Lw 18 23

3 55 Female Lw 28 36

4 57 Male Uw 21 31

. . . . . .

. . . . . .

. . . . . .

. . . . . .

1000 45 Female Mw 29 45

SW
p < 0.001

1

≤ 0 > 0

PC1
p < 0.001

2

≤ 28.113 > 28.113

Age
p = 0.008

3

≤ 58.86> 58.86

n = 382
y = −0.383

4
n = 9

y = −0.163

5

Age
p = 0.003

6

≤ 52.981> 52.981

n = 27
y = −0.348

7
n = 13

y = 0.23

8

PC2
p < 0.001

9

≤ 22.991 > 22.991

Sex
p < 0.001

10

≤ 0 > 0

n = 32
y = −0.292

11
n = 26

y = 0.615

12

PC2
p < 0.001

13

≤ 32.379 > 32.379

Sex
p < 0.001

14

≤ 0 > 0

n = 30
y = 0.181

15
n = 39

y = 0.615

16

n = 192
y = 0.615

17

Fig. 1 Tree-structured survival model for the simulated data based on conditional inference

3 Simulation

Consider the training set in Table 1 containing Monte-Carlo simulated data about
patients. Each patient is characterized by six attributes: Age, Sex, Social welfare, Cen-
sor, Postoperative Care-1 and Postoperative Care-2 describe time care after surgery for
patient. The goal is to induce a classifier with the highest accuracy in predicting health
recovery. In order to examine the precision of classification in the models DT and
Cox, a collection of N = 1000 samples in the medical and health including variables
age from the normal distribution and sex and social welfare class from the binomial

123



Ann. Data. Sci.

Table 2 Results of simulation for exponential hazard model with N = 1000

Hazard Censored
rate (%)

COX-AUC COX-AUC CI TREE-AUC TREE-AUC CI COX-TREE P-value

Model1 0 0.915 0.031 0.966 0.032 0.028

10 0.916 0.032 0.798 0.036 0.009

20 0.914 0.034 0.687 0.041 0.007

30 0.912 0.037 0.762 0.038 0.013

40 0.904 0.038 0.760 0.039 0.002

50 0.903 0.028 0.766 0.030 0.012

60 0.905 0.030 0.637 0.036 0.004

70 0.905 0.033 0.473 0.048 0.000

Model2 0 0.895 0.038 0.986 0.032 0.008

10 0.896 0.035 0.981 0.036 0.009

20 0.894 0.043 0.947 0.041 0.004

30 0.882 0.037 0.962 0.038 0.014

40 0.874 0.048 0.960 0.039 0.012

50 0.863 0.028 0.866 0.030 0.032

60 0.850 0.030 0.877 0.036 0.000

70 0.835 0.043 0.838 0.048 0.000

Model3 0 0.769 0.058 0.969 0.002 0.008

10 0.766 0.053 0.961 0.003 0.003

20 0.754 0.043 0.967 0.009 0.000

30 0.742 0.038 0.962 0.008 0.000

40 0.755 0.048 0.967 0.004 0.000

50 0.763 0.033 0.866 0.010 0.000

60 0.750 0.040 0.857 0.016 0.000

70 0.732 0.045 0.834 0.018 0.000

distribution and the period of care after operation in two stages hospitalization and
outside hospital from the uniform distribution based on Monte-Carlo were simulated.

Then three different models for the hazard ratio (HR) in different complexity levels
including a simple linearmodel, amodelwith double interaction and amodel including
at least double interaction were assumed as follow:

Model1: Exp{.25 ∗ Sex + .5 ∗ SW − .5 ∗ Age + .5 ∗ PC1 + .25 ∗ PC2}
Model2: Exp{.25 ∗ Sex+ .5 ∗ SW− .5 ∗Age+ .5 ∗ PC1+ .25 ∗ PC2+ .5 ∗ (Sex ∗
PC1 + PC2 ∗ SW2 − PC1 ∗ Age + PC2 ∗ Age)}
Model3: Exp{.25 ∗ Sex + .5 ∗ SW − .5 ∗ Age + .5 ∗ PC1 + .25 ∗ PC2 + .5 ∗
(Sex ∗PC1 + PC2 ∗SW2 − Sex ∗PC1 ∗Age + SW ∗PC2 ∗Age) + .25 ∗PC1 ∗
PC2 ∗ Sex ∗ SW ∗ Age}

In the next step survival times from the exponential distribution of these models
were simulated [8]. Next, the survival times greater than kth percentile were taken as
censored observation in k percent level. The averages of the censor rates in eight levels
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Table 3 Results of simulation for exponential hazard model with N = 5000

Hazard Censored
rate (%)

COX-AUC COX-AUC CI TREE-AUC TREE-AUC CI COX-TREE P-value

Model1 0 0.911 0.011 0.976 0.032 0.028

10 0.912 0.012 0.798 0.036 0.019

20 0.914 0.014 0.757 0.041 0.017

30 0.915 0.017 0.742 0.038 0.013

40 0.914 0.018 0.760 0.039 0.012

50 0.913 0.017 0.766 0.030 0.014

60 0.915 0.010 0.622 0.036 0.000

70 0.911 0.013 0.485 0.048 0.000

Model2 0 0.905 0.018 0.996 0.013 0.008

10 0.906 0.015 0.991 0.016 0.002

20 0.891 0.014 0.994 0.011 0.004

30 0.882 0.011 0.972 0.013 0.003

40 0.872 0.014 0.960 0.019 0.002

50 0.863 0.018 0.963 0.013 0.008

60 0.850 0.013 0.887 0.011 0.010

70 0.825 0.019 0.838 0.018 0.035

Model3 0 0.759 0.028 0.996 0.006 0.000

10 0.766 0.023 0.991 0.004 0.000

20 0.744 0.026 0.994 0.007 0.000

30 0.742 0.028 0.968 0.004 0.000

40 0.755 0.035 0.977 0.008 0.000

50 0.743 0.023 0.956 0.010 0.000

60 0.730 0.024 0.897 0.013 0.000

70 0.722 0.045 0.864 0.011 0.000

from 0 to 70% were considered. In order to learn the models 75% of the samples was
used and the remaining was put aside for the model test. Survival times were divided
into two groups based on the median. The Cox and The DT classifiers were examined
after learning by criteria Area Under Curve (AUC) and the ROC-test [10,11]. Figure
1 shows the structure of the conditional decision tree for simulated data. Whole the
above procedure was repeated 200 times and the average of criteria AUC, confidence
interval (CI) for AUC and P-value of ROC-test were considered. When there are many
samples to examine the results, were considered as N2 = 5000 and N3 = 10, 000,
and all the procedure was repeated. The results are presented in Tables 2, 3 and 4.

4 Results and Conclusion

According to this simulation study, when data are censored, for the hazard linear func-
tion, the Cox regression model works better than nonparametric model DT especially
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Table 4 Results of simulation for exponential hazard model with N = 10, 000

Hazard Censored
rate (%)

COX-AUC COX-AUC CI TREE-AUC TREE-AUC CI COX-TREE P-value

Model1 0 0.915 0.010 0.978 0.012 0.007

10 0.916 0.015 0.798 0.016 0.009

20 0.914 0.014 0.737 0.016 0.010

30 0.913 0.018 0.602 0.018 0.003

40 0.911 0.018 0.764 0.019 0.002

50 0.916 0.015 0.756 0.016 0.014

60 0.910 0.014 0.622 0.015 0.000

70 0.911 0.013 0.435 0.018 0.000

Model2 0 0.911 0.013 0.997 0.005 0.000

10 0.908 0.012 0.991 0.006 0.000

20 0.891 0.010 0.994 0.011 0.000

30 0.886 0.011 0.973 0.003 0.003

40 0.872 0.019 0.966 0.009 0.002

50 0.866 0.018 0.964 0.011 0.001

60 0.850 0.016 0.885 0.018 0.012

70 0.835 0.013 0.846 0.022 0.024

Model3 0 0.765 0.018 0.998 0.011 0.000

10 0.756 0.013 0.995 0.014 0.000

20 0.759 0.016 0.991 0.007 0.002

30 0.752 0.018 0.988 0.004 0.004

40 0.753 0.015 0.973 0.003 0.000

50 0.749 0.013 0.916 0.005 0.000

60 0.730 0.014 0.897 0.002 0.000

70 0.716 0.015 0.872 0.014 0.000

in the censor level more than 50%. However when data are not censored, it is observed
that the DT model works better than the COX model.
An examination of AUC criterion in the non-linear hazard model shows that a higher
precision of the DT model results compared with the Cox model in all censorship
levels. Change of censor levels has no remarkable effect on AUC criterion in the Cox
model. In addition, it is noted that in the non-linear hazard, with an increase complexity
in hazard model, AUC criterion in the DT is almost constant and significantly more
than the amount for the Coxmodel. The significance of these differences are confirmed
by the ROC test. These results to be established for all number of samples and they
can be summarized in terms of HR as follows:

1. If HR is linear with respect to covariates, when the data were censored, Cox
regression model performs better than DT non-parametric model, especially in the
censor levelsmore than 50% the different performance of themodels is remarkable.
If the data are not censorship, the DT model is outperformed the Cox model.
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2. If the HR is non-linear with respect to variables and includes double interactions,
both models perform efficiently but the DT model offers better results compared
to the Cox model. If the data are not censorship the DT model is outperformed the
Cox model.

3. In the case HR quantity is non-linear with respect to variables include minimum
double interactions, the DT model significantly better results than the Cox model
in all levels of censorship.

It is noted that increase in the censor levels, especially for the censor levels over
50%, decreases the performance of the DT model. But this increase does not have a
remarkable effect on the Coxmodel. In addition, with the increase in complexity of the
HR form, using the DT non-parametric model is suggested as the preferred approach,
but in the case having simple linear form, application of the Cox semiparametricmodel
is recommended. The increase in the number of samples in all the three models of HR,
has no significant effect on the both classifier Cox and DT.
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