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ABSTRACT 

 

In this paper a distributed leader-follower model-based control approach is proposed for a class of heterogeneous 

nonlinear multi-agent systems under directed graph. The dynamic of each follower agent is modeled by a first-order 

continues-time nonlinear state equation with process noises. The states are measured by the restriction of measurement 

sensors and the contamination of independent noises. A suitable observer to estimate unmeaured states is designed for 

each follower agent via employing bucy extended Kalman filter. Finally, the simulation results are provided to show the 

validity of the proposed control scheme. 
 

Keywords: Multi-Agent systems, Distributed control, Process noise and noisy measurement, Bucy extended 

Kalman filter, Directed graph. 

 

 

1. INTRODUCTION 

 

In recent years, multi-agent systems (MASs) have been widely developed due to their various features such as 

reliability, robustness, redundancy and etc. As a result, the problem of MASs control has received much attention. 

MASs control can be studied in diffrent aspect such as distributed consensus [1] and [2], formation control [3], 

rendezvous [4], flocking [5] and so on. One of the essential problems in the distributed control design of MASs is to 

ensure that the states of all follower agents to reach an agreement based on neighbors' information which is the named 

synchronization or consensus. 

Various control methodologies have been focused on the consensus problem of multiple systems with single-integrator 

or double-integrator dynamics  [6] and [7]. Moreover, many interesting results via employing the graph theory and the 

matrix theory have been studied, [8], [9], and [10]. For linear forms, [11] investigated the problem of consensus for a 

general linear MASs. Further outcomes have been developed in [12] and [13] on consensus control for first- and 

second-order nonlinear MASs. Then, the distributed consensus controller was designed for network of Lagrangian 

systems in [14]. In most of the proposed control approaches with the distributed structure, it is assumed that all the 

states of follower agents are available for the measurement. However, this assumption is not appropriate in the realistic 

situations because of measurement sensors are restricted and the observation is taken with measurement noises. On the 

other hand, it should be noted that dynamics of the above mentioned controlled MASs are free of the process noise. As 

we know, in many real applications it is impossible to model agents without process noise. Hence, the investigations on 

the distributed control design for MASs with both of the independent measurement and process noises become one of 

the attractive research fields in control community. 

Recently, some contributions have been made to deal with the distributed control design for MASs in presence of the 

measurement or process noises. In [15], a leader-less consensus of networked first-order linear multi-agent systems 

have been considered based on the directed graph where each follower agent has only noisy measurements of its 

neighbors’ states. The mean square consensus of linear multi-agent systems with communication noises has been 

proposed in [16]. [17] investigated the average-consensus problem for first-order discrete-time multi-agent networks in 

stochastic communication noises. It is obvious that the proposed control approaches in [15] to [17], only investigated 

random communication environments. Moreover, the control approaches are only valuable for network of multi-agent 

systems without system functions, which restrict the applicability of the proposed control methodologies. On the other 

hand, [18] focuses on the leader-following consensus control problem of first-order continues-time multi-agent systems 

in random vibration environment by employing forth-order Lyaponov function. In [19], the control problem of 

distributed output tracking consensus was discussed for a class of high-order stochastic nonlinear multi-agent systems 

(multi-agent systems with process noise) under a directed graph topology. In [20], the distributed output tracking 

consensus was proposed for stochastic nonlinear multi-agent systems with dead zone inputs.  Nevertheless, the control 

schemes in [18] to [20] are only considered the multi-agent systems with stochastic dynamics.  

Motivated by the above-mentioned discussion, a distributed model-based controller for first-order continues-time multi-

agent systems with independent process and measurement noises has been studied by employing Bucy Extended 
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Kalman Filter (BEKF). The BEKF technique provides a recursive optimal solution to the continues-time nonlinear 

filtering problem rooted in the state-space dynamical systems [21] and [22]. More recently, in [23] by emplying EKF, 

an adaptive fuzzy backstepping control was proposed for uncertain discrete-time systems with a set of noisy 

measurments. However, the control approach in [23] is established for single agent without considering gragh topology.  

The rest of this paper is organized as follows. In Section 2, we give some preliminary knowledge and the agent 

description is presented. In Section 3, the controller structure is proposed based on the BEKF, feedback linrarization 

techniqe. Then simulation results show the effectiveness of the proposed method in Section 4. Finally, this paper is 

concluded in Section 5. 
 

 

2. PROBLEM FOURMULATION AND PRELIMINARIES 

 

2.1. Gragh Theory 

To solve the coordination problem and model the information exchange between agents, according to [2] a 

brief introduction of graph theory is presented here. 

Let  ,G v E
 
be a directed weighted graph of order N ,  1,...., Nv v v denotes the set of agents, E v v   denotes the 

set of edges and ( , )ji j ie v v E   if and only if there exists an information exchange from agent j to agent i. The 

adjacency matrix represents topology of directed graph as [ ] N N
jiA a R  

 
and 0jia 

 
if ( , )i jv v E ; otherwise 

0.jia 
 
The value jia

 
in adjacency  matrix  A  associated with the edges ije  denotes the communication quality from 

the i-th agent to j-th agent. Throughout this paper, it is assumed that 0iia   and graph topology associated with 

communication among agents may not change over time. In other words, the adjacency matrix is time invariant. 

Laplacian matrix is defined as ,L D A   where 1. ( ,...., )N N
NL R D diag d d   is the weighted degree of node j, 

where 
1

.
N

j jii
d a




 
A directed graph has directed spanning tree if there exists agent called root such that a directed 

path from this agent to every other agents. Finally, define the leader adjutancy matrix as ( ) N N
jB diag b R   , where 

0jb  if only if j-th agent has access to leader information; otherwise 0.jb   

 

2.2. Agent description and control problem 

     The j-follower agent can be described by a stochastic dynamic model with unknown nonlinear dynamics: 

                                                                   

( ) , 1,...., ,j j j j jx f x u w j N   
                                                 

 (1)
 

where 
jx 

 
is the state vector of  j-th follower agent and 

ju 
 
is the control input of j-th follower agent. 

( ) : ( 1,..., )jf j N    is a known smooth nonlinear function which satisfies (0) 0.jf   The i-th follower agent can 

receive information from its neighbors  

                                                        ,j j ij jy x v i N                                                                       (2) 

where 
jy  denotes the measurement of the j-th agent’s state jx  by the i-th agent; and  , , 1,...,jiv i j N is the 

measurment (or communication ) noise. It is assumed that 
jw  and 

ijv  are uncorrelated, zero-mean Gaussian noises with 

covariances 

                                                                     T

j j jE w w Q  

                                                                      T

ij ij jE v v R  

where E denotes the mathematical expectation. 

   Control objective: the control objective is to design the distributed mobel-based controller for a network of the 

nonlinear follower agents (1) under both of measurmaent and process noises, such that all closed-loop network signals 

remain cooperatively bounded whereas consensus performance is satisfied. 

   Assumption 1 [8] The graph G  consists of  N  follower agents and a leader, which contains a spanning tree rooted at 

the leader at all times.  
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3. MAIN RESULTS 

 

In this paper, two cases are considered for a network first-order nonlinear MASs: (i) the states of network system are 

safely available for the measurement; and (ii) the states of network system are not measurable accurately, namely the 

measurments of states are taken with process and measurement noises. For the both cases, our main targets are to study 

the problems of controller design. To these ends, at first, a feedback linearzation design procedure is employed to 

construct a distributed controller. Then, when states cannot be safely measured, the BEKF is constructed to estimate 

them and ensure the control performance.  

  
3.1.  Distributed controller development with accurate measurments 
 

According to [6], define the distributed error surface for jth the follower agent as: 

                                                                     
0 1

( ) ( ),
N

j j j ji j ii
z b x x a x x


                                                               

(3) 

where ,ji ja b are definded in gragh theory, jz is the distributed error surface, and 0x  is the state of  leader. 

Now, by time differentiating (3), one gets
  

 

                                                          0 1
( ) ( ).

N

j j j ji j ii
z b x x a x x


                 (4) 

Substituting (1) into (4), note to 
1

N

j jii
d a


 and ,L D A  we have

 

                                                                      0( )( ( ) ),j j j j j jz l b u f x x                                                                      (5) 

or 

                                                                       0( )( ( ) ),z L B u f x Ix                                                                           (6)  

where 1 1 1 1( ) [ ( ),..., ( )] , [ ,..., ] , [ ,..., ] ,N N NT T T
N N N Nf x f x f x R z z z R u u u R       [1,...,1] ,NTI R   and ,L  

B are definded in gragh theory. 

Design the control function as follows:

                   
                                                                    0( ) ,

( )

j j

j j j

j j

c z
u f x x

l b


  


                                                                           (7) 

or colectively 

                                                                     1

0( ) ( ) ,u L B Cz f x Ix                                                                 (8)
 

where 1( ,..., )NC diag c c  is a positice design matirx. 

Via (5) and (7), one has  

                                                                                      .j j jz c z              (9) 

Choose the Lyapunov function candidate as 

                                                                      

2

1

1

2
.

N

jj
V z


 

                             

 (10) 

Then, we have 

                                      2

1
.0

N

j jj
V c z


  

                                                              

      (11) 

Therefore, the closed-loop network system is cooprativly stabe. 

 

3.2.  Distributed controller development with noisy measurments 

Due to noisy measurments, the distributed error surface (3) is modified as follows: 

                                                                     
0 1

ˆ ˆ ˆˆ ( ) ( ),
N

j j j ji j ii
z b x x a x x


                                                             

(12) 

where ˆ
jz is a new distributed error surface, and ˆ

jx  is the estimte of jx  which is obtained by BEKF, (13). For 

completeness, a brief review of the EKF theory [23], in its continuse form, is summarized in this subsection.                                  

http://www.emme.ir/


 

 www.EMME.ir              4 

 

The bucy extended Kalman filter algorithm for (1) can be rewritten as follows: 

                                                          ˆ ˆ ˆ( ) ( ),j j j j j j jx F x u K y x                                                           (13) 

where 

ˆ

( )
ˆ( )

j j

j j

j j

j x x

f x
F x

x






 and 

jK is the gain of BEKF observer and it is ontained by 

               

1( ) ,

ˆ ˆ( )( ) ( ) .

j j j j

j j j j j j j j j

K p R p

p F x p K p F x Q

  


  

                                                (14) 

By time differentiating (12), we have
 

                                                         
1

ˆ ˆ ˆˆ ( ) ( ).
N

j j j L ji j ii
z b x x a x x


          (15) 

Substituting (13) into (15) results in 

                                                                     0
ˆˆ ( )( ( ) ),z L B u F x Ke Ix                                                                    (16) 

where ˆ
j j je y x   for  j=1,..,N  is the observer error, 1 1 1

ˆ ˆ ˆ( ) [ ( ),..., ( )] , [ ,..., ] ,N NT T
N N NF x F x F x R u u u R     1[ ,e e  

1ˆ ˆ ˆ..., ] , [ ,..., ] , [1,...,1] ,N N NT T
N Ne R z z z R I R     and 1( ,..., ) N N

NK diag K K R   is a positive design matirx. 

Design the distributed control function as follows:

                   
                                                                    0

ˆ
ˆ( ) ,

( )

j j

j j j j j

j j

c z
u F x K e x

l b


   


                                                             (17) 

or colectivey 

                                                                     1

0
ˆˆ( ) ( )u L B Cz F x Ke Ix                                                                (18)

 

where 1( ,..., ) N N
NC diag c c R    is a positice design matirx. 

 

4. SIMULATON RESULTS 

In this example, a gragh structure containing four follower agents (indicated by 1 up to 4) and one leader agent 

(indicated by 0) is shown in Fig. 1, and we can set 1jia   on ( , )i jv v G  and otherwise 0,jia   where 1,...,4,j  and 

1,...,4.i  The dynamics of the each follwer agent is described by the following equations: 

                                                                                    
( ) ,

,

j j j j j

j j ji

x f x u w

y x v

  


 

       (19)

  where  1,...,4, 1,...,4j i   and .j i   

Nonlinear functions in the dynamics follower agents are chossen as 2( ) 0.9 ,j j j jf x x x  
 
for 1,...,4.j  jw  is a 

Gaussian white noise (GWN) as a process noise with zero mean and variance 0.1, and jiv  is GWN as a measurment 

noise with zero mean and variance 1 for 1,...,4, 1,...,4j i   and .j i  We suppose that the initial conditins of the 

agents and BEKFs are selected as 0 1 2 3 4[ (0), (0), (0), (0), (0)] [0,2,1, 1,1] ,T Tx x x x x   and 1 2 3 4
ˆ ˆ ˆ ˆ[ (0), (0), (0), (0)]Tx x x x   

[1, 1,1, 2] .T Moreover, choose the design parameters as  
1 2 3= 20, = 10, = 10, c c c and 

4  = 10.c  

It is hoped that the proposed distributed controller (17) can steer the follower agents to keep leader-following consensus 

with a predesigned leader agent 0: 

                                                                               0 cos( ).x t                        (20)
 

 

Fig. 1. Communication topology. 
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Fig. 2. Consensus performance. 
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Fig. 3. Control inputs. 
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 Fig. 4. Bucy extended Kalman filters outputs. 
 

The simulation results are shown in Figs. 2-4. Fig. 2 shows that the entire multiagent systems synchronize to the leader 

agent with both of process and measurment noises, moreover, it can be concluded that the state of each agent 

synchronizes to that of the leader despite only using the measured output information of each agent. The bounded 

control input corresponding to each follwer agent is shown in Fig. 3. Fig. 4 verifies that the estimated state of follower 

agent by Bucy extended Kalman filters also synchronizes to the leader. 

 

5. CONCLUTIONS 

This paper has been studied a distributed control design for a class of nonlinear MASs with process and measurment 

noises under directed graph. With the help of garph theory, matrix theory and feedback linearization technique, a 

distributed control scheme has been proposed for nonlinear dynamics of MASs. Moreover, BKEF has been used to 

eliminate undesirable effects of process and measurment noises. Finally, the simulation results have been provided to 

show the validity of the proposed control scheme.  
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