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Abstract: Let H be a Hilbert C∗-module over a unital C∗-algebra A. In this paper, we find
the general form of the mappings T : H → H satisfing

2〈T (x), T (y)〉 = 〈T (x), y〉+ 〈x, T (y)〉 (x, y ∈ H),

as adjointable (bounded) A-linear operators. The generalized Hyers-Ulam stability of the

functional equation is discussed.
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1. Introduction and Preliminaries

The notion of a Hilbert C∗-module initiated by Kaplansky [3] as a generalization
of a Hilbert space in which the inner product takes its values in a C∗-algebra.

Let A be a C∗-algebra. A pre-Hilbert A-module or an inner product A-
module is a complex linear space H which is a left A-module with compatible
scalar multiplication λ(ax) = (λa)x = a(λx) (λ ∈ C, x ∈ H, a ∈ A), together
with an A-valued inner product (x, y) 7→ 〈x, y〉 : H×H → A such that for each
x, y, z ∈ H, α, β ∈ C and a ∈ A,
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(i) 〈x, x〉 ≥ 0 and the equality holds if and only if x = 0.

(ii) 〈αx+ βy, z〉 = α〈x, z〉 + β〈y, z〉,

(iii) 〈ax, y〉 = a〈x, y〉,

(iv) 〈x, y〉∗ = 〈y, x〉.

The notion of a right Hilbert A-module can be defined similarly. Note that
the condition (i) is understood as a statement in the C∗-algebra A, where an
element a is called positive if it can be represented as bb∗ for some b ∈ A. The
conditions (ii) and (iv) impliy the inner product to be conjugate-linear in its
second variable. Validity of a useful version of the classical Cauchy-Schwartz
inequality follows that ‖x‖ = ‖〈x, x〉‖ 1

2 defines a norm on H making it into a
normed left A-module. An inner product A-module H which is complete with
respect to the norm ‖x‖ is called a Hilbert A-module or a Hilbert C∗-module
over the C∗-algebra A. Every C∗-algebra A is a Hilbert A-module under the
A-valued inner product 〈a, b〉 = a∗b (a, b ∈ A). Every complex Hilbert space
is a left Hilbert C-module.

One may define an A-valued norm |x| = 〈x, x〉 1

2 (where, |a| denotes the
unique square root of the positive element a in A). Clearly, ‖|x|‖ = ‖x‖,
for each x ∈ H. The A-valued norm |x| is a useful device but it needs to be
handled with care. For example, it is known that |.| does not satisfy the triangle
inequality |x+ y| ≤ |x|+ |y| for each x, y ∈ H; cf. [4].

Let H be a Hilbert C∗-module over a C∗-algebra A. A system (ei)i∈I in
H is called orthogonal, if 〈ei, ej〉 = 0 whenever i 6= j. An orthogonal system
(ei)i∈I in H is said to be an orthonormal, provided A is unital and for the inner
squares it happens that 〈ei, ei〉 = 1 for all i ∈ I. Let (ei)i∈I be an orthonormal
system in a Hilbert module H over a unital C∗-algebra A. Landi and Pavlov
showed in Theorem 2.10 of [5] that the following conditions are equivalent:

(i) For any x of H there are elements ai of A such that

x =
∑

i∈I
aiei (1)

where convergence in norm is meant and

∑

i∈I
aiei = lim

F∈F

∑

i∈F
aiei

indicates the limit over the set F of all finite subsets of I, directed by
inclusions.



CHARACTERIZATION OF ADJOINTABLE OPERATORS... 201

(ii) The system (ei)i∈I generates H over A, that is to say, the closure of its
A-linear span coincides with H.

(iii) The system (ei)i∈I is closed, that is to say, for any x ∈ H

〈x, x〉 =
∑

i∈I
〈x, ei〉〈ei, x〉,

where the series converges in norm.

An orthonormal system (ei)i∈I satisfying the equivalent conditions (i)-(iii) is
called a Schauder basis for H over A. If (ei)i∈I is a Schauder basis for H, then
the coefficients in the decomposition (1) are unique for any vector x of H. In
fact for any i ∈ I, ai = 〈x, ei〉. Thus any vector of H is the limit in norm of its
Fourier series. Any Schauder basis (ei)i∈I is complete, i.e. there is no non-zero
vector x of H such that 〈x, ei〉 = 0 for all i ∈ I. Note that by Proposition 3.1.
of [5] any two closed orthonormal systems of a Hilbert module over a unital
C∗-algebra have the same cardinality.

Let H and K be Hilbert C∗-modules over a C∗-algebra A. A mapping
T : H → K is said to be A-linear, if

T (ax+ λy) = aT (x) + λT (y)

for all x, y ∈ H, a ∈ A and λ ∈ C. A mapping T : H → K is said to be
adjointable, if there exists a mapping S : K → H such that

〈T (x), y〉 = 〈x, S(y)〉

for all x ∈ DT ⊆ H, y ∈ DS ⊆ K. The unique mapping S is denoted by T ∗

and is called the adjoint of T . It is well known that any adjointable mapping
T : H → K is A-linear and bounded. L(H,K), the set of adjointable maps from
H to K is a C∗-algebra [4]. The C∗-algebra of adjointable maps from H to H
is denoted by L(H).

In general, bounded A-linear operator may fail to possess an adjoint (cf.,
[4]). However, if H is a Hilbert C∗-module over the C∗-algebra K = K(H)
of all compact operators on a Hilbert space H, then (with another concept of
orthonormal basis for Hilbert C∗-modules) D. Bakić and B. Guljaš ([1], Remark
5) showed that each bounded K-linear operator on H is necessarily adjointable.

In 2003, Radu [6] employed the following result, due to Diaz and Margolis
[2], to prove the stability of a Cauchy functional equation.
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Proposition 1.1. (The fixed point alternative principle). Let (X, d) be
a generalized complete metric space and J : X → X be a strictly contractive
mapping; that is

d(J(x), J(y)) ≤ Ld(x, y) (x, y ∈ X)

for some (Lipschitz) constant 0 < L < 1. Then, for a given element x ∈ X,
exactly one of the following assertions is true: either

(a) d(Jnx, Jn+1x) = ∞ for all n ≥ 0, or

(b) there exists some integer n0 such that d(Jnx, Jn+1x) <∞ for all n ≥ n0.

Actually, if (b) holds, then

(b1) the sequence {Jnx} converges to a fixed point x∗ of J ,

(b2) x
∗ is the unique fixed point of J in X0 := {y ∈ X; d(Jn0x, y) <∞};

(b3) d(y, x
∗) ≤ 1

1−L
d(y, Jy) for all y ∈ X0 .

Let H be a Hilbert C∗-module over a C∗-algebra A and T : H → H be a
mapping. In this paper, we introduce the new functional equation

2〈T (x), T (y)〉 = 〈T (x), y〉 + 〈x, T (y)〉 (x, y ∈ H). (♦)

In the first section, we show that T is a bounded A-linear mapping and we find
all of such bounded A-linear mappings. Also we show that T is adjointable. We
will show that the unique inner product preserving solution of the functional
equation (♦), is the identity function.

In the next section, we consider the generalized Hyers-Ulam stability for
the above functional equation. We use the fixed point alternative theorem to
show that if H is a Hilbert C∗-modules over a C∗-algebra A and f : H → H
satisfies the inequality

‖2〈f(x), f(y)〉 − 〈f(x), y〉 − 〈x, f(y)〉‖ ≤ ϕ(x, y) (x, y ∈ H)

then under suitable conditions on ϕ : H × H → [0,∞), there is a unique
adjointable A-linear mapping T : H → H, which suitably approximates f .
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2. General Solution

In this section, we show that a function T : H → H satisfies (♦), if and
only if, T is an adjointable (bounded) A-linear operator satisfying the equation
2T ∗T = T + T ∗.

Theorem 2.1. Let H be a Hilbert C∗-module over a C∗-algebra A. Any
mapping T : H → H satisfying (♦) is a bounded A-linear operator with ‖T‖ ≤
1.

Proof. It follows from (♦) that

2〈T (x+ y)− T (x)− T (y), T (z)〉
= 2〈T (x+ y), T (z)〉 − 2〈T (x), T (z)〉 − 2〈T (y), T (z)〉
= 〈T (x+ y), z〉+ 〈x+ y, T (z)〉
− 〈T (x), z〉 − 〈x, T (z)〉 − 〈T (y), z〉 − 〈y, T (z)〉
= 〈T (x+ y)− T (x)− T (y), z〉

for all x, y, z ∈ H, which implies that

〈T (x+ y)− T (x)− T (y), T (z)〉 =
〈

T (x+ y)− T (x)− T (y),
z

2

〉

(2)

for all x, y, z ∈ H. It follows from (2) that

〈T (x+ y)− T (x)− T (y), T (x+ y)− T (x)− T (y)〉
= 〈T (x+ y)− T (x)− T (y), T (x+ y)〉
− 〈T (x+ y)− T (x)− T (y), T (x)〉
− 〈T (x+ y)− T (x)− T (y), T (y)〉

=
〈

T (x+ y)− T (x)− T (y),
x+ y

2
− x

2
− y

2

〉

= 0

for all x, y ∈ H. From the above equation, we get

T (x+ y) = T (x) + T (y)

for all x, y ∈ H. Hence T is an additive mapping.
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From

2〈T (ax) − aT (x), T (ax)− aT (x)〉
= 2〈T (ax), T (ax)〉 − 2〈aT (x), T (ax)〉
− 2〈T (ax), aT (x)〉 + 2〈aT (x), aT (x)〉
= 〈T (ax), x〉a∗ + a〈x, T (ax)〉 − a〈T (x), x〉a∗ − a〈x, T (ax)〉
− 〈T (ax), x〉a∗ − a〈x, T (x)〉a∗ + a〈T (x), x〉a∗ + a〈x, T (x)〉a∗

= 0

for all a ∈ A and x ∈ H, we deduce that T (ax) = aT (x). In the same manner,
we deduce that T (λx) = λT (x) for all x ∈ H and λ ∈ C. Thus

T (ax+ λy) = aT (x) + λT (y)

for all x, y ∈ H, a ∈ A and λ ∈ C, i.e. T is an A-linear operator.

Putting x = y in (♦), we get

2〈T (x), T (x)〉 = 〈T (x), x〉+ 〈x, T (x)〉 (x ∈ H). (3)

Thus

2‖T (x)‖2 = 2‖|T (x)|2‖ = 2‖〈T (x), T (x)〉‖ = ‖〈T (x), x〉 + 〈x, T (x)〉‖
≤ 2‖T (x)‖‖x‖ (x ∈ H).

and so

‖T‖2 = sup
‖x‖≤1

‖T (x)‖2 ≤ sup
‖x‖≤1

‖T (x)‖‖x‖ = ‖T‖

which implies that ‖T‖ ≤ 1. This completes the proof.

Lemma 2.2. An A-linear operator T : H → H satisfies (♦), if and only if
T satisfies

2〈T (ei), T (ej)〉 = 〈T (ei), ej〉+ 〈ei, T (ej)〉 (i, j ∈ I). (4)

Proof. If T satisfies (♦), then trivially T satisfies (4). Assume that T
satisfies (4), and let x, y ∈ H. Then x =

∑

i∈I aiei and y =
∑

j∈I bjej , where
ai = 〈x, ei〉 and bj = 〈y, ej〉 for i, j ∈ I. It follows from Theorem 2.1 that

2〈T (x), T (y)〉 = 2
〈

T
(

∑

i∈I
aiei

)

, T
(

∑

j∈I
bjej

)〉
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=
∑

i∈I

∑

j∈I
ai(2〈T (ei), T (ej)〉)b∗j

=
∑

i∈I

∑

j∈I
ai(〈T (ei), ej〉+ 〈ei, T (ej)〉)b∗j

=
∑

i∈I

∑

j∈I
ai〈T (ei), ej〉b∗j +

∑

i∈I

∑

j∈I
ai〈ei, T (ej)〉b∗j

=
〈

T
(

∑

i∈I
aiei

)

,
∑

j∈I
bjej

〉

+
〈

∑

i∈I
aiei, T

(

∑

j∈I
bjej

)〉

= 〈T (x), y〉 + 〈x, T (y)〉.

Let (ei)i∈I be a Schauder basis for Hilbert C∗-module H over a unital C∗-
algebra A and T : H → H be an A-linear operator. Let aij = 〈T (ej), ei〉 for
all i, j ∈ I and consider the matrix A = [aij ] corresponding to the A-linear
operator T . The next theorem characterizes the bounded A-linear operators T
satisfying (♦).

Theorem 2.3. Let H be a Hilbert C∗-module over a unital C∗-algebra
A. An A-linear operator T : H → H satisfies (♦), if and only if,

2AtA∗ = At +A∗. (5)

where At is the transpose of A and A∗ = [a∗ij ] .

Proof. Suppose that T satisfies (♦), then from Lemma 2.2, T satisfies (4)
for all i, j ∈ I. Since for all i ∈ I, T (ei) =

∑

p∈I〈T (ei), ep〉ep, then we have

2
〈

∑

p∈I
〈T (ei), ep〉ep,

∑

q∈I
〈T (ej), eq〉eq

〉

=
〈

∑

p∈I
〈T (ei), ep〉ep, ej

〉

+
〈

ei,
∑

q∈I
〈T (ej), eq〉eq

〉

.

which implies that

2
∑

p∈I

∑

q∈I
〈T (ei), ep〉〈ep, eq〉〈eq, T (ej)〉

=
∑

p∈I
〈T (ei), ep〉〈ep, ej〉+

∑

q∈I
〈ei, eq〉〈eq, T (ej)〉.
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Therefore it follows from the last equation that

2
∑

p∈I
〈T (ei), ep〉〈ep, T (ej)〉 = 〈T (ei), ej〉+ 〈ei, T (ej)〉 (i, j ∈ I).

Let aij = 〈T (ej), ei〉 for all i, j ∈ I, then the last equation implies that

2
∑

p∈I
apia

∗
pj = aji + a∗ij (i, j ∈ I).

This means that 2AtA∗ = At +A∗. Conversely, if 2AtA∗ = At +A∗, it is easy
to see that T satisfies (♦).

Corollary 2.4. Let H be a Hilbert C∗-module over a unital C∗-algebra
A. An A-linear operator T : H → H satisfies (♦), if and only if T is adjointable
and satisfies the equation 2T ∗T = T + T ∗.

Proof. Suppose that T satisfies (♦). From (5) we have

2(A∗)tA = A+ (A∗)t. (6)

Define the A-linear operator S : H → H by the matrix (A∗)t. Then trivially
〈S(ej), ei〉 = a∗ji for all i, j ∈ I and it follows that 〈ej , S(ei)〉 = aij = 〈T (ej), ei〉
for all i, j ∈ I. From A-linearity of T and S, we get

〈T (x), y〉 = 〈x, S(y)〉 (x, y ∈ H).

So T is adjointable with T ∗ = S. From (6) we get 2T ∗T = T +T ∗. Conversely,
if T is an adjointable A-linear operator such that 2T ∗T = T + T ∗, then it
satisfies (♦).

Remark 2.5. Suppose that the mappings T and S satisfy (♦) and
〈T (x), S(y)〉 = 0 for all x, y ∈ H, then for any complex number λ = (r, θ)
with r = 2cos θ, the adjointable A-linear mapping λT +S satisfies (♦). Also if
the mapping T satisfies (♦), then I − T satisfies (♦).

Example 2.6. The Hilbert space ℓ2 is a Hilbert C−module. The C-linear
operator T : ℓ2 → ℓ2 defined by

T (x1, x2, x3, . . .) = (0, x2, x3, . . .)

for all x = (x1, x2, x3, . . .) ∈ ℓ2, satisfies (♦), also ‖T‖ < 1 and T = T ∗.
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Example 2.7. Let T : C2 → C
2 be a C-linear operator, corresponding

with the complex matrix A = [aij ]. T satisfies (♦), if and only if the complex
numbers aij satisfy the following equations:

∣

∣a11 −
1

2

∣

∣

2
+ |a21|2 =

1

4
,

∣

∣a22 −
1

2

∣

∣

2
+ |a12|2 =

1

4
,

|a12| = |a21| ≤
1

2
,

∣

∣a11 −
1

2

∣

∣ =
∣

∣a22 −
1

2

∣

∣ ≤ 1

2
.

Remark 2.8. Let α, β, γ ∈ C be nonzero complex numbers and T : H → H
be a mapping satisfing

α〈T (x), T (y)〉 = β〈T (x), y〉 + γ〈x, T (y)〉 (x, y ∈ H). (♦′

)

It is easy to see that T is an adjointable A-linear mapping with ‖T‖ ≤ |β|+|γ|
|α| .

Moreover it follows that αT ∗T = βT +γT ∗ or equivalently (α
β
T ∗−I)(α

γ
T−I) =

I. Thus if α
γ
T − I is surjective, then it is invertible in L(H) with (α

γ
T − I)−1 =

α
β
T ∗ − I.

In particular, if the mapping T satisfies (♦′

) with α = β = γ = 1, then
I − T is inner product preserving and so is an isometry.

3. Stability

In this section, we prove the generalized Hyers-Ulam stability of the equation
(♦).

Theorem 3.1. Let H be a Hilbert C∗-module over a unital C∗-algebra A
and ϕ : H×H → [0,∞) be an control function such that

lim
n→∞

22nϕ
( x

2n
,
y

2n
)

= 0 (7)

for all x, y ∈ H. Assume that there is 0 < L < 1 such that

ψ
(x

2

)

≤ L

2
ψ(x) (8)

for all x ∈ H, where

ψ(x) =
(

4ϕ(x, x) + 2ϕ(2x, x) + 2ϕ(x, 2x) + ϕ(2x, 2x)
)

1
2 . (9)
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If a function f : H → H satisfies the inequality

‖2〈f(x), f(y)〉 − 〈f(x), y〉 − 〈x, f(y)〉‖ ≤ ϕ(x, y) (10)

for all x, y ∈ H, then there exists a unique adjointable mapping T : H → H
such that

‖f(x)− T (x)‖ ≤
√
2L

4(1 − L)
ψ(x) (11)

for all x ∈ H.

Proof. Replacing x by 2x in (10), we get

‖2〈f(2x), f(y)〉 − 〈f(2x), y〉 − 2〈x, f(y)〉‖ ≤ ϕ(2x, y). (12)

From (10) and (12), we have

‖2〈f(2x)− 2f(x), f(y)〉 − 〈f(2x)− 2f(x), y〉‖ ≤ 2ϕ(x, y) + ϕ(2x, y). (13)

Replacing y by 2y in (13), we get

‖2〈f(2x)− 2f(x), f(2y)〉 − 2〈f(2x)− 2f(x), y〉‖ ≤ 2ϕ(x, 2y) + ϕ(2x, 2y). (14)

From (13) and (14), we have

‖2〈f(2x) − 2f(x), f(2y)− 2f(y)〉‖ ≤ ψ(x)2. (15)

Letting x = y in (15), we obtain

‖f(2x)− 2f(x)‖2 = ‖|f(2x) − 2f(x)|2‖ ≤ 1

2
ψ(x)2.

and so

‖f(2x)− 2f(x)‖ ≤
√
2

2
ψ(x) (16)

Let X = {g : H → H, g(0) = 0} and define d : X ×X → [0,∞] by

d(g, h) = inf{α ≥ 0 : ‖g(x) − h(x)‖ ≤ αψ(x),∀x ∈ H} (g, h ∈ X).

Define J : X → X by J(g)(x) = 2g(x2 ) for each x ∈ H. Then (X, d) is a
complete generalized metric space and from (8) it follows that J is a strictly
contractive mapping on X with the Lipschitz constant L = 1

2 . From (8) and
(16) we have

‖J(f)(x) − f(x)‖ =
∥

∥2f
(x

2

)

− f(x)
∥

∥ = 2
∥

∥f
(x

2

)

− f(x)

2

∥

∥ ≤
√
2

4
Lψ(x)
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for each x ∈ H. This means that d(J(f), f) ≤
√
2
4 L. Therefore, by Proposition

1.1, J has a unique fixed point in the set X0 = {g ∈ X : d(f, g) < ∞}. Let
T : H → H be the unique fixed point of J . We have limn(J

n(f), T ) = 0, so T
is defined by

T (x) := lim
n→∞

2nf
( x

2n
)

(x ∈ H). (17)

On the other hand, we have d(f, J(f)) ≤
√
2
4 L and J(T ) = T , then

d(f, T ) ≤ d(f, J(f)) + d(J(f), J(T )) ≤
√
2

4
L+ Ld(f, T ).

So

d(f, T ) ≤
√
2L

4(1 − L)
,

which implies the inequality (11).

It is easy to see that for all x, y ∈ H, we have

lim
n→∞

〈

2nf
( x

2n
)

, y
〉

= 〈T (x), y〉, (18)

lim
n→∞

〈

x, 2nf
( y

2n
)〉

= 〈x, T (y)〉. (19)

Since for every x ∈ H the sequence {2nf( x
2n )} is convergent, so it is bounded.

Therefore for every x ∈ H there exists Kx > 0 such that ‖2nf( x
2n )‖ ≤ Kx for

all n ∈ N. Thus

lim
n→∞

∥

∥

〈

2nf
( x

2n
)

, 2nf
( y

2n
)〉

− 〈T (x), T (y)〉
∥

∥

= lim
n→∞

∥

∥

〈

2nf
( x

2n
)

, 2nf
( y

2n
)〉

−
〈

2nf
( x

2n
)

, T (y)
〉

+
〈

2nf
( x

2n
)

, T (y)
〉

− 〈T (x), T (y)〉
∥

∥

= lim
n→∞

∥

∥

〈

2nf
( x

2n
)

, 2nf
( y

2n
)

− T (y)
〉

+
〈

2nf
( x

2n
)

− T (x), T (y)
〉∥

∥

≤ lim
n→∞

(
∥

∥2nf
( x

2n
)
∥

∥

∥

∥2nf
( y

2n
)

− T (y)
∥

∥+
∥

∥2nf
( x

2n
)

− T (x)
∥

∥‖T (y)‖
)

≤ lim
n→∞

(

Kx

∥

∥2nf
( y

2n
)

− T (y)
∥

∥+
∥

∥2nf
( x

2n
)

− T (x)
∥

∥‖T (y)‖
)

= 0

for all x, y ∈ H. This shows that

lim
n→∞

〈

2nf
( x

2n
)

, 2nf
( y

2n
)〉

= 〈T (x), T (y)〉 (x, y ∈ H). (20)
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It follows from (7), (18), (19) and (20) that

‖2〈T (x), T (y)〉 − 〈T (x), y〉 − 〈x, T (y)〉‖
= lim

n→∞
22n

∥

∥2
〈

f
( x

2n
)

, f
( y

2n
)〉

−
〈

f
( x

2n
)

,
y

2n
〉

−
〈 x

2n
, f

( y

2n
)〉∥

∥

≤ lim
n→∞

22nϕ
( x

2n
,
y

2n
)

= 0

for all x, y ∈ H. Whence

2〈T (x), T (y)〉 = 〈T (x), y〉 + 〈x, T (y)〉 (21)

for all x, y ∈ H and so by Corollary (2.4), T is a adjointable A-linear mapping.

To see the uniqueness of T , let T ′ : H → H be another adjointable A-linear
mapping satisfying (11). Then

‖T (x)− T ′(x)‖ = 2n
∥

∥T
( x

2n
)

− T ′( x
2n

)
∥

∥

≤ 2n
(
∥

∥T
( x

2n
)

− f
( x

2n
)
∥

∥+
∥

∥f
( x

2n
)

− T ′( x
2n

)
∥

∥

)

≤ 2n
√
2L

2(1 − L)
ψ
( x

2n
)

≤
√
2L

2(1− L)
Lnψ(x)

which tends to zero as n→ ∞ for all x ∈ H. This completes the proof.

The following Theorem can be proved in a similar way as Theorem 3.1.

Theorem 3.2. Let H be a Hilbert C∗-module over a unital C∗-algebra A
and ϕ : H×H → [0,∞) be an control function such that

lim
n→∞

ϕ(2nx, 2ny)

22n
= 0

for all x, y ∈ H. Assume that there is 0 < L < 1 such that

ψ(2x) ≤ 2Lψ(x)

for all x ∈ H, where

ψ(x) =
(

4ϕ(x, x) + 2ϕ(2x, x) + 2ϕ(x, 2x) + ϕ(2x, 2x)
)

1
2 .
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If a function f : H → H satisfies the inequality

‖2〈f(x), f(y)〉 − 〈f(x), y〉 − 〈x, f(y)〉‖ ≤ ϕ(x, y)

for all x, y ∈ H, then there exists a unique adjointable mapping T : H → H
such that

‖f(x)− T (x)‖ ≤
√
2

4(1− L)
ψ(x) (x ∈ H).

The next result follows from Theorem 3.1, where ϕ(x, y) = ‖x− y‖p for all
x, y ∈ H.

Corollary 3.3. Let H be a Hilbert C∗-module over a unital C∗-algebra
A. If a function f : H → H satisfies the inequality

‖2〈f(x), f(y)〉 − 〈f(x), y〉 − 〈x, f(y)〉‖ ≤ ‖x− y‖p

for all x, y ∈ H and some p > 2, then there exists a unique adjointable mapping
T : H → H such that

‖f(x)− T (x)‖ ≤
√
2√

2p − 2
‖x‖

p
2 (x ∈ H).

The next result follows from Theorem 3.2, where ϕ(x, y) = ε.

Corollary 3.4. Let H be a Hilbert C∗-module over a unital C∗-algebra
A. If a function f : H → H satisfies the inequality

‖2〈f(x), f(y)〉 − 〈f(x), y〉 − 〈x, f(y)〉‖ ≤ ε

for all x, y ∈ H, then there exists a unique adjointable mapping T : H → H
such that

‖f(x)− T (x)‖ ≤ 3
√
2ε

2
(x ∈ H).

Example 3.5. Consider the Hilbert C−module ℓ2. Let φ : ℓ2 → C be
an arbitrary bounded function such that |φ(x)| ≤ ‖x‖ for all x ∈ ℓ2, where

‖x‖ = (
∑∞

n=1 |xn|2)
1

2 . Define the mapping f : ℓ2 → ℓ2 by

f(x1, x2, x3, . . .) = (φ(x)x1, x2, x3, . . .)
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for all x = (x1, x2, x3, . . .) ∈ ℓ2. Then

|2〈f(x), f(y)〉 − 〈f(x), y〉 − 〈x, f(y)〉|

=
∣

∣2φ(x)x1φ(y)y1 + 2

∞
∑

n=2

xnyn

− φ(x)x1y1 −
∞
∑

n=2

xnyn − x1φ(y)y1 −
∞
∑

n=2

xnyn
∣

∣

=
∣

∣(x1y1)
(

2φ(x)φ(y) − φ(x)− φ(y)
)
∣

∣

≤ |x1||y1|
(

2|φ(x)||φ(y)| + |φ(x)|+ |φ(y)|
)

≤ ‖x‖‖y‖
(

2‖x‖‖y‖ + ‖x‖+ ‖y‖
)

= 2‖x‖2‖y‖2 + ‖x‖2‖y‖+ ‖x‖‖y‖2

for all x, y ∈ ℓ2. Thus if the control function is defined by

ϕ(x, y) = 2‖x‖2‖y‖2 + ‖x‖2‖y‖+ ‖x‖‖y‖2 (x, y ∈ ℓ2),

then we have limn→∞ 22nϕ(2−nx, 2−ny) = 0 and ψ(x) = (72‖x‖4 + 48‖x‖3) 1

2 .

Also for constant 0 < L =
√
2
2 < 1, we have ψ(x2 ) ≤ L

2ψ(x) for all x ∈ ℓ2. Then
the function T : ℓ2 → ℓ2 defined by

T (x1, x2, x3, . . .) = (0, x2, x3, . . .)

for all x = (x1, x2, x3, . . .) ∈ ℓ2, is the unique adjointable mapping fulfilling the
condition (11) in Theorem 3.1.
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