CHARACTERIZATION OF ADJOINTABLE OPERATORS ON HILBERT C^{*}-modules

Sayed Khalil Ekrami ${ }^{1}$ §, Madjid Mirzavaziri ${ }^{2}$
${ }^{1}$ Department of Mathematics
Payame Noor University
P.O. Box 19395-3697, Tehran, IRAN
${ }^{2}$ Department of Pure Mathematics
Ferdowsi University of Mashhad
P. O. Box 1159, Mashhad 91775, IRAN

Abstract

Let \mathcal{H} be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathcal{A}. In this paper, we find the general form of the mappings $T: \mathcal{H} \rightarrow \mathcal{H}$ satisfing $$
2\langle T(x), T(y)\rangle=\langle T(x), y\rangle+\langle x, T(y)\rangle \quad(x, y \in \mathcal{H}),
$$ as adjointable (bounded) \mathcal{A}-linear operators. The generalized Hyers-Ulam stability of the functional equation is discussed.

AMS Subject Classification: 39B52, 46L08
Key Words: Hilbert C^{*}-module, C^{*}-algebra, \mathcal{A}-linear mapping

1. Introduction and Preliminaries

The notion of a Hilbert C^{*}-module initiated by Kaplansky [3] as a generalization of a Hilbert space in which the inner product takes its values in a C^{*}-algebra.

Let \mathcal{A} be a C^{*}-algebra. A pre-Hilbert \mathcal{A}-module or an inner product \mathcal{A} module is a complex linear space \mathcal{H} which is a left \mathcal{A}-module with compatible scalar multiplication $\lambda(a x)=(\lambda a) x=a(\lambda x) \quad(\lambda \in \mathbb{C}, x \in \mathcal{H}, a \in \mathcal{A})$, together with an \mathcal{A}-valued inner product $(x, y) \mapsto\langle x, y\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{A}$ such that for each $x, y, z \in \mathcal{H}, \alpha, \beta \in \mathbb{C}$ and $a \in \mathcal{A}$,

Received: September 6, 2015
Published: February 3, 2016
${ }^{\S}$ Correspondence author
(C) 2016 Academic Publications, Ltd. url: www.acadpubl.eu
(i) $\langle x, x\rangle \geq 0$ and the equality holds if and only if $x=0$.
(ii) $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$,
(iii) $\langle a x, y\rangle=a\langle x, y\rangle$,
(iv) $\langle x, y\rangle^{*}=\langle y, x\rangle$.

The notion of a right Hilbert \mathcal{A}-module can be defined similarly. Note that the condition (i) is understood as a statement in the C^{*}-algebra \mathcal{A}, where an element a is called positive if it can be represented as $b b^{*}$ for some $b \in \mathcal{A}$. The conditions (ii) and (iv) impliy the inner product to be conjugate-linear in its second variable. Validity of a useful version of the classical Cauchy-Schwartz inequality follows that $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$ defines a norm on \mathcal{H} making it into a normed left \mathcal{A}-module. An inner product \mathcal{A}-module \mathcal{H} which is complete with respect to the norm $\|x\|$ is called a Hilbert \mathcal{A}-module or a Hilbert C^{*}-module over the C^{*}-algebra \mathcal{A}. Every C^{*}-algebra \mathcal{A} is a Hilbert \mathcal{A}-module under the \mathcal{A}-valued inner product $\langle a, b\rangle=a^{*} b \quad(a, b \in A)$. Every complex Hilbert space is a left Hilbert \mathbb{C}-module.

One may define an \mathcal{A}-valued norm $|x|=\langle x, x\rangle^{\frac{1}{2}}$ (where, $|a|$ denotes the unique square root of the positive element a in \mathcal{A}). Clearly, $\|\mid x\|\|=\| x \|$, for each $x \in \mathcal{H}$. The \mathcal{A}-valued norm $|x|$ is a useful device but it needs to be handled with care. For example, it is known that |.| does not satisfy the triangle inequality $|x+y| \leq|x|+|y|$ for each $x, y \in \mathcal{H}$; cf. [4].

Let \mathcal{H} be a Hilbert C^{*}-module over a C^{*}-algebra \mathcal{A}. A system $\left(e_{i}\right)_{i \in I}$ in \mathcal{H} is called orthogonal, if $\left\langle e_{i}, e_{j}\right\rangle=0$ whenever $i \neq j$. An orthogonal system $\left(e_{i}\right)_{i \in I}$ in \mathcal{H} is said to be an orthonormal, provided \mathcal{A} is unital and for the inner squares it happens that $\left\langle e_{i}, e_{i}\right\rangle=1$ for all $i \in I$. Let $\left(e_{i}\right)_{i \in I}$ be an orthonormal system in a Hilbert module \mathcal{H} over a unital C^{*}-algebra \mathcal{A}. Landi and Pavlov showed in Theorem 2.10 of [5] that the following conditions are equivalent:
(i) For any x of \mathcal{H} there are elements a_{i} of \mathcal{A} such that

$$
\begin{equation*}
x=\sum_{i \in I} a_{i} e_{i} \tag{1}
\end{equation*}
$$

where convergence in norm is meant and

$$
\sum_{i \in I} a_{i} e_{i}=\lim _{F \in \mathcal{F}} \sum_{i \in F} a_{i} e_{i}
$$

indicates the limit over the set \mathcal{F} of all finite subsets of I, directed by inclusions.
(ii) The system $\left(e_{i}\right)_{i \in I}$ generates \mathcal{H} over \mathcal{A}, that is to say, the closure of its \mathcal{A}-linear span coincides with \mathcal{H}.
(iii) The system $\left(e_{i}\right)_{i \in I}$ is closed, that is to say, for any $x \in \mathcal{H}$

$$
\langle x, x\rangle=\sum_{i \in I}\left\langle x, e_{i}\right\rangle\left\langle e_{i}, x\right\rangle
$$

where the series converges in norm.
An orthonormal system $\left(e_{i}\right)_{i \in I}$ satisfying the equivalent conditions (i)-(iii) is called a Schauder basis for \mathcal{H} over \mathcal{A}. If $\left(e_{i}\right)_{i \in I}$ is a Schauder basis for \mathcal{H}, then the coefficients in the decomposition (1) are unique for any vector x of \mathcal{H}. In fact for any $i \in I, a_{i}=\left\langle x, e_{i}\right\rangle$. Thus any vector of \mathcal{H} is the limit in norm of its Fourier series. Any Schauder basis $\left(e_{i}\right)_{i \in I}$ is complete, i.e. there is no non-zero vector x of \mathcal{H} such that $\left\langle x, e_{i}\right\rangle=0$ for all $i \in I$. Note that by Proposition 3.1. of [5] any two closed orthonormal systems of a Hilbert module over a unital C^{*}-algebra have the same cardinality.

Let \mathcal{H} and \mathcal{K} be Hilbert C^{*}-modules over a C^{*}-algebra \mathcal{A}. A mapping $T: \mathcal{H} \rightarrow \mathcal{K}$ is said to be \mathcal{A}-linear, if

$$
T(a x+\lambda y)=a T(x)+\lambda T(y)
$$

for all $x, y \in \mathcal{H}, a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. A mapping $T: \mathcal{H} \rightarrow \mathcal{K}$ is said to be adjointable, if there exists a mapping $S: \mathcal{K} \rightarrow \mathcal{H}$ such that

$$
\langle T(x), y\rangle=\langle x, S(y)\rangle
$$

for all $x \in D_{T} \subseteq \mathcal{H}, y \in D_{S} \subseteq \mathcal{K}$. The unique mapping S is denoted by T^{*} and is called the adjoint of T. It is well known that any adjointable mapping $T: \mathcal{H} \rightarrow \mathcal{K}$ is \mathcal{A}-linear and bounded. $L(\mathcal{H}, \mathcal{K})$, the set of adjointable maps from \mathcal{H} to \mathcal{K} is a C^{*}-algebra [4]. The C^{*}-algebra of adjointable maps from \mathcal{H} to \mathcal{H} is denoted by $L(\mathcal{H})$.

In general, bounded \mathcal{A}-linear operator may fail to possess an adjoint (cf., [4]). However, if \mathcal{H} is a Hilbert C^{*}-module over the C^{*}-algebra $\mathcal{K}=K(H)$ of all compact operators on a Hilbert space H, then (with another concept of orthonormal basis for Hilbert C^{*}-modules) D. Bakić and B. Guljaš ([1], Remark 5) showed that each bounded \mathcal{K}-linear operator on \mathcal{H} is necessarily adjointable.

In 2003, Radu [6] employed the following result, due to Diaz and Margolis [2], to prove the stability of a Cauchy functional equation.

Proposition 1.1. (The fixed point alternative principle). Let (X, d) be a generalized complete metric space and $J: X \rightarrow X$ be a strictly contractive mapping; that is

$$
d(J(x), J(y)) \leq L d(x, y) \quad(x, y \in X)
$$

for some (Lipschitz) constant $0<L<1$. Then, for a given element $x \in X$, exactly one of the following assertions is true: either
(a) $d\left(J^{n} x, J^{n+1} x\right)=\infty$ for all $n \geq 0$, or
(b) there exists some integer n_{0} such that $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n \geq n_{0}$. Actually, if (b) holds, then
$\left(b_{1}\right)$ the sequence $\left\{J^{n} x\right\}$ converges to a fixed point x^{*} of J,
$\left(b_{2}\right) x^{*}$ is the unique fixed point of J in $X_{0}:=\left\{y \in X ; d\left(J^{n_{0}} x, y\right)<\infty\right\}$;
(b_{3}) $d\left(y, x^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in X_{0}$.
Let \mathcal{H} be a Hilbert C^{*}-module over a C^{*}-algebra \mathcal{A} and $T: \mathcal{H} \rightarrow \mathcal{H}$ be a mapping. In this paper, we introduce the new functional equation

$$
2\langle T(x), T(y)\rangle=\langle T(x), y\rangle+\langle x, T(y)\rangle \quad(x, y \in \mathcal{H}) .
$$

In the first section, we show that T is a bounded \mathcal{A}-linear mapping and we find all of such bounded \mathcal{A}-linear mappings. Also we show that T is adjointable. We will show that the unique inner product preserving solution of the functional equation (\diamond), is the identity function.

In the next section, we consider the generalized Hyers-Ulam stability for the above functional equation. We use the fixed point alternative theorem to show that if \mathcal{H} is a Hilbert C^{*}-modules over a C^{*}-algebra \mathcal{A} and $f: \mathcal{H} \rightarrow \mathcal{H}$ satisfies the inequality

$$
\|2\langle f(x), f(y)\rangle-\langle f(x), y\rangle-\langle x, f(y)\rangle\| \leq \varphi(x, y) \quad(x, y \in \mathcal{H})
$$

then under suitable conditions on $\varphi: \mathcal{H} \times \mathcal{H} \rightarrow[0, \infty)$, there is a unique adjointable \mathcal{A}-linear mapping $T: \mathcal{H} \rightarrow \mathcal{H}$, which suitably approximates f.

2. General Solution

In this section, we show that a function $T: \mathcal{H} \rightarrow \mathcal{H}$ satisfies (\diamond), if and only if, T is an adjointable (bounded) \mathcal{A}-linear operator satisfying the equation $2 T^{*} T=T+T^{*}$.

Theorem 2.1. Let \mathcal{H} be a Hilbert C^{*}-module over a C^{*}-algebra \mathcal{A}. Any mapping $T: \mathcal{H} \rightarrow \mathcal{H}$ satisfying (\diamond) is a bounded \mathcal{A}-linear operator with $\|T\| \leq$ 1.

Proof. It follows from (\diamond) that

$$
\begin{aligned}
& 2\langle T(x+y)-T(x)-T(y), T(z)\rangle \\
& =2\langle T(x+y), T(z)\rangle-2\langle T(x), T(z)\rangle-2\langle T(y), T(z)\rangle \\
& =\langle T(x+y), z\rangle+\langle x+y, T(z)\rangle \\
& -\langle T(x), z\rangle-\langle x, T(z)\rangle-\langle T(y), z\rangle-\langle y, T(z)\rangle \\
& =\langle T(x+y)-T(x)-T(y), z\rangle
\end{aligned}
$$

for all $x, y, z \in \mathcal{H}$, which implies that

$$
\begin{equation*}
\langle T(x+y)-T(x)-T(y), T(z)\rangle=\left\langle T(x+y)-T(x)-T(y), \frac{z}{2}\right\rangle \tag{2}
\end{equation*}
$$

for all $x, y, z \in \mathcal{H}$. It follows from (2) that

$$
\begin{aligned}
& \langle T(x+y)-T(x)-T(y), T(x+y)-T(x)-T(y)\rangle \\
& =\langle T(x+y)-T(x)-T(y), T(x+y)\rangle \\
& -\langle T(x+y)-T(x)-T(y), T(x)\rangle \\
& -\langle T(x+y)-T(x)-T(y), T(y)\rangle \\
& =\left\langle T(x+y)-T(x)-T(y), \frac{x+y}{2}-\frac{x}{2}-\frac{y}{2}\right\rangle=0
\end{aligned}
$$

for all $x, y \in \mathcal{H}$. From the above equation, we get

$$
T(x+y)=T(x)+T(y)
$$

for all $x, y \in \mathcal{H}$. Hence T is an additive mapping.

From

$$
\begin{aligned}
& 2\langle T(a x)-a T(x), T(a x)-a T(x)\rangle \\
& =2\langle T(a x), T(a x)\rangle-2\langle a T(x), T(a x)\rangle \\
& -2\langle T(a x), a T(x)\rangle+2\langle a T(x), a T(x)\rangle \\
& =\langle T(a x), x\rangle a^{*}+a\langle x, T(a x)\rangle-a\langle T(x), x\rangle a^{*}-a\langle x, T(a x)\rangle \\
& -\langle T(a x), x\rangle a^{*}-a\langle x, T(x)\rangle a^{*}+a\langle T(x), x\rangle a^{*}+a\langle x, T(x)\rangle a^{*} \\
& =0
\end{aligned}
$$

for all $a \in \mathcal{A}$ and $x \in \mathcal{H}$, we deduce that $T(a x)=a T(x)$. In the same manner, we deduce that $T(\lambda x)=\lambda T(x)$ for all $x \in \mathcal{H}$ and $\lambda \in \mathbb{C}$. Thus

$$
T(a x+\lambda y)=a T(x)+\lambda T(y)
$$

for all $x, y \in \mathcal{H}, a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$, i.e. T is an \mathcal{A}-linear operator.
Putting $x=y$ in (\diamond), we get

$$
\begin{equation*}
2\langle T(x), T(x)\rangle=\langle T(x), x\rangle+\langle x, T(x)\rangle \quad(x \in \mathcal{H}) \tag{3}
\end{equation*}
$$

Thus

$$
\begin{aligned}
2\|T(x)\|^{2} & =2\left\||T(x)|^{2}\right\|=2\|\langle T(x), T(x)\rangle\|=\|\langle T(x), x\rangle+\langle x, T(x)\rangle\| \\
& \leq 2\|T(x)\|\|x\| \quad(x \in \mathcal{H})
\end{aligned}
$$

and so

$$
\|T\|^{2}=\sup _{\|x\| \leq 1}\|T(x)\|^{2} \leq \sup _{\|x\| \leq 1}\|T(x)\|\|x\|=\|T\|
$$

which implies that $\|T\| \leq 1$. This completes the proof.
Lemma 2.2. An \mathcal{A}-linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ satisfies (\diamond), if and only if T satisfies

$$
\begin{equation*}
2\left\langle T\left(e_{i}\right), T\left(e_{j}\right)\right\rangle=\left\langle T\left(e_{i}\right), e_{j}\right\rangle+\left\langle e_{i}, T\left(e_{j}\right)\right\rangle \quad(i, j \in I) \tag{4}
\end{equation*}
$$

Proof. If T satisfies (\diamond), then trivially T satisfies (4). Assume that T satisfies (4), and let $x, y \in \mathcal{H}$. Then $x=\sum_{i \in I} a_{i} e_{i}$ and $y=\sum_{j \in I} b_{j} e_{j}$, where $a_{i}=\left\langle x, e_{i}\right\rangle$ and $b_{j}=\left\langle y, e_{j}\right\rangle$ for $i, j \in I$. It follows from Theorem 2.1 that

$$
2\langle T(x), T(y)\rangle=2\left\langle T\left(\sum_{i \in I} a_{i} e_{i}\right), T\left(\sum_{j \in I} b_{j} e_{j}\right)\right\rangle
$$

$$
\begin{aligned}
& =\sum_{i \in I} \sum_{j \in I} a_{i}\left(2\left\langle T\left(e_{i}\right), T\left(e_{j}\right)\right\rangle\right) b_{j}^{*} \\
& =\sum_{i \in I} \sum_{j \in I} a_{i}\left(\left\langle T\left(e_{i}\right), e_{j}\right\rangle+\left\langle e_{i}, T\left(e_{j}\right)\right\rangle\right) b_{j}^{*} \\
& =\sum_{i \in I} \sum_{j \in I} a_{i}\left\langle T\left(e_{i}\right), e_{j}\right\rangle b_{j}^{*}+\sum_{i \in I} \sum_{j \in I} a_{i}\left\langle e_{i}, T\left(e_{j}\right)\right\rangle b_{j}^{*} \\
& =\left\langle T\left(\sum_{i \in I} a_{i} e_{i}\right), \sum_{j \in I} b_{j} e_{j}\right\rangle+\left\langle\sum_{i \in I} a_{i} e_{i}, T\left(\sum_{j \in I} b_{j} e_{j}\right)\right\rangle \\
& =\langle T(x), y\rangle+\langle x, T(y)\rangle .
\end{aligned}
$$

Let $\left(e_{i}\right)_{i \in I}$ be a Schauder basis for Hilbert C^{*}-module \mathcal{H} over a unital C^{*} algebra \mathcal{A} and $T: \mathcal{H} \rightarrow \mathcal{H}$ be an \mathcal{A}-linear operator. Let $a_{i j}=\left\langle T\left(e_{j}\right), e_{i}\right\rangle$ for all $i, j \in I$ and consider the matrix $A=\left[a_{i j}\right]$ corresponding to the \mathcal{A}-linear operator T. The next theorem characterizes the bounded \mathcal{A}-linear operators T satisfying (\diamond).

Theorem 2.3. Let \mathcal{H} be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathcal{A}. An \mathcal{A}-linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ satisfies (\diamond), if and only if,

$$
\begin{equation*}
2 A^{t} A^{*}=A^{t}+A^{*} \tag{5}
\end{equation*}
$$

where A^{t} is the transpose of A and $A^{*}=\left[a_{i j}^{*}\right]$.
Proof. Suppose that T satisfies (\diamond), then from Lemma 2.2, T satisfies (4) for all $i, j \in I$. Since for all $i \in I, T\left(e_{i}\right)=\sum_{p \in I}\left\langle T\left(e_{i}\right), e_{p}\right\rangle e_{p}$, then we have

$$
\begin{aligned}
& 2\left\langle\sum_{p \in I}\left\langle T\left(e_{i}\right), e_{p}\right\rangle e_{p}, \sum_{q \in I}\left\langle T\left(e_{j}\right), e_{q}\right\rangle e_{q}\right\rangle \\
& =\left\langle\sum_{p \in I}\left\langle T\left(e_{i}\right), e_{p}\right\rangle e_{p}, e_{j}\right\rangle+\left\langle e_{i}, \sum_{q \in I}\left\langle T\left(e_{j}\right), e_{q}\right\rangle e_{q}\right\rangle .
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& 2 \sum_{p \in I} \sum_{q \in I}\left\langle T\left(e_{i}\right), e_{p}\right\rangle\left\langle e_{p}, e_{q}\right\rangle\left\langle e_{q}, T\left(e_{j}\right)\right\rangle \\
& =\sum_{p \in I}\left\langle T\left(e_{i}\right), e_{p}\right\rangle\left\langle e_{p}, e_{j}\right\rangle+\sum_{q \in I}\left\langle e_{i}, e_{q}\right\rangle\left\langle e_{q}, T\left(e_{j}\right)\right\rangle .
\end{aligned}
$$

Therefore it follows from the last equation that

$$
2 \sum_{p \in I}\left\langle T\left(e_{i}\right), e_{p}\right\rangle\left\langle e_{p}, T\left(e_{j}\right)\right\rangle=\left\langle T\left(e_{i}\right), e_{j}\right\rangle+\left\langle e_{i}, T\left(e_{j}\right)\right\rangle \quad(i, j \in I)
$$

Let $a_{i j}=\left\langle T\left(e_{j}\right), e_{i}\right\rangle$ for all $i, j \in I$, then the last equation implies that

$$
2 \sum_{p \in I} a_{p i} a_{p j}^{*}=a_{j i}+a_{i j}^{*} \quad(i, j \in I)
$$

This means that $2 A^{t} A^{*}=A^{t}+A^{*}$. Conversely, if $2 A^{t} A^{*}=A^{t}+A^{*}$, it is easy to see that T satisfies (\diamond).

Corollary 2.4. Let \mathcal{H} be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathcal{A}. An \mathcal{A}-linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ satisfies (\diamond), if and only if T is adjointable and satisfies the equation $2 T^{*} T=T+T^{*}$.

Proof. Suppose that T satisfies (\diamond). From (5) we have

$$
\begin{equation*}
2\left(A^{*}\right)^{t} A=A+\left(A^{*}\right)^{t} \tag{6}
\end{equation*}
$$

Define the \mathcal{A}-linear operator $S: \mathcal{H} \rightarrow \mathcal{H}$ by the matrix $\left(A^{*}\right)^{t}$. Then trivially $\left\langle S\left(e_{j}\right), e_{i}\right\rangle=a_{j i}^{*}$ for all $i, j \in I$ and it follows that $\left\langle e_{j}, S\left(e_{i}\right)\right\rangle=a_{i j}=\left\langle T\left(e_{j}\right), e_{i}\right\rangle$ for all $i, j \in I$. From \mathcal{A}-linearity of T and S, we get

$$
\langle T(x), y\rangle=\langle x, S(y)\rangle \quad(x, y \in \mathcal{H}) .
$$

So T is adjointable with $T^{*}=S$. From (6) we get $2 T^{*} T=T+T^{*}$. Conversely, if T is an adjointable \mathcal{A}-linear operator such that $2 T^{*} T=T+T^{*}$, then it satisfies (\diamond).

Remark 2.5. Suppose that the mappings T and S satisfy (\diamond) and $\langle T(x), S(y)\rangle=0$ for all $x, y \in \mathcal{H}$, then for any complex number $\lambda=(r, \theta)$ with $r=2 \cos \theta$, the adjointable \mathcal{A}-linear mapping $\lambda T+S$ satisfies (\diamond). Also if the mapping T satisfies (\diamond), then $I-T$ satisfies (\diamond).

Example 2.6. The Hilbert space ℓ^{2} is a Hilbert \mathbb{C}-module. The \mathbb{C}-linear operator $T: \ell^{2} \rightarrow \ell^{2}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{2}, x_{3}, \ldots\right)
$$

for all $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{2}$, satisfies (\diamond), also $\|T\|<1$ and $T=T^{*}$.

Example 2.7. Let $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a \mathbb{C}-linear operator, corresponding with the complex matrix $A=\left[a_{i j}\right]$. T satisfies (\diamond), if and only if the complex numbers $a_{i j}$ satisfy the following equations:

$$
\begin{gathered}
\left|a_{11}-\frac{1}{2}\right|^{2}+\left|a_{21}\right|^{2}=\frac{1}{4}, \quad\left|a_{22}-\frac{1}{2}\right|^{2}+\left|a_{12}\right|^{2}=\frac{1}{4} \\
\left|a_{12}\right|=\left|a_{21}\right| \leq \frac{1}{2}, \quad\left|a_{11}-\frac{1}{2}\right|=\left|a_{22}-\frac{1}{2}\right| \leq \frac{1}{2}
\end{gathered}
$$

Remark 2.8. Let $\alpha, \beta, \gamma \in \mathbb{C}$ be nonzero complex numbers and $T: \mathcal{H} \rightarrow \mathcal{H}$ be a mapping satisfing

$$
\alpha\langle T(x), T(y)\rangle=\beta\langle T(x), y\rangle+\gamma\langle x, T(y)\rangle \quad(x, y \in \mathcal{H}) .
$$

It is easy to see that T is an adjointable \mathcal{A}-linear mapping with $\|T\| \leq \frac{|\beta|+|\gamma|}{|\alpha|}$. Moreover it follows that $\alpha T^{*} T=\beta T+\gamma T^{*}$ or equivalently $\left(\frac{\alpha}{\beta} T^{*}-I\right)\left(\frac{\alpha}{\gamma} T-I\right)=$ I. Thus if $\frac{\alpha}{\gamma} T-I$ is surjective, then it is invertible in $L(\mathcal{H})$ with $\left(\frac{\alpha}{\gamma} T-I\right)^{-1}=$ $\frac{\alpha}{\beta} T^{*}-I$.

In particular, if the mapping T satisfies $\left(\diamond^{\prime}\right)$ with $\alpha=\beta=\gamma=1$, then $I-T$ is inner product preserving and so is an isometry.

3. Stability

In this section, we prove the generalized Hyers-Ulam stability of the equation (\diamond).

Theorem 3.1. Let \mathcal{H} be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathcal{A} and $\varphi: \mathcal{H} \times \mathcal{H} \rightarrow[0, \infty)$ be an control function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 2^{2 n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0 \tag{7}
\end{equation*}
$$

for all $x, y \in \mathcal{H}$. Assume that there is $0<L<1$ such that

$$
\begin{equation*}
\psi\left(\frac{x}{2}\right) \leq \frac{L}{2} \psi(x) \tag{8}
\end{equation*}
$$

for all $x \in \mathcal{H}$, where

$$
\begin{equation*}
\psi(x)=(4 \varphi(x, x)+2 \varphi(2 x, x)+2 \varphi(x, 2 x)+\varphi(2 x, 2 x))^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

If a function $f: \mathcal{H} \rightarrow \mathcal{H}$ satisfies the inequality

$$
\begin{equation*}
\|2\langle f(x), f(y)\rangle-\langle f(x), y\rangle-\langle x, f(y)\rangle\| \leq \varphi(x, y) \tag{10}
\end{equation*}
$$

for all $x, y \in \mathcal{H}$, then there exists a unique adjointable mapping $T: \mathcal{H} \rightarrow \mathcal{H}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{\sqrt{2} L}{4(1-L)} \psi(x) \tag{11}
\end{equation*}
$$

for all $x \in \mathcal{H}$.
Proof. Replacing x by $2 x$ in (10), we get

$$
\begin{equation*}
\|2\langle f(2 x), f(y)\rangle-\langle f(2 x), y\rangle-2\langle x, f(y)\rangle\| \leq \varphi(2 x, y) \tag{12}
\end{equation*}
$$

From (10) and (12), we have

$$
\begin{equation*}
\|2\langle f(2 x)-2 f(x), f(y)\rangle-\langle f(2 x)-2 f(x), y\rangle\| \leq 2 \varphi(x, y)+\varphi(2 x, y) \tag{13}
\end{equation*}
$$

Replacing y by $2 y$ in (13), we get

$$
\begin{equation*}
\|2\langle f(2 x)-2 f(x), f(2 y)\rangle-2\langle f(2 x)-2 f(x), y\rangle\| \leq 2 \varphi(x, 2 y)+\varphi(2 x, 2 y) \tag{14}
\end{equation*}
$$

From (13) and (14), we have

$$
\begin{equation*}
\|2\langle f(2 x)-2 f(x), f(2 y)-2 f(y)\rangle\| \leq \psi(x)^{2} \tag{15}
\end{equation*}
$$

Letting $x=y$ in (15), we obtain

$$
\|f(2 x)-2 f(x)\|^{2}=\left\||f(2 x)-2 f(x)|^{2}\right\| \leq \frac{1}{2} \psi(x)^{2} .
$$

and so

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq \frac{\sqrt{2}}{2} \psi(x) \tag{16}
\end{equation*}
$$

Let $X=\{g: \mathcal{H} \rightarrow \mathcal{H}, g(0)=0\}$ and define $d: X \times X \rightarrow[0, \infty]$ by

$$
d(g, h)=\inf \{\alpha \geq 0:\|g(x)-h(x)\| \leq \alpha \psi(x), \forall x \in \mathcal{H}\} \quad(g, h \in X)
$$

Define $J: X \rightarrow X$ by $J(g)(x)=2 g\left(\frac{x}{2}\right)$ for each $x \in \mathcal{H}$. Then (X, d) is a complete generalized metric space and from (8) it follows that J is a strictly contractive mapping on X with the Lipschitz constant $L=\frac{1}{2}$. From (8) and (16) we have

$$
\|J(f)(x)-f(x)\|=\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\|=2\left\|f\left(\frac{x}{2}\right)-\frac{f(x)}{2}\right\| \leq \frac{\sqrt{2}}{4} L \psi(x)
$$

for each $x \in \mathcal{H}$. This means that $d(J(f), f) \leq \frac{\sqrt{2}}{4} L$. Therefore, by Proposition 1.1, J has a unique fixed point in the set $X_{0}=\{g \in X: d(f, g)<\infty\}$. Let $T: \mathcal{H} \rightarrow \mathcal{H}$ be the unique fixed point of J. We have $\lim _{n}\left(J^{n}(f), T\right)=0$, so T is defined by

$$
\begin{equation*}
T(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right) \quad(x \in \mathcal{H}) \tag{17}
\end{equation*}
$$

On the other hand, we have $d(f, J(f)) \leq \frac{\sqrt{2}}{4} L$ and $J(T)=T$, then

$$
d(f, T) \leq d(f, J(f))+d(J(f), J(T)) \leq \frac{\sqrt{2}}{4} L+L d(f, T)
$$

So

$$
d(f, T) \leq \frac{\sqrt{2} L}{4(1-L)}
$$

which implies the inequality (11).
It is easy to see that for all $x, y \in \mathcal{H}$, we have

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\langle 2^{n} f\left(\frac{x}{2^{n}}\right), y\right\rangle & =\langle T(x), y\rangle \tag{18}\\
\lim _{n \rightarrow \infty}\left\langle x, 2^{n} f\left(\frac{y}{2^{n}}\right)\right\rangle & =\langle x, T(y)\rangle \tag{19}
\end{align*}
$$

Since for every $x \in \mathcal{H}$ the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is convergent, so it is bounded. Therefore for every $x \in \mathcal{H}$ there exists $K_{x}>0$ such that $\left\|2^{n} f\left(\frac{x}{2^{n}}\right)\right\| \leq K_{x}$ for all $n \in \mathbb{N}$. Thus

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|\left\langle 2^{n} f\left(\frac{x}{2^{n}}\right), 2^{n} f\left(\frac{y}{2^{n}}\right)\right\rangle-\langle T(x), T(y)\rangle\right\| \\
& =\lim _{n \rightarrow \infty} \|\left\langle 2^{n} f\left(\frac{x}{2^{n}}\right), 2^{n} f\left(\frac{y}{2^{n}}\right)\right\rangle-\left\langle 2^{n} f\left(\frac{x}{2^{n}}\right), T(y)\right\rangle \\
& +\left\langle 2^{n} f\left(\frac{x}{2^{n}}\right), T(y)\right\rangle-\langle T(x), T(y)\rangle \| \\
& =\lim _{n \rightarrow \infty}\left\|\left\langle 2^{n} f\left(\frac{x}{2^{n}}\right), 2^{n} f\left(\frac{y}{2^{n}}\right)-T(y)\right\rangle+\left\langle 2^{n} f\left(\frac{x}{2^{n}}\right)-T(x), T(y)\right\rangle\right\| \\
& \leq \lim _{n \rightarrow \infty}\left(\left\|2^{n} f\left(\frac{x}{2^{n}}\right)\right\|\left\|2^{n} f\left(\frac{y}{2^{n}}\right)-T(y)\right\|+\left\|2^{n} f\left(\frac{x}{2^{n}}\right)-T(x)\right\|\|T(y)\|\right) \\
& \leq \lim _{n \rightarrow \infty}\left(K_{x}\left\|2^{n} f\left(\frac{y}{2^{n}}\right)-T(y)\right\|+\left\|2^{n} f\left(\frac{x}{2^{n}}\right)-T(x)\right\|\|T(y)\|\right)=0
\end{aligned}
$$

for all $x, y \in \mathcal{H}$. This shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle 2^{n} f\left(\frac{x}{2^{n}}\right), 2^{n} f\left(\frac{y}{2^{n}}\right)\right\rangle=\langle T(x), T(y)\rangle \quad(x, y \in \mathcal{H}) \tag{20}
\end{equation*}
$$

It follows from (7), (18), (19) and (20) that

$$
\begin{aligned}
& \|2\langle T(x), T(y)\rangle-\langle T(x), y\rangle-\langle x, T(y)\rangle\| \\
& =\lim _{n \rightarrow \infty} 2^{2 n}\left\|2\left\langle f\left(\frac{x}{2^{n}}\right), f\left(\frac{y}{2^{n}}\right)\right\rangle-\left\langle f\left(\frac{x}{2^{n}}\right), \frac{y}{2^{n}}\right\rangle-\left\langle\frac{x}{2^{n}}, f\left(\frac{y}{2^{n}}\right)\right\rangle\right\| \\
& \leq \lim _{n \rightarrow \infty} 2^{2 n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
\end{aligned}
$$

for all $x, y \in \mathcal{H}$. Whence

$$
\begin{equation*}
2\langle T(x), T(y)\rangle=\langle T(x), y\rangle+\langle x, T(y)\rangle \tag{21}
\end{equation*}
$$

for all $x, y \in \mathcal{H}$ and so by Corollary (2.4), T is a adjointable \mathcal{A}-linear mapping.
To see the uniqueness of T, let $T^{\prime}: \mathcal{H} \rightarrow \mathcal{H}$ be another adjointable \mathcal{A}-linear mapping satisfying (11). Then

$$
\begin{aligned}
\left\|T(x)-T^{\prime}(x)\right\| & =2^{n}\left\|T\left(\frac{x}{2^{n}}\right)-T^{\prime}\left(\frac{x}{2^{n}}\right)\right\| \\
& \leq 2^{n}\left(\left\|T\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|+\left\|f\left(\frac{x}{2^{n}}\right)-T^{\prime}\left(\frac{x}{2^{n}}\right)\right\|\right) \\
& \leq 2^{n} \frac{\sqrt{2} L}{2(1-L)} \psi\left(\frac{x}{2^{n}}\right) \\
& \leq \frac{\sqrt{2} L}{2(1-L)} L^{n} \psi(x)
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in \mathcal{H}$. This completes the proof.
The following Theorem can be proved in a similar way as Theorem 3.1.
Theorem 3.2. Let \mathcal{H} be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathcal{A} and $\varphi: \mathcal{H} \times \mathcal{H} \rightarrow[0, \infty)$ be an control function such that

$$
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{2^{2 n}}=0
$$

for all $x, y \in \mathcal{H}$. Assume that there is $0<L<1$ such that

$$
\psi(2 x) \leq 2 L \psi(x)
$$

for all $x \in \mathcal{H}$, where

$$
\psi(x)=(4 \varphi(x, x)+2 \varphi(2 x, x)+2 \varphi(x, 2 x)+\varphi(2 x, 2 x))^{\frac{1}{2}}
$$

If a function $f: \mathcal{H} \rightarrow \mathcal{H}$ satisfies the inequality

$$
\|2\langle f(x), f(y)\rangle-\langle f(x), y\rangle-\langle x, f(y)\rangle\| \leq \varphi(x, y)
$$

for all $x, y \in \mathcal{H}$, then there exists a unique adjointable mapping $T: \mathcal{H} \rightarrow \mathcal{H}$ such that

$$
\|f(x)-T(x)\| \leq \frac{\sqrt{2}}{4(1-L)} \psi(x) \quad(x \in \mathcal{H})
$$

The next result follows from Theorem 3.1, where $\varphi(x, y)=\|x-y\|^{p}$ for all $x, y \in \mathcal{H}$.

Corollary 3.3. Let \mathcal{H} be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathcal{A}. If a function $f: \mathcal{H} \rightarrow \mathcal{H}$ satisfies the inequality

$$
\|2\langle f(x), f(y)\rangle-\langle f(x), y\rangle-\langle x, f(y)\rangle\| \leq\|x-y\|^{p}
$$

for all $x, y \in \mathcal{H}$ and some $p>2$, then there exists a unique adjointable mapping $T: \mathcal{H} \rightarrow \mathcal{H}$ such that

$$
\|f(x)-T(x)\| \leq \frac{\sqrt{2}}{\sqrt{2^{p}}-2}\|x\|^{\frac{p}{2}} \quad(x \in \mathcal{H})
$$

The next result follows from Theorem 3.2, where $\varphi(x, y)=\varepsilon$.
Corollary 3.4. Let \mathcal{H} be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathcal{A}. If a function $f: \mathcal{H} \rightarrow \mathcal{H}$ satisfies the inequality

$$
\|2\langle f(x), f(y)\rangle-\langle f(x), y\rangle-\langle x, f(y)\rangle\| \leq \varepsilon
$$

for all $x, y \in \mathcal{H}$, then there exists a unique adjointable mapping $T: \mathcal{H} \rightarrow \mathcal{H}$ such that

$$
\|f(x)-T(x)\| \leq \frac{3 \sqrt{2 \varepsilon}}{2} \quad(x \in \mathcal{H})
$$

Example 3.5. Consider the Hilbert \mathbb{C}-module ℓ^{2}. Let $\phi: \ell^{2} \rightarrow \mathbb{C}$ be an arbitrary bounded function such that $|\phi(x)| \leq\|x\|$ for all $x \in \ell^{2}$, where $\|x\|=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right)^{\frac{1}{2}}$. Define the mapping $f: \ell^{2} \rightarrow \ell^{2}$ by

$$
f\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(\phi(x) x_{1}, x_{2}, x_{3}, \ldots\right)
$$

for all $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{2}$. Then

$$
\begin{aligned}
& |2\langle f(x), f(y)\rangle-\langle f(x), y\rangle-\langle x, f(y)\rangle| \\
& =\mid 2 \phi(x) x_{1} \overline{\phi(y) y_{1}}+2 \sum_{n=2}^{\infty} x_{n} \overline{y_{n}} \\
& -\phi(x) x_{1} \overline{y_{1}}-\sum_{n=2}^{\infty} x_{n} \overline{y_{n}}-x_{1} \overline{\phi(y) y_{1}}-\sum_{n=2}^{\infty} x_{n} \overline{y_{n}} \mid \\
& =\left|\left(x_{1} \overline{y_{1}}\right)(2 \phi(x) \overline{\phi(y)}-\phi(x)-\overline{\phi(y)})\right| \\
& \leq\left|x_{1}\right|\left|y_{1}\right|(2|\phi(x)||\phi(y)|+|\phi(x)|+|\phi(y)|) \\
& \leq\|x\|\|y\|(2\|x\|\|y\|+\|x\|+\|y\|) \\
& =2\|x\|^{2}\|y\|^{2}+\|x\|^{2}\|y\|+\|x\|\|y\|^{2}
\end{aligned}
$$

for all $x, y \in \ell^{2}$. Thus if the control function is defined by

$$
\varphi(x, y)=2\|x\|^{2}\|y\|^{2}+\|x\|^{2}\|y\|+\|x\|\|y\|^{2} \quad\left(x, y \in \ell^{2}\right)
$$

then we have $\lim _{n \rightarrow \infty} 2^{2 n} \varphi\left(2^{-n} x, 2^{-n} y\right)=0$ and $\psi(x)=\left(72\|x\|^{4}+48\|x\|^{3}\right)^{\frac{1}{2}}$. Also for constant $0<L=\frac{\sqrt{2}}{2}<1$, we have $\psi\left(\frac{x}{2}\right) \leq \frac{L}{2} \psi(x)$ for all $x \in \ell^{2}$. Then the function $T: \ell^{2} \rightarrow \ell^{2}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{2}, x_{3}, \ldots\right)
$$

for all $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{2}$, is the unique adjointable mapping fulfilling the condition (11) in Theorem 3.1.

References

[1] D. Bakić, B. Guljaš, Hilbert C^{*}-modules over C^{*}-algebras of Compact Operators, Acta Sci. Math. (Szeged), 68 (2002), 249-269.
[2] J.B. Diaz, B. Margolis, A fixed point theorem of the alternative for the contractions on generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.
[3] I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math., 75 (1953), 839-858.
[4] E.C. Lance, Hilbert C^{*}-modules: A Toolkit for Operator Algebraists, Cambridge University Press, Cambridge, (1995).
[5] G. Landi, A. Pavlov, On Orthogonal Systems in Hilbert C^{*}-modules, Journal of Operator Theory, 68, No. 2 (2012), 487-500.
[6] V. Radu, The fixed point alternative and stability of functional equations, Fixed Point Theory, 4 (2003), 91-96.

