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Abstract: Let (X,⊥) be a real vector space of dimension at least 3, with the orthogonality
defined on it by:

(i) for all x ∈ X, x ⊥ 0 and 0 ⊥ x,

(ii) for all x, y ∈ X \ {0}, x ⊥ y if and only if x, y are linearly independent.

We show that any orthogonally quadratic mapping on X is a quadratic mapping. Also we

prove the Hyers-Ulam stability of orthogonally quadratic functional equation and the Hyers-

Ulam stability of orthogonally pexiderized quadratic functional equation.
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1. Introduction and Preliminaries

As long as we are working in inner product spaces, usually there is no doubt
what kind of orthogonality relation we have in mind. Namely, it is the one
derived from an inner product and then vectors x and y are orthogonal (x ⊥ y)
if and only if 〈x, y〉 = 0.
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There are several orthogonality notions on a real normed space such as
Birkhoff-James, isosceles, Phythagorean, Roberts and Diminnie (see [10]). J.Rätz
in [7] introduced an abstract definition of orthogonality on a real vector space
by using four axioms and he investigated the structure of orthogonally additive
mappings

f(x+ y) = f(x) + f(y) (x ⊥ y). (1.1)

The orthogonally quadratic equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (x ⊥ y) (1.2)

was first investigated by Vajzović in [12] when X is a Hilbert space, Y is the
scalar field, f is continuous and ⊥means the Hilbert space orthogonality. Later,
Drljević, see [1], generalized this result to A-orthogonality on a real or complex
Hilbert space defined by x ⊥ y if and only if 〈Ax, y〉 = 0, where A : X → X

is a continuous selfadjoint operator. Fochi in [3] showed that in inner product
spaces of dimension not less than 3, each real valued orthogonally quadratic
mapping is unconditionally quadratic. In [4], Fochi proved even more, namely,
she showed that both for real and complex valued functions, if dimA(X) ≥ 3,
then the solutions of the conditional A-orthogonal quadratic equation have to be
quadratic (unconditionally). Szabó, see [11], generalized the above mentioned
results to a symmetric orthogonality introduced by a sesquilinear form on a
linear space and for arbitrary mappings with values in an Abelian group.

In [3], Fochi found the general solutions of pexiderized form of orthogonally
quadratic equation (1.2), namely

f(x+ y) + f(x− y) = 2g(x) + 2h(y) (x ⊥ y) (1.3)

in an orthogonality space X in the sense of Rätz.

The stability of functional equation (1.2) was first investigated by Drljević
[2] by using A-orthogonality on complex Hilbert spaces with the continuity
assumption of the function f . Sikorska (see [9]) proved the stability of (1.2)
on a real Hilbert space and without the continuity assumption of function f .
Moslehian in [6] proved the stability of the equation (1.3) for functions defined
on an orthogonality space. It does not, however, generalize the previous results
since it is assumed that f is odd.

One of the open problems in the theory of functional equations is to de-
termine all solutions of the orthogonally quadratic functional equation on an
arbitrary orthogonality space, or in a normed space with, e.g., Birkhoff, isosceles
or Pythagorean orthogonalities, see [10].
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In this paper, we show that any orthogonally quadratic function on an or-
thogonality vector space is a quadratic function. Also we prove the Hyers-Ulam
stability of orthogonally quadratic functional equation (1.2) and the Hyers-
Ulam stability of orthogonally pexiderized quadratic functional equation (1.3)
on orthogonality vector spaces.

2. The Result

Let (X,⊥) be a real vector space of dimension at least 3, with the orthogonality
defined on it by

(i) for all x ∈ X, x ⊥ 0 and 0 ⊥ x,

(ii) for all x, y ∈ X \ {0}, x ⊥ y if and only if x, y are linearly independent.

Let Y be a real vector space, then we show that any orthogonally quadratic
function f : X → Y is a quadratic function.

Lemma 2.1. If f : X → Y is a solution of the conditional functional
equation (1.2), then f(2x) = 4f(x) for all x ∈ X.

Proof. Fix x ∈ X, then there are y, z ∈ X such that x ⊥ y, x ⊥ z and
y ⊥ z. So by (1.2) we have

f(x+ y) + f(x− y) = 2f(x) + 2f(y), (2.1)

f(x+ z) + f(x− z) = 2f(x) + 2f(z), (2.2)

f(y + z) + f(y − z) = 2f(y) + 2f(z). (2.3)

Also since 2x ⊥ y + z and 2x ⊥ y − z, by (1.2) we get

f(2x+ y + z) + f(2x− y − z) = 2f(2x) + 2f(y + z), (2.4)

f(2x+ y − z) + f(2x− y + z) = 2f(2x) + 2f(y − z). (2.5)

Similarly applying (1.2) for the pairs of orthogonal vectors (x+ y, x+ z), (x +
y, x− z), (x + z, x− y) and (x− z, x− y) we obtain

f(2x+ y + z) + f(y − z) = 2f(x+ y) + 2f(x+ z), (2.6)

f(2x+ y − z) + f(y + z) = 2f(x+ y) + 2f(x− z), (2.7)
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f(2x− y + z) + f(y + z) = 2f(x+ z) + 2f(x− y), (2.8)

f(2x− y − z) + f(y − z) = 2f(x− z) + 2f(x− y). (2.9)

Form (2.4) and (2.5), we get

f(2x+ y + z) + f(2x− y − z) + f(2x+ y − z) + f(2x− y + z)

= 4f(2x) + 2f(y + z) + 2f(y − z).

Also from (2.6), (2.7),(2.8) and (2.9), we get

f(2x+ y + z) + f(2x+ y − z) + f(2x− y + z) + f(2x− y − z)

= 4f(x+ y) + 4f(x− y) + 4f(x+ z) + 4f(x− z)− 2f(y + z)− 2f(y − z).

Using the last equations, we have

f(2x) = f(x+ y) + f(x− y) + f(x+ z) + f(x− z)− f(y + z)− f(y − z).

From (2.1), (2.2) and (2.3), we get

f(x+ y) + f(x− y) + f(x+ z) + f(x− z)− f(y + z)− f(y − z) = 4f(x).

Therefore by the last two equations, we get f(2x) = 4f(x) for all x ∈ X and
this completes the proof.

Theorem 2.2. Any solution f : X → Y of orthogonally quadratic func-
tional equation (1.2), is a quadratic mapping.

Proof. For any z ∈ X, put z⊥ = {x ∈ X,x ⊥ z} and define the mapping
Tz : z

⊥ → Y by

Tz(x) = f(x+ z)− f(x− z), (2.10)

where f is a solution of equation (1.2). Then Tz is orthoganally additive on z⊥.
To see this, let x, y ∈ z⊥ with x ⊥ y, then

Tz(x) + Tz(y) = f(x+ z)− f(x− z) + f(y + z)− f(y − z)

=
(

f(x+ z) + f(y)
)

−
(

f(x− z) + f(y)
)

+
(

f(y + z) + f(x)
)

−
(

f(y − z) + f(x)
)

.
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Since (x+ z), (x − z) ⊥ y and (y + z), (y − z) ⊥ x, we get

Tz(x) + Tz(y)

=
1

2

{

(

f(x+ z + y) + f(x+ z − y)
)

−
(

f(x− z + y) + f(x− z − y)
)

+
(

f(y + z + x) + f(y + z − x)
)

−
(

f(y − z + x) + f(y − z − x)
)

}

= f(x+ y + z)− f(x+ y − z)

= Tz(x+ y).

Also since Tz is an odd mapping on z⊥, it follows from Theorem 5 of [7]
that Tz is additive on z⊥. It follows from (1.2) and that (2.10)

2f(x+ z) = 2f(x) + 2f(z) + Tz(x) (x ⊥ z),

and therefore

f(x+ z) = f(x) + f(z) +
1

2
Tz(x) (x ⊥ z). (2.11)

Now we show that f is quadratic on X. Let x, y ∈ X be arbitrary. Then
one of the following cases happens for x and y:

First case. Let x ⊥ y. Then it is obvious that f is quadratic.
Second case. Let x 6⊥ y and x+ y ⊥ x− y. Then replacing x by x+ y and

y by x− y in (1.2), we have

f(2x) + f(2y) = 2f(x+ y) + 2f(x− y),

which by Lemma 2.1 implies that f(x+ y) + f(x− y) = 2f(x) + 2f(y).
Third case. Let x 6⊥ y and x+ y 6⊥ x− y. Then there exits a vector z ∈ X

such that x ⊥ z, y ⊥ z and x+ y+ z ⊥ x− y+ z. Replacing x by x+ y+ z and
y by x− y + z in (1.2), we have

f(2(x+ z)) + f(2y) = 2f(x+ y + z) + 2f(x− y + z),

which implies that

f(x+ y + z) + f(x− y + z) = 2f(x+ z) + 2f(y).

It follows from (2.11) that

f(x+ y) + f(z) +
1

2
Tz(x+ y) + f(x− y) + f(z) +

1

2
Tz(x− y)

= 2f(x) + 2f(z) + Tz(x) + 2f(y).

Since Tz is additive on z⊥, we conclude that f(x+y)+f(x−y) = 2f(x)+2f(y).
This completes the proof.
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In the next theorem, we prove the Hyers-Ulam stability of the orthogonally
quadratic functional equation (1.2) on orthogonality vector spaces.

Theorem 2.3. Let ε > 0 be a real number and Y be a real Banach space.
If f : X → Y is a function satisfying the inequality

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε (2.12)

for all orthogonal vectors x, y ∈ X, then there exists a unique quadratic function
q : X → Y such that

‖f(x)− q(x)‖ ≤
3

2
ε (x ∈ X). (2.13)

Proof. Let x ∈ X. There exist vectors y, z ∈ X such that x ⊥ z, x ⊥ y and
y ⊥ z. Since x+ y ⊥ x− y, we have

‖f(2x) + f(2y)− 2f(x+ y)− 2f(x− y)‖ ≤ ε. (2.14)

From (2.12) and (2.14) we get

‖f(2x) + f(2y)− 4f(x)− 4f(y)‖ ≤ 3ε.

Similarly since x+ z ⊥ x− z and y + z ⊥ y − z, we get

‖f(2x) + f(2z)− 4f(x)− 4f(z)‖ ≤ 3ε,

‖f(2y) + f(2z)− 4f(y)− 4f(z)‖ ≤ 3ε.

Therefore

‖2f(2x) − 8f(x)‖ ≤ ‖f(2x) + f(2y)− 4f(x)− 4f(y)‖

+ ‖f(2x) + f(2z)− 4f(x)− 4f(z)‖

+ ‖f(2y) + f(2z)− 4f(y)− 4f(z)‖ ≤ 9ε,

and then

‖f(2x)− 4f(x)‖ ≤ 9
2ε. (2.15)

An easy induction shows that for an arbitrary positive integer n we have

‖f(x)− 4−nf(2nx)‖ ≤ 3
2ε(1 − 4−n) (x ∈ X). (2.16)



QUADRATIC FUNCTIONAL EQUATION ON... 387

This implies that for every x ∈ X the sequence {4−nf(2nx)} is Cauchy in
Banach space Y . Let q(x) = limn→∞ 4−nf(2nx) for each x ∈ X, then relation
(2.16) implies that

‖f(x)− q(x)‖ ≤ 3
2ε (x ∈ X).

Choose arbitrarily x, y ∈ X with x ⊥ y. Then for any n ∈ N, 2nx ⊥ 2ny, it
follows from (2.12) that

‖4−nf(2n(x+ y)) + 4−nf(2n(x− y))− 4−nf(2nx)− 4−nf(2ny)‖ ≤ 4−nε.

Letting n tend to infnity we infer that q(x+y)+q(x−y) = 2q(x)+2q(y) for all
x, y ∈ X with x ⊥ y. From Theorem 2.2, each orthogonally quadratic mapping
is quadratic, therefore so is q.

To prove the uniqueness, assume q′ : X → Y to be another quadratic
mapping such that ‖f(x) − q′(x)‖ ≤ 3

2ε for all x ∈ X. Then, for each x ∈ X

and all n ∈ N it follows from Lemma 2.1 that

‖q(x)− q′(x)‖ ≤ 4−n‖(q(2nx)− f(2nx)) + (f(2nx)− q′(2nx))‖ ≤ 4−n(3ε)

which implies q = q′ and finishes the proof.

Lemma 2.4. Let ε > 0 be a real number and Y be a real Banach space.
If f : X → Y is an odd function satisfying the inequality

‖f(x+ y) + f(x− y)− 2f(x)‖ ≤ ε (2.17)

for all orthogonal vectors x, y ∈ X, then there exists a unique additve function
a : X → Y such that

‖f(x)− a(x)‖ ≤ 2ε (x ∈ X). (2.18)

Proof. Interchanging x by y in (2.17) we get

‖f(x+ y)− f(x− y)− 2f(y)‖ ≤ ε. (2.19)

Using (2.17) and (2.19) we get

‖f(x+ y)− f(x)− f(y)‖ ≤ ε. (2.20)

Since x+ y ⊥ x− y, from the above inequality we get

‖f(2x)− f(x+ y)− f(x− y)‖ ≤ ε. (2.21)
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From (2.17) and (2.21) we have

‖f(x)− 2−1f(2x)‖ ≤ ε.

An easy induction shows that for an arbitrary positive integer n we have

‖f(x)− 2−nf(2nx)‖ ≤ 2ε(1 − 2−n) (x ∈ X). (2.22)

This implies that for every x ∈ X the sequence {2−nf(2nx)} is Cauchy in
Banach space Y . Let a(x) = limn→∞ 2−nf(2nx) for each x ∈ X, then relation
(2.22) implies that

‖f(x)− a(x)‖ ≤ 2ε (x ∈ X).

Choose arbitrarily x, y ∈ X with x ⊥ y. Then for any n ∈ N, 2nx ⊥ 2ny, it
follows from (2.20) that

‖2−nf(2n(x+ y))− 2−nf(2nx)− 2−nf(2ny)‖ ≤ 2−nε.

Letting n tend to infnity we infer that a(x+ y) = a(x) + a(y) for all x, y ∈ X

with x ⊥ y.
Finally, on account of Theorem 5 of [7], each odd orthogonally additive

mapping is additive, therefore so is a.
To prove the uniqueness, assume a′ : X → Y to be another additive map-

ping such that ‖f(x)− a′(x)‖ ≤ 2ε for all x ∈ X. Then, for each x ∈ X and all
n ∈ N one has

‖a(x) − a′(x)‖ ≤ n−1‖(a(nx) − f(nx)) + (f(nx)− a′(nx))‖ ≤ 4n−1ε

which implies a = a′ and finishes the proof.

In the next theorem, we prove the Hyres-Ulam stability of orthogonally
pexiderized quadratic functional equation (1.3) on orthogonality vector spaces.

Theorem 2.5. Let ε > 0 be a real number and Y be a real Banach space.
If f, g, h : X → Y are fucntions satisfying the inequality

‖f(x+ y) + f(x− y)− 2g(x) − 2h(y)‖ ≤ ε (2.23)

for all orthogonal vectors x, y ∈ X, then there exists a unique additive mapping
a : X → Y and a unique quadratic mapping q : X → Y such that







‖f(x)− a(x)− q(x)− f(0)‖ ≤ 14ε+ 14‖h(0)‖,
‖g(x) − a(x)− q(x)− g(0)‖ ≤ 15ε + 16‖h(0)‖,
‖h(x) − q(x)‖ ≤ 7ε+ 7‖h(0)‖

for all x ∈ X.
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Proof. Putting y = 0 in (2.23) we have

‖f(x)− g(x)‖ ≤
1

2
ε+ ‖h(0)‖ (x ∈ X). (2.24)

Suppose that x, y ∈ X be two orthogonal vectors. Using the above inequality
and (2.23) we have

‖f(x+ y) + f(x− y)− 2f(x)− 2h(y)‖ ≤ 2ε+ 2‖h(0)‖. (2.25)

Putting x = 0 in (2.25) we get

‖f(y) + f(−y)− 2f(0) − 2h(y)‖ ≤ 2ε+ 2‖h(0)‖. (2.26)

It follows from (2.25) and (2.26) that

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y) + 2f(0)‖ ≤ 4ε+ 4‖h(0)‖. (2.27)

Define the function f1 : X → Y by

f1(x) =
1
2(f(x) + f(−x))− f(0) (x ∈ X).

Then f1 is an even function and by (2.27) we have

‖f1(x+ y) + f1(x− y)− 2f1(x)− 2f1(y)‖ ≤ 4ε+ 4‖h(0)‖.

By Theorem 2.3 there exists a unique quadratic mapping q : X → Y such that

‖f1(x)− q(x)‖ ≤ 6ε+ 6‖h(0)‖ (x ∈ X). (2.28)

Replacing x by −x in (2.27), we have

‖f(−x+y)+f(−x−y)−2f(−x)−f(y)−f(−y)+2f(0)‖ ≤ 4ε+4‖h(0)‖. (2.29)

From (2.27) amd (2.29) we gat

‖f(x+ y) + f(x− y)− f(−x+ y)− f(−x− y)− 2(f(x)− f(−x))‖

≤ 8ε+ 8‖h(0)‖. (2.30)

Define the function f2 : X → Y by

f2(x) =
1
2(f(x)− f(−x)) (x ∈ X).
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Then f2 is an odd mapping and by (2.30) we have

‖f2(x+ y) + f2(x− y)− 2f2(x)‖ ≤ 4ε+ 4‖h(0)‖. (2.31)

By Lemma 2.4 there exists a unique additive mapping a : X → Y such that

‖f2(x)− a(x)‖ ≤ 8ε+ 8‖h(0)‖ (x ∈ X). (2.32)

Using (2.28) and (2.32) we obtain

‖f(x)− a(x)− q(x)− f(0)‖ ≤ 14ε+ 14‖h(0)‖ (x ∈ X).

It follows from the last inequality and (2.24) that

‖g(x) − a(x)− q(x)− g(0)‖ ≤ 15ε+ 16‖h(0)‖ (x ∈ X).

Also using (2.26) and (2.28) we get

‖h(x)− q(x)‖ ≤ 7ε+ 7‖h(0)‖ (x ∈ X).
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