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We analytically solved the QED ® QCD-coupled DGLAP evolution equations at leading
order (LO) quantum electrodynamics (QED) and next-to-leading order (NLO) quantum
chromodynamics (QCD) approximations, using the Laplace transform method and then
computed the proton structure function in terms of the unpolarized parton distribution
functions. Our analytical solutions for parton densities are in good agreement with those
from CT14QED (1.2952 < Q? < 10'0) (Ref. 6) global parametrizations and APFEL
(A PDF Evolution Library) (2 < Q2 < 108) (Ref. 4). We also compared the proton
structure function, Fg (x, Q?), with the experimental data released by the ZEUS and H1
collaborations at HERA. There is a nice agreement between them in the range of low
and high z and Q2.

Keywords: Quantum chromodynamics; quantum electrodynamics; perturbative calcula-
tions; phenomenological quark models.

PACS numbers: 12.38.—t, 12.20.—m, 12.38.Bx, 12.39.—x

1. Introduction

Accurate determination of the parton distribution function (PDF) inside proton is
an essential part of analyzing data in deep-inelastic scattering (DIS) processes.
Precise measurements from high energy hadron colliders such as Tevatron and
Large Hadron Collider (LHC) require the inclusion of higher order effects in proton—
proton scattering. It seems that the photon-induced Drell-Yan (DY) process such
as vy — 71~ has a significant contribution (~ 10%) to the dilepton invariant mass
distribution. Recent results from high mass DY production in ATLAS! showed that
the contribution of photon distribution inside the proton has the same importance
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as the other different PDFs set. To calculate the cross-section of such DY pro-
cess, one needs to know the photon distribution function inside proton, v(x, Q?).
Furthermore, because the LHC is really a v+ collider at very high energy, the deter-
mination of photon distribution function inside the proton may be an important
issue.

There are a few studies about adding the quantum electrodynamics (QED)
corrections to the global parametrizations of PDFs which are based on quantum
chromodynamics (QCD) calculations. The first one have been done by the MRST
group?? and the other analysis are newly released by NNPDF collaboration*®
CT14QED group.b

Here, we will study the analytical solutions for DGLAP evolution equations to
obtain the PDFs at next-to-leading order (NLO) QCD and leading order (LO) QED
approximations based on the Laplace transform technique which has introduced by
Block et al.m 13

Recently, Khanpour et al.l* calculated the proton structure function and PDFs
using the Laplace transform technique at NLO in QCD without QED corrections.
They consider the initial value of PDFs from KKT12' and GJRO08' codes at
Q2 =2 GeV2.

The Laplace transform method has an ability that the analytical solutions for the
QED ® QCD PDFs are obtained more strictly by using the related kernels and the
calculations can be controlled well. Following our recent works'” 2% on the analytical
solution of DGLAP evolution equations based on the Laplace transform, we have
used the same method to solve the QED ® QCD DGLAP evolution equations.

The paper is organized as follows. In Sec. 2, we review the QED @ QCD-coupled
DGLAP evolution equations. In Sec. 3, we bring out the analytical solutions for the
DGLAP evolution equations to calculate the PDF's inside the proton based on the

and

Laplace transform. Section 4 is devoted to the results of different kinds of PDFs and
also the proton structure function. To be sure about the correctness of our analytical
solutions, the final results were cross-checked with the same results from APFEL
(A PDF Evolution Library) program and also with the newly released CT14QED
code, we selected our initial inputs from CT14QED code at Q¢ = 1.295 GeV.
Finally, we give our summary and conclusions in Sec. 5.

2. Review of the QED ® QCD DGLAP Evolution Equations

The QED ® QCD DGLAP evolution equations for the quark, gluon and the photon

parton densities can be written as:21 24

0q;
81n£22 ZP%% ®qJ+ZPquJ ®QJ+P9®9+PL7®7;
j=1

0q;
81n£22 ZP@% ®qJ+ZPquJ ®QJ+P9®9+PL7®7;
j=1
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nf nf

dg
3an2:ZP ()®qj+ng% T)® G+ Py ®g,
Jj=1 j=1
a’y nf nf
anQ:ZP ()®qJ+ZPWJ ) ®qj+ Py ®7, (1)
Jj=1 j=1

where ¢;(z,Q?), Gi(z,Q?), g(z,Q?) and v(z,Q?) are the ith quark, ith antiquark,
the gluon and the photon distribution functions, respectively. The ® symbol refers
to the convolution integral and the splitting functions on the right-hand side of
Eq. (22) can be written as

1)(1) _ })(1) })(1) _ 1)(1)
P(Iin:anz(Ij:a§<5ij — 5 — + i - )

an
PO L pD  pH _ p
- +
Poiq; = Prg; = a 6”qu) <6 2 + 2ny
. (2)
a(éijeiej)Pq((?) ,
Pra = P = P9 + 2P, oy = P+ 2PLD
2 (0) 0) 2 Pq(;”
Prg =Pyg =ae; Py, Py =aP), Pyy = Py = ac; 2ny

The running strong coupling as; = «s/27 is determined by

oy tes(res(aE))
(I F ()

and the electromagnetic coupling constant in the recent studies® have been con-
sidered o = 1/137, but here, we give a = /27 as follows:

as(Q%) = (3)

2y a(MQ)
“ - 1-— 398a( 2)Log(§—§) 7 W

where By = 2(33 — 2ny) and By = 102 — 2n;. For ny = 5, we get Aqep = 0.22.

We suppose p = 1.777 GeV, then a(u?) = 217, 1313.4 25

The LO splitting functions are given by?2?

:L'Q
PO(z) = % (&jﬁ + g 51— x)) ,

3
PO PO =np(2*+(1-12)%), PY=2pP0

=(0) _
Pq(q)_49q7 qg9
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3

1+ (1—2)?

X

(1_xx>+ —l—l;x—l-a:(l—x)—l-<%—?—£)5(1—x)),

|, o=

Pv(g) Z e25(1 — ) (5)

The Pq(;), Pq(;), Pé;) and Pg(g) used in Eq. (2) are the NLO singlet splitting

functions, PJr and

PW are the NLO nonsinglet splitting functions that can be

found in Refs. 26 and 27.
For the coupled approach, we utilize a PDF basis for the QED @ QCD DGLAP

evolution equations,

defined by the following singlet and nonsinglet PDF com-

binations:28
fi=A=u+ti+c+é—d—d—s—5—-b—>b
456 | fo=Y=u+tua+c+c+d+d+s+5+b+b 7 (©)
fa=g
Ja=~
fs=dy=d—d
foe=uw =u—-1u
| fr=Ags=d+d—s—5 |- (7)
fs=Aye=ut+u—c—c
fo=Agp=5+5-b—0b
We have found that the singlet PDFs evolve as
S Py P2 Pz Py fi
_O o | P P2 P P ® f2 (8)
OlnQ@? | fs Py P P33 Py f3
fa Py Pip Piz Py fa
and the nonsinglet PDFs, obey the evolution equations such as:
aiféZZP“@f“ i=5,...,9. (9)

In Egs. (8) and (9), the new splitting functions are calculated as

Py

Pis

Pi3

_ 0 ap1) | €ated 0
—ap +art - S

2
_Nu—Nd of 51 (1 Cu ed 0
=T (A P Rl
_ P — <o> 2 p(1)
= Py ( P + aSqu ,
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2 2
Ny€,, — NJE
Py = w4 an‘S) )
ny

2 _ 2
e2 —e2 -
Py = +—° 5 dan(g),

ez +e? -
Py = asPY) +a2P}) + “Td aP
Py = a, P9 +a2P{)

2 2
Ny€y + Ngey aP(O)

nf qy
Py =0,
Psy = a, PO +a2P))

Ps3 = a, PO +a2P{}) |

Py =0,
02 _ 2
P41 = qu aP,gg) s
ez + €2
P42 = 5 d apv(g) s
Py3 =0,
_ ,p(0)
Py =aP)),

P55 = aqu(g) —|— afPil) + ae?ipq(g) 5

Psg = aSPq(g) + agPﬁl) + a2 P

uT qq

P77 = ng = aqu(g) + afP_f_l) + aegpq(g) s

Pss = agPY + a?P + ae2 PO (10)

utqq >
where n,, and ng are the number of up- and down-type active quark flavors, respec-
tively, and ny = n, + nq. In the next section, we try to solve the above equations
with Laplace transform method.

3. The Analytical Solutions of the QED ® QCD DGLAP
Evolution Equations

Now, we are in a position to briefly review the method of extracting the PDF's via
the analytical solutions of DGLAP evolution equations using the Laplace transform
technique. Block et al., in Ref. 8, showed that, using the Laplace transform, one
can solve the DGLAP evolution equations directly and extract the unpolarized
PDFs. We will give the details here and review the method for extracting the

1750065-5
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unpolarized PDF's of QED ® QCD-coupled DGLAP equations at LO QED and NLO
QCD approximations. By introducing the variables v = In(1/z) and 7(Q? Q3) =

% fgg a5(Q'?)dIn Q'? into the coupled DGLAP equations, one can turn them into
coupled convolution equations in v and 7 spaces. We use two Laplace transforms
from v and 7 spaces to s and U spaces, respectively, then the DGLAP equations
can be solved iteratively by a set of convolution integrals which are dependent on
the unpolarized PDFs at an initial input scale of Q3.

In the following Subsecs. 3.1 and 3.2, we present solutions of Eqs. (8) and (9)
separately.

3.1. The singlet solution

By considering the variable changes v = In(1/2) and w = In(1/z), one can rewrite
Eq. (8) in terms of the convolution integrals as

A v 4
%W): / Z(KZO’QC%—wHaifi’bo’QE%—w)

S

+ % KPPy — w))Fj(w,r)dw, i=1,...,4. (11)
Note that we have used the notation Fj(v,7) = F;(e~",7). The above convolu-
tion integrals show that Ky;(v) = e *Pij(e™?).
Using this fact that the Laplace transform of a convolution simply is the ordinary
product of the Laplace transform of the factors, the Laplace transform from v space
to s space converts Eq. (11) to ordinary first-order differential equations

) : ;
R I R L R [ U N S S

- as Y 2 Y
]:

(12)

Here, we intend to extend our calculations to the NLO approximation for the

A, 3, gluon and photon sectors of unpolarized parton distributions. In this case, to

decouple and to solve DGLAP evolution equations (12), we need an extra Laplace

transformation from 7 space to U space. In the rest of the calculation, the a;(7)/27

and a(7)/as(r) are replaced for brevity by a®¢P(7) and a®FP(7), respectively.

Therefore, the solutions of the first-order differential equations in Eq. (12) can be
converted to

UFy(s,U) = fio(s Z@LO QP () Fy(s,U)

+ @77 P ()L [a¥P (1) £5(5,7): U]
+ NP () L[aP (r) f(s,7); U], i=1,...,4. (13)
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To simplify the NLO calculations, we use two excellent approximation relations
a®¢P (1) = ap + ale_blf, where ag = 0.003, a; = 0.05 and b; = 4.9 and also
aQFP (1) = —ag + are "7, where g = —0.0036, @; = 0.025 and b; = —3.9 for
M? < Q? < 10% GeV?.

Therefore, we write expressions L[aQCD(T)fj(s, T); U} and L[aQED(T)fj(s, T);
U] needed in Eq. (13) as

La®P()fi(s,miU) = D asF(s,U +b),
j=0

=

L[a®¥P (1) f;(s,7); U] =Y a;F(s,U +b;),
j=0
b0:Oand50:O.
After introducing the simplified notations for the splitting functions, we will
have

() = 22O WP (5) + ap@ WP (s) + ag®N P (s), i j=1,....4. (15)

Therefore, the solutions of the first-order differential equations in Eq. (13) can be
changed to

[U — ®y]F(s,U) — 24: i Fi(s,U)

= fio(s) + @ Z@LOQED (5, U +by)
4
tar| Y ONOYPE (s, U+b)|, ij=1,....4. (16)
j=t

The complete solutions of Eq. (16) can be obtained via iteration processes. The
iteration can be continued to any required order, but we will restrict ourselves in
which we get to a sufficient convergence of the solutions. Our results show that the
second-order of iteration is sufficient to get a reasonable convergence. Using the
first inverse Laplace transform technique!® from U space to T space, we can obtain
the following expression for the distributions:

4

fils,7) = kij(ar,bi,5,7) fio(s) (17)

Jj=1

with the initial input functions for ¥, A, gluon and photon sectors of distributions,
which are denoted by f10(s), f20(s), f30(s) and fao(s), respectively. By the second
inverse Laplace transform from s space to v = In(1/z) space, we get PDFs in the
usual x space.

1750065-7
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3.2. The nonsinglet solution

We perform here the nonsinglet solutions of the QED ® QCD DGLAP evolution
equation (9), using the Laplace transform technique at LO QED and NLO QCD
approximations. For the nonsinglet distributions Fj(v,7), after changing to the
variable v = In(1/x) and the variable 7, we can schematically write Eq. (9) as

%(y, 7) :/ Ei(w,m)e” """ Py —w)dw, i=5,...,9, (18)
0

where

Fi(’l),T)EFi(e_v,T), Z:5,,9 (19)

Going to Laplace space s, we can obtain the first-order differential equations
with respect to 7 variable for the nonsinglet distributions f; ns(s, 7), whose solu-
tions are

fims(s,7) = ™= f; L o(s), i=5,...,9. (20)

For example, for valence quarks, such as Uya = z(u(z, Q%) — @i(x, Q?)), Pus(s)
can be written as

T2 T3
P (8) (I)LO’ QCD q)LO, QED (I)NLO, QCD , (2] )
where

(I)§507QCD _ L{G_UP‘]I;]O(Q_’U);S} ,

B10.95D _ [0 ()]

The 75 and 73 parameters in Eq. (21) are defined as

1 T
Ty = —/ a(r)dInt’
2 0
1

Q2
_ / Q' ?)as(Q'2)dIn Q2

(2m)? Q%

L/ / /
7'35—/ as(t)dInT

2 0

2

Q
= (271r)2 /Q2 a2 (Q?)dInQ"?.

The 19 parameter is related to the LO QED running coupling constant. The
nonsinglet solutions, f;(x, @?), can be obtained using the nonsinglet kernel Ks(v) =
Lt [674’“(3); v] in the convolution integral

Fus(v,7) = /OV Kus(v — w, 7) Eyg0 (w)dw . (22)

1750065-8
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Table 1. The distributions of = f;o as the initial inputs.

z fio

xf10 (—14767.2215 + 105659.22 — 3585.68z — 0.960083)(1 — x)2-91524 /(1 4+ 20724.9x)
x fa0 0.282—0-238(4.96720-% 4 1.2722 4+ 14.98z + 1)(1 — 2)314

xf30 27.658420-457605 (1 4 512808z — 3.96762z°-° — 2.1765422)(1 — x)5-13677
xf10 0.01352—0:0012 (1 — £)1-14(1 — 2.420-5 4 1.49x)

@ f50 1.1829-568 (1 + 3.8z — 4.78z2%) (1 — x)3 73

 f50 1.1820-%8 (1 + 3.8z — 4.7822) (1 — 2)3 ™3

x foo 1.7920-55 (1 + 5.62)(1 — 2)37

xfr70 0.0059z~0-416(1 4 571.12 — 1342.33z2 + 2464.2722%)(1 — 2)*83
xfs0 0.1562 7921 (1 4 20.12x + 2.412%5 + 9.57x1-5)(1 — x)3-03

x fo0 0.1722~9-184(1 4 0.003320-5)(1 — x)6-23

Finally, with these two Laplace transforms, the evolution equations (22) can be
solved iteratively by a set of convolution integrals which are related to the quark
distributions at an initial input scale of Q3 in (z, Q?) space.

4. Results and Discussion

In this section, we will present our results that we obtained for the PDF's and proton
structure function, F¥ (z,Q?), using the Laplace transform technique. The results
are displayed in Figs. 1-5. It should be noted that we need some initial inputs for
PDFs, Egs. (17) and (22). We borrowed data for initial inputs from CT14QED
code® at Qp = 1.295 GeV to be sure about the correctness of our solutions. We fit
this data with functions in = space and convert these functions by using Laplace
transforms from x space to s space and then use them as the initial conditions to
get solutions for DGLAP equations. These functions are represented in Table 1. If
the solutions are correct, then we expect that our PDFs set and proton structure
function have good agreement with those from all global parametrizations (as well
as CT14QED) and experimental data.

The valance quark distributions, 2Us.(z, Q%) and 2Dy (z,Q?), at LO QED
and NLO QCD approximations are depicted in Figs. 1 and 2. We also compare
them with APFEL model results for the different values of Q2. The solid curves
show our results for the valence quark distributions, and the scatter curves present
the APFEL model results. The agreement with both the d and u valance quark
distributions, over the large range of z and @2, is excellent. The results show that
our analytical solutions for the QED®QCD DGLAP evolution equations are correct
and these solutions are correctly used to calculate the PDF's.

1750065-9



Int. J. Mod. Phys. A Downloaded from www.worldscientific.com
by SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH (ETH) on 04/22/17. For personal use only.

M. Mottaghizadeh, P. Eslami & F. Taghavi-Shahrt
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02 .
Se
- : ) 4
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0.1 i
0‘ L1l 1 1 ||||||l 1 1 ||||||l 1 1 ||||||l 1 1 11
10° 10 10° 10 10" 10°
X

Fig. 1. The 2Uyq (z, Q) valance quark distributions in different values of Q2 in comparison with
APFEL model.

T T ||||||| T T ||||||| T T ||||||| T T ||||||| T T T TTTIT
— 0°=10°GeV’
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—~ [ ]
(o] - -

<
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g | : -
[ ]
0.1 . -
()
| . i
0.05 - -
0 L1111 1 1 11 1111 I 1 1 11 1111 I 1 1 11 1111 I 1 1 11
10° 10* 10° 10 10" 10"
X

Fig. 2. The 2D,1(z, @?) valance quark distributions in different values of Q2 in comparison with
APFEL model.

The comparison of photon distribution function, z7y(x, @?), gluon distribution
function, zg(x,Q?), with APFEL and CT14QED models at Q* = 10* GeV? for
045( 2 = MZQ) = 0.118 is well demonstrated in Fig. 3. This plot indicates that our

1750065-10
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1 0.25 T,
i — Model
0.8 0.2¢- e CTI14QED _|
4  APFEL
3 0’=10"GevV A

e
)

xg(x,Q’)/10
S
S

— Model
L e CTI4QED
4+ APFEL
0.2

0’=10° GeV’

Fig. 3. The photon and gluon distribution functions at @2 = 10* GeV? as a function of z in LO
QED and NLO QCD approximations in comparison with the available APFEL and CT14QED
models.

TT llllll' TT llllll' TT llllll' TT llllll' T TTTIm T lllllll' T lllllll' T lllllll' T lllllll' T TTTI
— Model — Model
05~ o CTI4QED - 025~ o CTI14QED -
L 4+ APFEL _ L 4 APFEL _
0.4 Q2=1 0’ GeV’ 0.2 Q2= 10° GeV’

0.2 0.1
0.1 0.05
o -5 4 3 2 1 0 o -5 4 3 2 1 0
10° 10* 100 107 10" 10 10° 10 100 10?10 10
X X

Fig. 4. The comparison of valance quark distributions at @2 = 10* GeV? as a function of = with
the available CT14QED and APFEL models.

results are in good agreement with APFEL and CT14QED models. Also, it is clear
from this figure for photon distribution function that our results in comparison
with the CT14QED photon distribution function are very similar at large value
of = and are different for small value of x. We also investigate the effect of an
increasing value of Q% > Q2 on the photon distribution functions and conclude
that the CT14QED photon distribution function becomes large, whereas our results

1750065-11
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are distinctly different and much smaller at small values of x (corresponding plot
omitted for briefly).

In Fig. 4, we displayed the valance quark distributions at a scale of Q% =
10* GeV2 We compared those with the APFEL and CT14QED models. It is
shown that with increasing the value of @2, the contribution of valence quarks
are decreased. Therefore, we can conclude that the photon contribution is now
significantly considerable.

Figure 5 displays our analytical sea quark distribution functions at Q% =
10* GeV? We compared our results with the newly released PDFs global
parametrizations from CT14QEDS and APFEL model. The CT14QED is the first
set of CT14 PDFs obtained by including QED evolution at LO with NLO QCD
evolution in their global analysis.

1 LLLLL |

UL BRI B 1 LRRLLL | T T T 1T

0’=10'GeV’ 08+ -

—— Model
0.2 e CT14QED
A APFEL

1 LU B L BRI BN RLLL

Fig. 5. The comparison of sea quark distributions at Q2 = 10* GeV? as a function of = in LO
QED and NLO QCD approximations with the available CT14QED and APFEL models.
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It is found that the sea quark distribution functions in comparison with the
photon distribution function in the large values of x with increasing the value of
Q?, contribution of photon is the most significant. It may also be noted that in the
range of high x, the photon distribution function is larger than the bottom quark
distribution function as with increasing values of Q2.

It is observed from these figures with increasing the value of Q2 that the PDFs
decrease for the large values of = and increase for the small values of z.

We now proceed by calculating proton structure function. Our aim of inves-
tigating the proton structure function is to compare our results with a physical
observable that confirm the correctness of our analytical solutions. The Laplace
transform technique is also applied to the proton structure function, F}(x,Q?),
which leads to an analytical solution for this function. The method illustrated in
this analysis enables us to achieve strictly the analytical solution for proton struc-
ture function in terms of x variable.

We will yield the total proton structure functions as FP'(z, Q%) =
FP U (0 Q2) 4 FY™Y (2,Q?), where Fy*™Y(z,Q?) = F§(x,Q?) + F(x,Q?) are
the charm and bottom quark structure functions.

For light quarks, the proton structure function F3” light(x, Q?) in Laplace s space,
up to the NLO approximation is given by

FQp, light(sﬂ_) _ FQNS(S’T) + FQS(S,T) + FQG(S,T), (23)

where the nonsinglet F¥°, singlet F}y' and gluon F{* contributions are written as

o 4

B () = (guntsin) + g ) ) (14 2 06

FS(s,7) = (3 20(s, 7) + % 2d(s, 7) + %25(3, T)> (1 o cgl>(s)) (24

P = (54545 o) (3006,

where the 0(51)(5) and C’;l)(s) are the NLO Wilson coefficient functions, derived
in Laplace s space by Cy(s) = L[e “cq(e™);s] and Cy(s) = Lle "cg(e™); s].
The NLO Wilson coefficient functions in Bjorken = space are found in Ref. 29. We
have found the final desired solution of the proton structure function in x space,
FY light(m, Q?), using the inverse Laplace transform and the appropriate change of
variables.

The NLO contribution of heavy quarks, F;’b(m, Q?), to the proton structure
function can be calculated in the fixed flavor number scheme (FFNS) approach.39-36

The heavy quark structure function, Ff’b(x, Q?) = FQ(nl)(a:, Q?) + FQ(d)(a:, Q?),
where FQ("I) (z,Q?%) and FQ(d) (7, Q?%) are the massive-scheme heavy quark structure
function and the “difference” contribution, respectively. The Laplace transforms of
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Fig. 6.
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The proton structure function at Q2 = 45, 90, 1500, 2000, 5000 and 20,000 GeV? in
comparison with the experimental data.

Fz("l) (z,Q?%) and FQ(d)(x, Q?) for charm and bottom quarks are given by

4
Fé"l)(s,T) = 57(05(71)(3) Log(

T

d 4
FQ( )(5,7') = §<1+ o

QQ
m2

)+ )gteim),

Cé%)) (c(s,7) + e(5.7))

4
4 E -

21
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Fig. 7. The proton structure function at Q2 = 12,000 GeV?2 in comparison with QCD analysis
and experimental data.

and
F"™(s,7) = %T<C§l)(s) Log (%) + c§1>(s)> 9(s,7), (27)
FOs.7) = 5 (14 50006 ) 0lsvm) + 5(5,7)
+ % % (C’él)(s) - C’él) (s, m%))g(s, T), (28)

where m. and my are the charm and bottom quark masses. The coefficient functions
C’él) (s,m?2) and C’él) (s,m3) are found in Ref. 37.

Figure 6 depicts the comparison of the proton structure function with the corre-
sponding available experimental data from the H1 and ZEUS Collaborations in the
several values of Q2. The results demonstrate that there is good agreement between
them. It is clear that the proton structure function increases with an increase in
value of Q2 for small values of z and decreases for large values of z. All figures indi-
cate that the analytical solutions work well beyond the charm quark mass threshold,
Q? > Q% (= m? = 1.677 GeV?). Figure 7 displays the comparison of the proton
structure function with QED corrections and without these corrections (QCD anal-
ysis) with the corresponding experimental data from the H1 Collaboration in the
value of Q? = 12,000 GeV?. This figure shows that the proton structure function
with QED corrections is in good agreement with the experimental data in the high
energy.
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5. Conclusions

In this paper, we utilized the Laplace transform technique to calculate the Laplace
transformation of splitting functions and extract the PDFs of quark, antiquark,
gluon and photon inside the proton. Our calculations are done in LO QED and
NLO QCD approximations. We finally extracted the unpolarized proton structure
functions at the different values of Q2. Our results are compared with APFEL and
the newly released CT14QED codes and also with the experimental data which
indicate good agreements between them. To determine the proton structure func-
tion at any arbitrary Q2 scale, we only need to know the initial distributions for
singlet, gluon, nonsinglet and photon distributions at the input scale of Q%. We
borrowed the initial inputs from CT14QED code at Qy = 1.295 GeV to be sure
about the correctness of our solutions. The solutions are seem to be correct because
the PDFs and the proton structure function have good agreement with those from
all global parametrizations (as well as CT14QED) and experimental data. In the
future work with a global parametrization, we can determine these initial inputs.
These PDF's can be specifically designed for use in precision cross-section predic-
tions and uncertainties at the LHC.
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Appendix. Mathematica Program of the Splitting Functions

Program containing our results for the Laplace transforms of the splitting functions
at LO QED and NLO QCD approximations can be obtained via Email from the
authors upon request.
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