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a b s t r a c t

Self-starting characteristics is a challenging issue in the field of Darrieus-type vertical axis wind turbines.
Traditionally, the numerical simulations were performed at several constant rotational velocities for the
turbine and the generated torques were reported for each rotational velocity, neglecting the effects of the
turbine inertia on the transient start-up motion of the turbine. In the current study, a numerical method
is proposed to study the self-starting characteristics of a Darrieus wind turbine, considering the turbine
moment of inertia. The simulation starts from the initial stationary state and continues until the final
steady-periodic condition. At each time step, the instantaneous rotational velocity of the turbine is
computed based on the Newton’s second law, according to the instantaneous aerodynamic and me-
chanical forces acting on the turbine. Results indicate that as the rotor inertia increases, it takes a longer
time for the turbine to reach its final velocity, in a manner that, the turbine might even fail to reach the
final condition and the rotation halts. Results also show that as the rotor inertia decreases, the oscilla-
tions amplitude of the turbine rotational velocity increases. This can enable the turbine to pass higher
resistant torques than those computed based on the traditional method.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Being independent of the wind direction and providing a
convincing performance in unsteady and skewed wind conditions,
have made the Darrieus vertical axis wind turbine an interesting
design for researchers especially for urban applications [1].
Although the straight bladed Darrieus turbine is one of the simplest
turbines in structure, its aerodynamic behavior is among the most
complicated turbines, due to the change in blade angle of attack
and Reynolds number during a revolution [2]. In this regard, many
researchers have employed various analytical and numerical
methods to study different characteristics of Darrieus turbine [1].
What follows is a brief review on these investigations.

Momentum analytical models are the first methods used to
study these turbines. Paraschivoiu [3] introduced the double
stream-tube analytical model which was more advanced in com-
parison with the single stream-tube model of Templin [4] and the
).
multiple stream-tube model of Wilson et al. [5]. The analytical
momentum theories are suitable for optimization purposes due to
their low computational cost [6]. Islam et al. [7] investigated three
aerodynamic models, e.g. double-multiple streamtube model,
vortex model and the cascade model for performance prediction
and design of a straight-bladed Darrieus turbine. The strengths and
weaknesses of each model are also discussed. However, these
models are only applicable when the employed airfoil data are
completely available. Moreover, since these models use the stati-
cally determined airfoil data, they lose their accuracy when the
airfoil experiences a dynamic stall. These models also suffer from
remarkable limits to describe the dynamic effects especially at the
turbine startup, where the turbine inertia must be taken into ac-
count [8]. These reasons have motivated the computational fluid
dynamics (CFD) methods to be adopted widely to study these
turbines.

Mohamed [9] studied the aerodynamic performance of an H-
rotor Darrieus turbine with 20 different symmetric and non-
symmetric airfoils using two-dimensional computational fluid dy-
namics. Castelli and Benini [10] investigated the effects of the blade
inclination angle on the energy absorption efficiency and the
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tangential and axial forces acting on a small Darrieus turbine.
Zhang et al. [11] performed numerical investigations on static and
dynamic performances of a straight-bladed Darrieus turbine and
presented optimized pitch angle along the rotor. Maître et al. [12]
studied the main modeling features involved in modeling Dar-
rieus turbines, including the effects of the near-wall grid density
and the ability of two-dimensional simulations to represent the
actual three-dimensional flow in the turbine. Amet et al. [13] per-
formed a detailed numerical simulation on the blade-vortex in-
teractions in a Darrieus turbine. In contrast to the simulations that
consider a constant rotational velocity for the turbine, their study
revealed that the flow field around the turbine not only depends on
the current flow pattern but also depends on the flow time history
[13]. Moreover, since the instantaneous rotational velocity of the
turbine depends on the generated torque, and the generated torque
is non-uniform in a rotor revolution, the constant rotational ve-
locity assumption for the turbine is an engineering assumption.
Therefore, it seems reasonable to employ a numerical method
which computes the rotational velocity of the turbine at every time
step. Such a numerical method have been recently employed by
some researchers to simulate wind turbines.

D’Alessandro et al. [14] and Jaohindy et al. [15] developed a
mathematical model considering the interactions between the flow
field and the rotor blades for the Savonius drag-based wind turbine.
The accuracy of the numerical results were validated by compari-
son with experimental data. However, no comparison with the
traditional methods (which consider a constant rotational velocity
for the turbine) have been made. Bazilevs et al. [16] performed full-
scale time-dependent aerodynamics and fluidestructure interac-
tion (FSI) simulations of a Darrieus turbine. Their numerical com-
putations demonstrated that the Darrieus turbine might encounter
one or multiple dead band regions that the turbine needs to over-
come to reach its target rotational speed. Predicting the dead band
regions for a Darrieus turbine and computing the necessary
external torque to overcome these regions could not be accurately
achieved using the traditional methods with constant rotational
speed assumption. The effect of the rotor inertia on the turbine
startup is another issue that requires a computational methodology
where the time dependent fluid structure interactions are taken
into account [8,17].

The main aim of the current study is to gain an insight into the
complex time-dependent flow field around a Darrieus wind rotor,
from its initial staring motion till it reaches its steady target rota-
tional velocity, considering the rotor inertia. In this regard, a CFD
based numerical method is developed which considers the fluid-
structure interactions in every time step. The instantaneous
angular velocity of the rotor, with a single degree of freedom, is
determined based on the instantaneous rotor torque. The results
obtained using three different turbulence models, k-u SST, transi-
tion SST and k-kl-u are also compared. Based on the time history of
the rotor angular speed, the behavior of the turbine, including its
self-starting characteristics, are deliberated in details. The dis-
crepancies between the results obtained from the developed nu-
merical method and those obtained from the traditional methods
with constant rotational velocity are discussed. Finally, the effects
of the rotor inertia on the startup characteristics of the Darrieus
turbine have been investigated.

2. Computational scheme

2.1. Governing equations and turbulence models

Continuity and momentum equations for the two-dimensional
turbulent incompressible flow of a Newtonian fluid with constant
properties in the differential form are as follows [18,19]:
vðr∅Þ
vt

þ div
�
r∅

�
U � Ug

�� ¼ divðG∅grad∅Þ þ S∅ (1)

∅ ¼ 1;u; v

where r is the fluid density, G is diffusion coefficient, U is the time-
averaged flow velocity vector, Ug is the grid velocity vector and S is
the source term.

The appropriate selection of the turbulence model is an essen-
tial issue in numerical simulation of the vertical axis wind turbines
[20]. Three Unsteady Reynolds Averaged Navier-Stokes (URANS)
turbulence models are used in this study which are: the k-u Shear
Stress Transition (SST) model, the k-kl-u model and the transition
SST model. The k-u SST turbulence model has been successfully
employed in various wind turbine simulations [21]. The k-kl-u
model is a three-equation eddy-viscosity type turbulence model
which can be used effectively to predict the transition of the
laminar boundary layer to turbulent. The three equations are the
transport equations for turbulent kinetic energy (kT), laminar ki-
netic energy (kL), and the inverse turbulent time scale (u). The
transition SST model is based on the coupling of the SST transport
equations with two other transport equations, one for the inter-
mittency and one for the transition onset criteria, in terms of
momentum-thickness Reynolds number [22]. Details of the
employed turbulence models are available in Refs. [22e24].

The CFD commercial software, Ansys Fluent 15.0, is used to solve
the time-dependent governing equations. The diffusion and
convention terms are discretized using the second order linear
upwind scheme. Pressure-momentum equations coupling is per-
formed using the PISO (Pressure-Implicit with Splitting of Opera-
tors) algorithm [22].

The torque coefficient, Cm, power coefficient, Cp, and the tip
speed ratio, TSR, are determined using the following relations
[25e27]:

Cm ¼ T=½rRAV2
∞ (2)

TSR ¼ uR=V∞ (3)

Cp ¼ Cm � TSR (4)

where R is the turbine radius, A is the turbine frontal area, V∞ is the
air velocity, u is the rotor angular velocity and T is the torque.
2.2. Computational domain and grid

The computational domain is divided into two regions, a
rotating circular region around the rotor blades and a rectangular
stationary region, as shown in Fig. 1. The two regions are connected
using an interface boundary condition, where the continuity of the
absolute velocity is imposed to provide the correct neighbor ve-
locity values for the rotating subdomain [22]. A structured O-grid of
quadrilateral elements is generated around the rotor blades to
ensure the necessary grid resolution on walls. At a distance of two
times the blade chord away from the blades, an unstructured grid is
generated as depicted in Fig. 2, while an unstructured triangular
grid is used for the rest of the computational domain.
2.3. Mathematical model of the rigid body motion

The employed computational strategy consists of three main
components: flow solver, a six-degree-of-freedom (6-DOF) motion
solver and a sliding mesh algorithm. At each time step, first, the
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Fig. 1. Computational domain and boundary conditions.
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fluid flow governing equations (which are the Reynolds-Averaged-
Navier-Stokes equations) are solved using the Fluent flow solver.
From the resulting solution, the aerodynamic moment acting on
the rotor are determined. Next, the motion solver uses the aero-
dynamic moment and the external torques to calculate the rota-
tional movement of the rotor. Finally, the sliding mesh algorithm,
rigidly rotates the rotor subdomain (rotating region) to its position
for the next time step.

The details of the RANS solver are available in Fluent Theory
Guide and hence, they are not repeated here. However, some
explanations are warranted about the formulation of
governing equations on a moving computational domain. Eq. (1) in
the integral from for a general scalar quantity, 4, on a moving
(a)

(c)

Fig. 2. The grid distribution inside the computational domain, a) the stationary
domain can be written as [28]:

v

vt

Z
V

r4dV þ
Z
vV

r4
�
U � Ug

�
:d A
!¼

Z
vV

GV4:d A
!þ

Z
v

S4dV (5)

The time derivative in the expression above is evaluated using a
first-order backward difference formula:

d
dt

Z
V

r4dV ¼ ðr4VÞKþ1 þ ðr4VÞK
Dt

(6)

where the superscript denotes the time level. Vkþ1 in (6) is
(b)

zone, b) the rotating zone, and c) mesh resolution around the rotor blade.



Table 1
Geometrical parameters of the computational domain.

Parameter Value Parameter Value

Airfoil type NACA4515 Chord length 0.1 m
Domain width 5 m Turbine radius 0.3 m
Domain length 10 m Inner region radius 0.9 m
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evaluated as:

Vkþ1 ¼ Vk þ dV
dt

Dt (7)

Because the mesh motion in the sliding mesh formulation is
rigid, all cells retain their original shape. As a result, the time rate of
change of the cell volume is zero.

Vkþ1 ¼ Vk (8)

As a result, Eq. (6) can be written as:

d
dt

Z
V

r4dV ¼
�
ðr4ÞKþ1 þ ðr4ÞK

�
V

Dt
(9)

First, At every time step, the fluid flow governing equations are
solved using the Fluent commercial software. Knowing the flow
field variables, the aerodynamic moments acting on the rotor
blades can be determined by integrating the pressure and viscous
forces over the blades, as:

Mp ¼
X
f

h
rf �

�
pf af

�i
(10)

Mt ¼ �
X
f

h
rf �

�
tf af

�i
(11)

where Mp and Mt are the resultant torques of the pressure and
viscous forces exerted on the blades by the wind, pf is the pressure
and tf is the shear stress, af is the area vector of the face f, and rf is
the distance vector from the body center of mass to the center of
face f. The summation is performed on all of the computational cells
on the rotor blades. Then, the total moment acting on the turbine,
M, is determined as follows:

M ¼ Mp þMt þMr (12)

where,Mr is any external resistant torques on the rotor such as the
generator load.

Next, these moments are transferred to the 6-DOF code which
has been written in C language and dynamically linked with the
Fluent solver at run time. Its aim is to calculate the rotor rotational
speed at each time step based on its rotational speed at the pre-
vious time step and the torque which is exerted on the rotor by the
Fig. 3. Flowchart of the solution process in comparison with the traditional schemes.
wind. In this study, the rotor has only one degree of freedomwhich
is rotating around the turbine axis and the other 5� of freedom are
constrained. This calculation is performed using the Euler’s law of
motion, as:

_u!¼ I�1
�X

M
!� u!� Iu!

�
(13)

where _u! is the rotor rotational acceleration vector, u! is the
rotor angular velocity vector and I is the rotor inertia tensor.
Once the angular acceleration is computed from the above equa-
tion, the rotor angular velocity at the next time step is determined
using a fourth-order multi-point Adams-Moulton formulation [28],
as:

u!kþ1 ¼ u!k þ Dt
24

�
9 _u!

kþ1
þ 19 _u!

k
� 5 _u!

k�1
þ _u!

k�2�
(14)

where k is the time-step counter.
When the rotor angular velocity at the new time step is known,

the sliding mesh method is used to rigidly rotate the grids of the
rotating zone to their new position. In the slidingmeshmethod, the
coupling between the rotating and stationary zones are performed
using the non-conformal mesh-interface treatment available in the
Fluent software [29e31].

Fig. 3 shows the flowchart of the solution process in comparison
with the traditional scheme [12]. In the traditional scheme, the
rotational velocity of the rotor is assumed constant and the solution
of the Navier-Stokes equations leads to the corresponding output
torque of the turbine. This process will be performed for several
constant rotational velocities to produce the Cm-TSR curve for the
turbine. By contrast, in the new method of the current study, the
solution starts with an initial rotor rotational velocity and the
corresponding torque is determined through the solution of the
Navier-Stokes equations. Then, the new rotational velocity for the
next time step would be calculated by applying the equations of
motion, where the rotor inertia and the turbine resistant torque are
also required as the inputs. Next, the solution of the Navier-Stokes
equations will be repeated using the new rotational velocity. This
cycle will be repeated until the steady-periodic condition is
achieved.
Table 2
The main characteristics sizes of the three grid resolutions, used for the grid-study.

Coarse Medium Fine

Number of cells on the blade 100 200 400
Non-dimensional height of

the first cell on the blade (Yþ)
10 1.2 0.53

Diameter of the area
with structured grid

3 times
the chord
length

3 times
the chord
length

3 times the
chord length

Number of cells on
the interface

70 120 250

Number of cells on
the outer boundary

20 40 100



Table 4
The time steps considered for simulations.

Blade revolution in one time-step (degrees) 0.125 0.25 1
Time step (milliseconds) 0.0571 0.1142 0.4568
Number of time steps required for one revolution 2880 1440 360
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3. Verification and validation

For the verification investigations, the dimensions of the
computational domain and the boundary conditions are selected
according to the experimental conditions of Takao et al. [32] at the
air velocity of 7 m/s. The main geometrical parameters of the tur-
bine and the computational domain are presented in Table 1.

In order to achieve grid-independent results, three grid reso-
lutions namely, the coarse, medium and fine grids have been
examined. The main characteristic sizes of these grids are given in
Table 2. The variations of the torque coefficient for one blade as a
function of the angular position of the rotor is shown in Fig. 4, for
the three grid resolutions at TSR ¼ 1.6. As the figure suggests, the
medium grid can be selected as the best grid, in terms of both the
numerical accuracy and computational cost.

The effects of the domain extents on the output torque are also
examined. The goal is to place the boundaries at a sufficient dis-
tance to avoid any influence on the evaluation of the flow field
around the turbine. In this regard, 6 different cases are tested at
TSR ¼ 1.0 and the results are presented in Table 3. Three rotor
distances from the inlet boundary (1R, 6R and 20R) and three rotor
distances from the outlet boundary (10R, 30R and 90R) are inves-
tigated. The results show that Case B, where the rotor distances
from the inlet and outlet boundaries are 6R and 30R, respectively,
can be selected as the best size for the computational domain.
Further increasing the size of the computational domain does not
have significant effects on the generated torque.

In order to investigate the time step effects on the transient
numerical results, three time steps have been considered, as given
in Table 4. Since in this study, the initial transient motion of the
turbine has also been considered, the rotational velocity of the
turbine is not constant and varies with time. Therefore, it seems
more appropriate to apply the time step in terms of a portion of the
blade revolution. In this regard, the UDF capability of the Ansys
Fluent software has been used to adjust the time step in a manner
that it would produce a constant value for the rotor revolution in
C m

0° 90° 1

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Fig. 4. The variations of the torque coefficient for one blade, as a function o

Table 3
The effects of the computational domain extends on the torque coefficient at TSR ¼ 1.

A B

Distance from the inlet boundary 1R 6R
Distance from the outlet boundary 30R 30R
Cm 0.0728 0.054
every time step [22].
The computations time, required for the smallest time step of

Table 4, is eight times longer than that of the largest one, which
indicates the importance of selecting an appropriate time step.
Fig. 5 shows the effects of the time step on the torque coefficient of
one blade at the average TSR¼ 1.6. As the figure illustrates, the time
step which corresponds to 0.25� of revolution, is the most suitable
one, since it satisfies both the accuracy and computational cost
criteria.

In order to validate the numerical results, the averaged values of
the power coefficient as a function of the TSR are compared with
the experimental data of Takao et al. [32]. For the numerical sim-
ulations, three turbulence models have been employed, k-u SST,
transition SST and k-kl-u. Fig. 6 shows the numerical results of
torque coefficient as a function of the TSR, in comparisonwith those
of experiments. As the figure shows, the numerical results obtained
using the Transition SST turbulence model are in a better agree-
ment with the experimental data. Therefore, this turbulence model
has been adopted for all of the following numerical investigations.

4. Results and discussion

As stated before, the main goal of the current study is to
investigate the aerodynamic characteristics of the transient start-
up process of the Darrius wind turbine. As shown in Fig. 6, the
working range of the studied rotor is up to TSRz2.5. In order to
better illustrate and interpret the transient results, for all the
following results, the simulations are performedwith a rotor radius
of 1.0 m (all the other geometrical parameters of the turbine are
θ
80° 270° 360°
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Coarse

f the rotor angular position, for the three grid resolutions at TSR ¼ 1.0.

C D F G

20R 6R 6R 20R
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0.0532 0.0894 0.0564 0.0562
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Fig. 5. Time step effects on the torque coefficient of one blade, in one revolution.
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kept constant). Increasing the rotor radius, decreases the turbine
rigidity and as a result, it would extend the working range of the
turbine [33]. The effect of increasing the rotor radius on the torque
coefficient is shown in Fig. 7. As the figure shows, theworking range
of the turbine has been extended up to TSRz5.3.

Fig. 8 shows the time variations of the rotor TSR, for three
various incident wind speeds and two dimensionless rotor inertias.
The dimensionless rotor inertia, I*, is defined as the ratio of the
turbine inertia to the inertia of an air cylinder with a same radius as
that of the turbine:

I* ¼ Iturbine
1
2MairR2

¼ Iturbine
1
2

�
rairpR2H

�
R2

(15)

The rotor starts rotating from its zero initial velocity and ac-
celerates until it reaches its final steady-periodic condition, where
the rotor rotational velocity oscillates around a mean value. As the
TSR

C m

0.5 1 1.5 2 2.5
0

0.05

0.1

Exp
k-ω SST
k-kl-ω
Transition SST

Fig. 6. The numerical results comparison with the experimental data of Takao et al.
[23], using various turbulence models.
figure shows, increasing the wind speed from 7m/s, to 15 and 25m/
s, has shortened the required time for the rotor to reach its steady-
periodic state. Moreover, such an increase in the wind speed, has
increased the mean final TSR, which is 10 and 15% for the wind
speeds of 15 and 25 m/s, respectively. An interesting feature of this
figure is that, unlike the previous studies, even at the final steady-
state condition, the rotor oscillates around a mean value. The fre-
quency of these oscillations, also increases with increasing the
wind speed. In other words, the wind speed or the flow Reynolds
number has considerable effects on the required time of the turbine
to reach its final steady condition and also on the average and the
frequency of oscillations of the final TSR. Fig. 8 demonstrates that,
even at the final condition, the rotor rotational velocity oscillates
around a mean value. In order to refer to such an oscillatory rota-
tional velocity, the rotor dimensionless rotational velocity, TSR, is
modified to ATSR (Average Tip Speed Ratio), as given below:

ATSR ¼ uR=U∞
(16)

where u is the average rotational velocity of the rotor at the final
steady-periodic condition.

The effects of the rotor average rotational velocity on the
generated torque of one blade in a full rotor revolution is depicted
in Fig. 9, at four ATSRs. As the figure shows, the rotor rotational
velocity has significant effects on the generated torque of the blade,
however, the effect is different on the upstream (0�<q < 180�) and
downstream sides (180�<q < 360�). For the upstream side, as the
rotor rotational velocity increases, the peak torque coefficient also
increases, marginally. Furthermore, the oscillations of the Cm for
80�<q < 360� vanishes as the wind speed grows. For the down-
stream side, at ATSR ¼ 0.5, there are several fluctuations with a
negative average value. Nevertheless, as the ATSR increases up to
3.0, the fluctuations of Cm decrease and its average value increases.
At ATSR>3.0, the fluctuations are weak and the average Cm tends to
zero.

Weak starting characteristics is one of the main drawbacks of
the Darrieus-type vertical axis wind turbines [34,35]. In other
words, these turbines are generally unable to reliably self-start, due
to a critical region of weak or even negative torque, especially at
low TSRs. In some azimuthal angles in a complete rotor revolution,
the direction of the resultant aerodynamic forces acting on the
blades are opposite the direction of rotor rotation. In a certain
rotational speed, if the average of these forces in a rotor revolution
is negative, it is said that the rotor is in the negative average torque
status. Negative average torque means that the rotor could not
TSR

C m

1 2 3 4 5
0

0.05

0.1

Turbine 1
Turbine 2

Fig. 7. The effect of increasing the rotor radius on the torque coefficient of the turbine.
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overcome the drag forces and it needs an external force to be able to
keep its rotational speed, otherwise, the rotor angular speed will
decrease. In other words, the generated lift forces cannot overcome
the resisting drag forces and the rotor needs an external force such
as a starter motor to pass that rotational speed.

The main reason of negative torque is the drag force which is a
resisting force. At all of the angular speeds, at least in a portion of
the rotor revolution the drag force overcomes the lift force, and
causes an instantaneous negative torque. The main trouble is when
the drag negative torque overcomes the lift positive torque in a
complete rotor revolution and the average torque becomes
θ

C m

0° 45° 90° 135° 18
-0.1

0

0.1

0.2

0.3

Fig. 9. Torque coefficient as a function of the
negative. At this circumstance, the turbine angular velocity will not
increase. Typically, this status occurs for the Darrieus turbine at low
angular velocities (TSRz1.0). That is because at low angular ve-
locities, the amplitude of the blades angle of attack is great and as a
result, large angle of attacks occur. At these conditions, especially
after the stall point, the blade lift coefficient decreases consider-
ably, while the drag coefficient increases.

Despite the previous methods [12], which consider a constant
velocity for the turbine, the proposedmethod in this study is able to
determine the transient acceleration of the turbine, from the initial
condition up to the final steady condition, continuously. Referring
0° 225° 270° 315° 360°

ATSR = 4

ATSR = 3

ATSR = 2

ATSR = 0.5

rotor angular position at various ATSRs.
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Fig. 11. The effects of the initial conditions on the turbine start-up process.
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to Fig. 11, the turbine accelerating process can be separated into
three stages: I) Starting from the stationary condition up to
TSR ¼ 1.0, where the turbine passes its critical region, II) speeding
up from TSR¼ 1.0 up to TSR¼ 4.0, and III) the final stage, where the
acceleration decreases until it reaches its final steady-periodic
condition.

Before investigating the first stage, it seems beneficial to study
the initial condition of the turbine which might affect the start-up
process of the turbine. In other words, the initial values of the flow
field, used in the numerical simulations, might have considerable
effects on the required time to reach the final steady condition and
also on the reliability of the results. In this regard, four initial
conditions have been considered for the numerical simulations,
which are the results of: a) a steady solution for a stationary rotor,
b) an unsteady solution for a stationary rotor, until the steady-state
condition is achieved, c) a solution performed using the sliding
mesh method assuming a constant rotational velocity for the rotor
at TSR ¼ 0.2, until the steady-state condition is achieved and d) a
solution strategy similar to (c) but at TSR ¼ 1.0. These four condi-
tions are representatives of various initial conditions that might
occur in the experimental measurements.

Fig. 10 shows the initial distributions of the vorticity around the
rotor blades for the four mentioned initial conditions. As the figure
shows, there are several vortices around the blades, except for case
(a). The effects of these initial conditions on the start-up process of
the turbine is depicted in Fig. 11. Case (a) has a noticeably higher
starting acceleration in comparison with the three other cases,
which is mainly due to the non-existence of the vortices at the
0 50 100

Vorticity Magnitude (1/s)
`

Fig. 10. Vorticity distributions around the ro
initial condition. However, all the four cases have converged to a
same final steady-periodic condition, despite their different paths
to reach the final state. This figure shows that the existence of the
initial vortices would lead to a slower starting of the turbine, which
is mainly because of the lower lift forces of the blades. The worst
case in this figure is case (c), which has reached the final state even
later than the case (a). The vortices in case (c) has indeed affected
tor blades for several initial conditions.
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the aerodynamic performance of the turbine in a manner that it has
reached the final state even later than the rotor which has started
its motion from the stationary state.

Despite the previous methods such as the sliding meshmethods
with the assumption of a constant rotational velocity for the tur-
bine, in the proposed numerical scheme developed in the current
study, the effects of the history of the flow field could be investi-
gated on the transient start-up process of the turbine. Nevertheless,
as can be seen in Fig. 11, the effects of the initial condition is only
considerable up to TSRz1.0; after that, all the curves have almost
equal accelerations.

In order to explain the reason of the low starting acceleration at
the first stage (TSR<1.0), the variations of the blade geometrical
angle of attack in first half of revolution are plotted in Fig. 12 as a
function of the rotor angle for several TSRs. In this figure, the
geometrical angle of attack has been plotted considering the
relative wind velocity. Hence, the blade geometrical angle of attack
is a function of both the rotor angle and also the TSR, as given in Eq.
(11) [3]:

a ¼ tan�1
�

sin q

cos qþ TSR

�
(17)

It must be noted that the geometrical angle of attack is slightly
different with the effective angle of attack, experienced by the
blade. It is due to the induced wind velocity which has been caused
by the wake and body. However, both angles follow a same trend
and especially for the first half of rotation, the difference is negli-
gible. Thus, the geometrical angle of attack is good enough for
addressing the various observed phenomenon of the studied Dar-
rieus turbine.

As the figure shows, at TSR¼ 1.0, the geometrical angle of attack
oscillates between 0 and 90�. The airfoil of the current study,
NACA4415, would stall for the angle of attacks larger than about 15�

[36]. Therefore, the blade will produce positive lift only in a small
range of the rotor angles (approximately q < 30�), and for the rest of
the rotor angles, the blade would stall or even produce negative lift.
This, is the reason for the weak starting torque of the turbine for
0 < TSR<1.0. However, as the TSR increases, the range in which the
blade produces positive lift extends and consequently, for TSR>1.0,
the generated torque and the rotor acceleration increase.
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Fig. 12. Blade geometrical angle of attack, a (deg), as a f
Fig. 13 shows the time variations of both the TSR and the torque
coefficient. The values of the torque coefficients have been aver-
aged in one revolution of the turbine, which are plotted with
dashed lines. Each separate dashed line is the averaged torque
coefficient in one turbine revolution. Thus, the width of each line
indicates the period of one revolution and the number of lines
shows the number of turbine revolutions. As the figure shows, in
contrast to the drag-based turbines, the starting torque of this
turbine is weak. It increases as the turbine TSR increase, until it
reaches its maximum value and then decreases marginally to zero.
Since no external torque has been applied to the turbine, the tur-
bine TSR would increase until the torque coefficient becomes zero.

As can be seen in Fig. 13, there is a minimum in the torque co-
efficient at 0 < TSR<1.0. In order to justify this behavior, it must be
noted that both the drag and lift forces produce the output torque
of the turbine. However, the drag force is only available up to
TSR¼ 1.0, where the blade speed would be equal to the wind speed
and as a result, there would be no drag force. Furthermore, as
discussed above, at TSR<1.0 the lift force is weak, due to the large
angles of attack. Therefore, at TSR<1.0, the main driving force of the
turbine is the drag force, which is also minimum at TSR ¼ 1.0. This
result, suggests that in order to enhance the ability of the turbine to
pass its critical region, the turbine output torque at TSR ¼ 1.0 has to
0° 135° 180°

unction of the rotor angle, q (deg), for several TSRs.
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be enhanced. Hence, not only the blade lift coefficient, but also its
drag coefficient at the critical region is essential. Zamani et al.
[37,38] employed the J-Shaped profile for the blade airfoil which
improved the drag force at the start-up of the turbine. Previous
studies also indicate that the higher thickness airfoils, ensuring a
higher drag coefficient, have provided superior self-starting char-
acteristics [33,39]. It might be concluded at the current conditions,
employing the Savonius rotors (with a maximum torque coefficient
at TSRz1.0) to improve the self-starting characteristics of the
Darrieus turbine, can be more efficient in comparison with the
bucket-type drag-based turbines (with a maximum torque coeffi-
cient at TSRz2/3). Furthermore, in order to take advantage of thick
airfoils at the critical region and at the same time, avoid their
drawbacks at higher TSRs, asymmetric airfoils, could be employed.
The selected asymmetric airfoil must have a higher drag coefficient
in comparisonwith the symmetric airfoils at high TSRs, and a lower
drag coefficient at low TSRs, in comparison with the thick airfoils.

After passing its critical stage (0 < TSR<1.0), the turbine enters
the second stage, which is named here, the acceleration stage,
(1.0 < TSR<4.0). As discussed above, as the TSR increases above 1.0,
the range in which the blade produces positive lift extends and as a
result, the generated torque and the rotor acceleration increase.

Fig. 14 demonstrates the vorticity contours around the rotor
blades, at various instants of rotor acceleration. As the time passes,
the rotor TSR increases. At each instant, the values of the torque
coefficients are also depicted on the figures. The low initial torque
and its increasing rate as the TSR grows above 1.0, can also be
explained using this figure.

First, at low TSRs such as TSR ¼ 1.0, while the wind passes the
width of the turbine, the blade would sweep the volume of the air
only once. As a result, a considerable amount of the wind energy
would pass the turbine, without losing its exergy. However, as the
rotational velocity of the turbine increases to TSR ¼ 4.0, the front
blade would sweep the air 4 times and this would capture a higher
amount of the wind energy. Second, as the collected energy by the
upstream blade increases, a lower amount of the wind energy
would reach the downstream blade, where the negative torque
would be generated. And third, as the TSR increases, the maximum
angle of attack that the blade experiences in one revolution would
be lower than the stall angle of attack. The resultant unseparated
flow, would increase the lift and hence, the turbine efficiency. For
example, at TSR ¼ 4.0, the maximum geometrical angle of attack in
one revolution is 14.5� which is lower than the blade stall angle (the
static stall angle for the current blade is 15�, which might slightly
differ from its dynamic stall angle).

The third stage, the final stage, occurs at TSR>4.0, where the
increasing rate of the turbine rotational velocity decreases, until it
reaches the final steady-periodic condition. The high rotational
velocity of the blades, increases the pressure at the front of the
turbine and the turbine acts as a rigid cylinder that a large portion
of the wind passes around it (see Fig. 14). This is called the blockage
effect which reduces the blades lift forces and the turbine effi-
ciency. Moreover, at high TSRs such as TSR ¼ 5.3, the geometrical
angle of attack would oscillate between �10� and þ10�. Although
no separation would occur, the low angles of attack decreases the
maximum possible lift force of the blades. Moreover, at high TSRs,
the blades drag force would increase, which dominates the lift-
driven torque of the turbine and as a result, the turbine accelera-
tion tends to zero. As can be clearly seen in Fig. 14, the vortices
detached from the upstream blade and collides the downstream
blade at TSR ¼ 1.0, are significantly different from those at
TSR ¼ 4.0. It is also possible that the vortices detached from the
upstream blade at TSR ¼ 1.0, reach the downstream blade at a
higher TSR. As shown before, these vortices might have consider-
able effects on the transient start-up motion of the turbine.
Therefore, in contrast to other turbo-machineries, considering the
flow history is essential for investigating the critical state of these
turbines.

The effects of the turbine moment of inertia on its final steady-
periodic condition, are demonstrated in Fig. 15. The external
resistant torque coefficient, CMr, is also determined using the
following relations:

CMr ¼
Mr

1
2 rRAV

2
∞

(18)

In this figure, the angular variations of the rotor TSR is plotted
for two external resistant torque coefficients of CMr ¼ 0.028 and
0.094, for three rotor inertias of I* ¼ 0.051, 0.26 and 0.51.

The results of the traditional method, assuming a constant
rotational velocity for the turbine, are also depicted in this figure. In
the traditional method, the rotor moment of inertia and also the
external torque, have no effects on the simulation results, since
these parameters have not been taken into account in the gov-
erning equations. However, the results of the proposed method in
this study, show that as the rotor moment of inertia increases, the
amplitude of the rotor oscillations decreases. Maitre et al. [12]
compared their numerical results for the torque coefficient in a
rotor revolution with their experimental data. The comparison
showed a phase shift between the numerical and experimental
data, however, no justification has been presented. The results of
the current study reveals that, the phase shift is due to the rotor
inertia, which hasn’t been considered in their numerical
simulations.

Not only the moment of inertia, but also the external torque
affects the amplitude of the rotor oscillations, as shown in Fig. 16. In
this figure, the generated torque of one blade and its TSR are plotted
as a function of the rotor angular position, in a full rotor revolution,
in comparison with the traditional method. This figure shows that
the velocity oscillations and the generated torque interact with
each other. When the blade reaches the turbine front, at q ¼ p/2, it
produces the maximum torque. This is why the angular variation of
the turbine TSR, shown in Fig. 15, has three maximums in one
revolution; the turbine has three blades and each blade when
reaches the turbine front, generates a maximum in the TSR-q graph.
The generated torque is a function of the blade lift forcewhich itself
is a function of the blade velocity. In the traditional method, the
rotor angular velocity is constant and as a result, the generated
torque at arch rotational velocity is also constant. In the proposed
method of this study, the rotor angular velocity at the final stead-
periodic condition, oscillated about a mean value. At qe75�, the
rotor angular velocity is less than its averaged angular velocity
(based on the traditional method) and therefore, the generated
torque is less than that of the traditional method, as can be seen in
Fig. 15. Similarly, as the rotor angular velocity increases and gets
larger than the average value, the generated torques of the current
method are also higher than those of the traditional method. The
generated torque is a function of the blade lift force, which itself is a
function of the blade velocity. At qe75� the blade relative velocity is
less than its average velocity and as a result, the computed torque is
less than the prediction of the traditional method. As the blade
speed increases, at qe110�, the lift force and the generated torque
have increased. Similarly, at q e 210�, the blade drag force has
increased and caused more negative torque. This figure reveals that
considering a constant rotational velocity for the turbine might
overestimate or underestimate the generated torque of the turbine.
The proposed method of the current study does not suffer from this
drawback.

The variations of the turbine instantaneous power coefficient as
a function of the rotor TSR is plotted is Fig. 17 at the final steady-
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periodic condition, for two external resistant torque coefficients of
CMr ¼ 0 and 0.094, for three dimensionless rotor inertias of
I* ¼ 0.051, 0.26 and 0.51. The figure demonstrates that considering
the turbine moment of inertia and also the external resistant tor-
que, affects the amplitude of the power coefficient oscillations. For
the turbine investigated in this study, as the turbine moment of
inertia decreases, the discrepancy between the results of the
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Fig. 15. The angular variations of the rotor TSR for variou
current method and the traditional method increases. In the other
words, the oscillations of the rotors with low moment of inertias
are relatively high, and therefore, the assumption of constant
rotational velocity is not appropriate for these rotors.

The oscillations of the torque coefficient, especially for the rotors
with low moment of inertias, would affect the accuracy of the
critical resistant torque of the turbine. As shown in Fig. 7, the Cm-
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Table 5
The required time (in seconds) for the turbine to reach its final steady periodic condition
resistant torque coefficient, CMr. In this table, ‘Failed’ means that the rotor couldn’t reach

I* cMr

0 �0.013 �0.040 �0.066

0.052 0.5 0.5 0.6 0.7
0.520 4.2 4.5 6.3 10.5
1.039 8 8.4 12 43.2
2.598 17 20.2 31 126
5.197 30 33.4 37.3 89.6
26.984 145 150.3 155.4 247
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Fig. 18. Time variations of the rotor TSR and torque coefficient, when the turbine is
subjected to a resistant torque of CMr ¼ 0.11.
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TSR curve for the turbine under study, has a minimum at TSRz0.9.
If the external torque of the turbine, exceeds this critical value, the
turbine wouldn’t reach its final steady-periodic condition. Based on
the traditional method calculations, the critical value of the torque
coefficient for the present turbine is 0.079, neglecting the rotor
inertia. However, the results obtained using the method proposed
in this study for the required time for the turbine to reach its final
state are presented in Table 5, for various values of the external
resistant torque coefficient, CMr, and several values for the dimen-
sionless rotor moment of inertias, I*. In this table, ‘Failed’ means
that the rotor has failed to reach its final steady condition. As can be
seen in the table, the rotors with the dimensionless moment of
inertias greater than 2.598, exposed to a resistant torque coefficient
of CMr ¼ 0.08, have failed to reach their final steady state condition,
as correctly been predicted by the traditional method. However, for
the rotor with the smallest dimensionless moment of inertia
(I* ¼ 0.053), the turbine has succeeded to pass its critical stage and
it has reached the final steady rotational velocity of the rotor, as
explained before. This table clarifies that the results of the tradi-
tional method are not satisfactory for the wind rotors with small
moment of inertias. Thus, the proposed method of the current
study can be effectively employed by the researchers to determine
when they can neglect the turbine moment of inertia and when
they cannot.

The developed numerical method is also capable of applying a
resistant torque to the turbine at any given time. In this regard, a
resistant torque equal to the maximum available torque is applied
to the turbine, when it has reached the corresponding rotational
speed. The transient acceleration of the turbine and also the torque
coefficient are illustrated in Fig. 18. The applied resistant torque
coefficient is CMr ¼ 0.11. As can be seen in the figure, when the
external torque is applied, the turbine stops accelerating and ro-
tates at a constant rotational velocity.
, as a function of the dimensionless turbine moment of inertia, I*, and the external
the final steady condition.

�0.080 �0.093 �0.107 �0.120 �0.133

1 1.1 2 2.1 Failed
19 43 Failed Failed Failed
112 Failed Failed Failed Failed
198.4 Failed Failed Failed Failed
359 Failed Failed Failed Failed
Failed Failed Failed Failed Failed
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5. Conclusions

In this study, a numerical method is proposed to study the ef-
fects of the turbine moment of inertia and external resistant tor-
ques on the self-starting characteristics of a Darrieus wind turbine,
based on the unsteady solution of the Navier-Stokes equations. The
simulations initiate from the stationary state and continue until the
final steady-periodic condition. According to the instantaneous
aerodynamic and mechanical forces acting on the turbine, the
rotational velocity at each time step is computed based on the
Newton’s second law. The main findings of the current study can be
summarized as below:

� Investigating several initial conditions revealed that, the aero-
dynamic performance of the turbine might be affected by the
history of the flow field. Results show that, the existence of
vortices at the initial state of the turbine, decreases the starting
torque and leads to a lower initial acceleration of the turbine.

� At TSR<1.0, the main driving force of the turbine is the drag
force, however, as the TSR grows, the lift force overweighs the
drag force. The proposed method of the current study is able to
accurately determine the instant of the minimum generated
torque, which can be beneficial in selecting an appropriate
strategy to enhance that critical torque.

� As the rotor TSR becomes greater than 1.0, the blade vortices
shrink and the blades generate higher values of the lift force. As
a result, the turbine acceleration increases considerably. How-
ever, at TSR>5, the blockage effect causes the turbine to act as a
rigid cylinder and the air flows mainly around the turbine.

� It is shown in this paper that, the rotor inertia affects the turbine
aerodynamic performance. As the rotor inertia increases, it takes
a longer time for the turbine to reach its final velocity, in a
manner that, the turbine might fail to reach the final condition
and the rotation halts.

� Even at the final state, the turbine rotational velocity oscillates
around a mean value and the amplitude of oscillations depends
on the rotor moment of inertia. These oscillations affect the
amplitude of the generated torque oscillations.

� As the rotor inertia decreases, the oscillations amplitude of the
turbine rotational velocity increases. This can enable the turbine
to pass higher resistant torques than those computed based on
the traditional method.

� The numerical method proposed in this study, can be effectively
employed to determine the importance of the rotor inertia on
the start-up characteristics of the Darrieus-type wind turbines.
Moreover, the effects of any external resistant torques, such as
friction or generator torque, on the aerodynamic performance of
the turbine can be determined.
Nomenclature

A Turbine frontal area
af Area vector
ATSR Average Tip Speed Ratio
Cm Torque coefficient
CFD Computational Fluid Dynamics
Cp Power coefficient
Div Divergence operator
FSI Fluid Structure Interaction
Grad Gradient operator
Ioz Rotor moment of inertia about the z-axis
I* Dimensionless moment of inertia
CMr External resistant torque coefficient
Mt Moment due to the viscous forces
M Total moments acting on the turbine
Mp Moment due to the pressure forces
Mr External resistant moments
pf Fluid pressure
R Turbine radius
SST Shear Stress Transition
S4 Source Term
V∞ Air velocity
rf Distance vector from the body center of mass to the

center of face f
T Torque
TSR Tip Speed Ratio
U Time-averaged flow velocity vector
Ug Grid velocity vector
URANS Unsteady Reynolds Averaged Navier-Stokes
u, v Fluid velocity components
VAWT Vertical Axis Wind Turbine

Greek symbols
G Diffusion coefficient
€q Rotor angular acceleration
r Fluid density
tf Shear stress
4 A scalar quantity
u Rotor angular velocity
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