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In this paper, an alternative approach to implement initial and boundary conditions in the lattice Boltzmann
method is presented. The main idea is to approximate the nonequilibrium component of distribution functions
as a third-order power series in the lattice velocities and formulate a procedure to determine boundary node
distributions by using fluid variables, consistent with such an expansion. The velocity shift associated with the
body force effects is included in this scheme, along with an approximation to determine the mass density in
complex geometries. Different strategies based on the present scheme are developed to implement velocity and
pressure conditions for arbitrarily shaped boundaries, using the D2Q9, D3Q15, D3Q19 and D3Q27 lattices, in
two and three space dimensions, respectively. The proposed treatment is tested against several well-established
problems, showing second-order spatial accuracy and often improved behavior as compared to various existing
methods, with no appreciable computational overhead.
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I. INTRODUCTION

Since its introduction nearly three decades ago [1,2], the
lattice Boltzmann (LB) method has attracted considerable
attention as an alternative numerical method for simulating
a broad variety of complex flows [3]. At variance with
mainstream computational fluid dynamics methods, where
macroscopic variables such as velocity, pressure, and density
are obtained by solving the Navier-Stokes equations, the LB
method solves the kinetic equation for particle distribution
functions [4]. The macroscopic variables are then obtained
by evaluating the hydrodynamic moments of the distribution
functions. However, the inverse mapping from the macro-
scopic variables to the distribution functions is somewhat
tricky, especially at boundary nodes, because it requires more
unknowns than available from macroscopic hydrodynamics.

The LB boundary condition (BC) treatments that are
introduced to supply these unknowns can be divided into
two main families, the on-lattice and the so-called off-lattice
boundary conditions. For the former, the wall (solid-fluid
interface) is located on grid nodes and boundary values
are directly assigned to such boundary nodes, whereas for
the latter, the wall lies somewhere between grid nodes and
boundary values must be adjusted to provide the desired
conditions at the wall location.

Most of commonly used boundary conditions, including the
original bounceback method [5,6], the nonequilibrium bounce-
back scheme [7], the local thermohydrodynamic equilibrium
assumption for the missing distribution functions [8], the
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extrapolation scheme [9,10], Grad’s approximation [11], and
the regularized method [12], can be categorized as on-lattice
boundary treatments. Nevertheless, with the aid of suitable
interpolation and extrapolation procedures, some of these
on-lattice BCs are also amenable to an off-lattice boundary
treatment [13–19]. The main advantage of the off-lattice
approach is a more accurate geometrical representation of the
boundary at a given spatial resolution. The downside is an
increase of complexity in the formulation and implementation,
along with a potential loss of accuracy due to the interpolation
and extrapolation procedures required to transfer information
from the bulk to the boundary nodes and vice versa.

Despite the substantial body of remarkable work deployed
to improve the accuracy of on-lattice boundary conditions
with general geometries (see, for instance, [5,10–12]), some
drawbacks still remain. The bounceback rule, as combined
with single-relaxation-time formulations of the LB scheme,
generally yields a nonzero slip velocity that depends on
viscosity [6]. This error exists not only for classical bounce-
back method, but also for halfway bounceback and even
for the linear and quadratic interpolation methods based
on the bounceback rule [20]. The nonequilibrium extrapo-
lation scheme [10] and Grad’s approximation method [11]
fill the unknown distribution functions with appropriately
approximated values and preserve the known distributions
intact. Since no velocity enforcement procedure is applied
in these approaches, the imposed velocity value is close to
the desired one at the boundary node, although not exactly
the same. The regularized method [12] replaces all (known
and unknown) distribution functions at the boundary node
by approximated values. This approach enforces the velocity
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boundary node exactly to the desired value, but it loses some
information due to replacement of the known information with
an approximate one. Furthermore, since this BC initializes
unknown distributions by applying the bounceback rule on
nonequilibrium distributions, to evaluate the stress tensor, it
requires also the nonequilibrium distributions moving along
opposite directions, which may not be available in some
geometries, such as two-dimensional (2D) concave corners
or simple edges in 3D geometries.

In addition, there is a wide range of fluid problems in which
an external or internal force is involved, whose implementation
is best accomplished by shifting the velocity field in the expres-
sion of the local equilibria [21]. A common drawback for com-
monly adopted boundary approaches is that this velocity shift
is not considered in the treatment of the boundary information.

The present study introduces an on-lattice BC scheme to
implement velocity, pressure, and initial conditions in the LB
simulations, based on a formulation for density and unknown
distributions in the absence or presence of body forces. It
replaces all distribution functions on the boundary node, to
enforce the exact desired velocity values, while resorting to
a higher-order term in the distribution function, to reduce the
information loss during the redistribution step. The present
scheme can be applied to any arbitrary geometrical shape (in-
cluding corners and edges), using the D2Q9, D3Q15, D3Q19,
and D3Q27 lattices, without any substantial computational
overhead as compared to the existing approaches.

The rest of the paper is organized as follows. In Sec. II the
basics of the lattice Boltzmann are reviewed. In Sec. III the
boundary treatment is discussed in detail. In Sec. IV different
strategies to employ the treatment are summarized and in
Sec. V benchmark tests are carried out to assess the accuracy
and stability of the scheme. A summary and some conclusions
are provided in Sec. VI.

II. LATTICE BOLTZMANN METHOD

Although the lattice Boltzmann equation originated from
the lattice gas automata method [22,23], it can be viewed as a
special finite-difference form of the continuous Boltzmann
kinetic equation [24]. According to the lattice Boltzmann
equation, the evolution of the distribution function f for q

discrete velocities is given by

∂fi(r,t)
∂t

+ ei · ∇fi(r,t) = �i, i = 0,1, . . . ,q − 1, (1)

where � is the collision operator. To solve the distribution
function numerically, Eq. (1) is completely discretized with
the time step δt and lattice space δx as

fi(r + eiδt ,t + δt ) − fi(r,t) = �i. (2)

In this paper the lattice Bhatnagar-Gross-Krook model [25] is
used, which approximates the collision operator as a relaxation
of the distribution function f towards a local equilibrium
distribution f eq,

�i = 1

τ

[
f

eq
i (r,t) − fi(r,t)

] + δtGi, (3)

where τ is a dimensionless relaxation time related to the
kinetic viscosity of the fluid and Gi is the forcing term. The

equilibrium distribution f eqis a low-Mach-number expansion
of the Maxwell-Boltzmann distribution and is written as [24]

f
eq
i = wiρ

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− u2

2c2
s

]
, (4)

where u is the macroscopic velocity vector, wi is the weight
factor, ρ is the mass density, cs = c/

√
3 is the speed of

sound, and c = δx/δt is the particle streaming speed. There
are many published methods [21,26–28] to deal with body
force in the LB method. Here we use one of the most accurate
ones introduced by Guo et al. [21], where the forcing term is
defined as

Gi = wi

(
1 − 1

2τ

)[
ei − u

c2
s

+ (ei · u)ei

c4
s

]
· F, (5)

where F is the macroscopic body-force vector. The macro-
scopic quantities in the lattice Boltzmann method such as mass
density, velocity, and pressure are defined as moments of the
distribution function

ρ =
∑

i

fi, (6)

uα = 1

ρ

(∑
i

fieiα + δt

2
Fα

)
, (7)

p = ρc2
s . (8)

Through the Chapman-Enskog multiscale analysis, the kine-
matic viscosity ν is related to the dimensionless relaxation
time as follows [29]:

υ = (
τ − 1

2

)
c2
s δt . (9)

Further information about the LB theory and its applications
to complex fluid systems can be found in [3,20,29–33].

III. GENERAL BOUNDARY CONDITION

The evolution of the particle distribution functions using
Eq. (2) can be split into two basic steps: collision and
streaming. The collision step takes the particle populations
fi to their postcollision value f̃i using the following equation:

f̃i(r,t) = fi(r,t) + 1

τ

[
f

eq
i (r,t) − fi(r,t)

] + δtGi. (10)

The collision is then followed by a streaming step, which takes
the postcollision distribution to a neighbor node corresponding
to its lattice vector:

fi(r + eiδt ,t + δt ) = f̃i(r,t). (11)

On boundary nodes, the streaming step brings some unknown
distribution functions into the fluid domain from the solid
region. Boundary formulations in the LB method are mainly
focused on the calculation of these unknown distribution
functions in terms of known ones.

The main idea in this study is to conduct an approximation
for the distribution function in general cases (in two and
three dimensions), independent of the boundary shape and
the number of unknown distribution functions. In this regard,
we start our discussion from the Chapman-Enskog multiscale
analysis [22] and skip unnecessary details for the sake of
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simplicity. Based on the Chapman-Enskog multiscale analysis,
a distribution function can be expanded as a power-law series
with respect to a small quantity ε = O(δt ) as follows:

f =
∑
n=0

εnf (n) = f (0) + εf (1) + O(ε2). (12)

The first-order term of this series is the equilibrium distribution
f eq and the following terms are taken as the nonequilibrium
part, denoted by f neq,

f neq = εf (1) + O(ε2). (13)

According to Eq. (4), the equilibrium distribution f eq depends
on macroscopic variables ρ and u. However, there is no finite-
order expression to determine the nonequilibrium component
in terms of the local equilibrium; to this purpose an infinite
series in the Chapman-Enskog expansion should be carried
out.

Latt et al. [12] introduced a symmetric approximation
for the nonequilibrium, which is consistent with Grad’s
approximation, namely [11],

f
neq
i ≈ −wiτ

c2
s

(
eiei − c2

s I
)

: ρ∇u. (14)

Instead, we introduce a general approximation for the nonequi-
librium part, based on a fourth-order power series in the lattice
velocities:

f
neq
i ≈ wi[A + eiαBα + eiαeiβCαβ + eiαeiβeiγ Dαβγ

+ eiαeiβeiγ eiδEαβγ δ], (15)

where the unknown tensor coefficients (A,B, . . .) are de-
termined by requiring that the moments of f neq should be
consistent with the hydrodynamic equations.

For symmetric lattices such as D2Q9, D3Q15, D3Q19, and
D3Q27, the following relations are satisfied:∑

i

wi = 1,

∑
i

wieiαeiβ = c2
s δαβ,

∑
i

wieiαeiβeiγ eiδ = c4
s (δαβδγ δ + δαγ δβδ + δαδδβγ ); (16)∑

i

wieiα = 0,

∑
i

wieiαeiβeiγ = 0,

∑
i

wieiαeiβeiγ eiδeiλ = 0. (17)

After some calculation using Eqs. (2), (4), (5), (12), (16),
and (17), one can obtain the zeroth to second moments
of the nonequilibrium distribution functions as follows (see
Appendix A for the detailed mathematical derivation):∑

i

f
neq
i = 0, (18)

∑
i

f
neq
i eiα = −δt

2
Fα, (19)

∑
i

f
neq
i eiαeiβ = −δt

2
[uαFβ + uβFα]

− τc2
s δtρ

(
∂uα

∂β
+ ∂uβ

∂α

)
. (20)

For a d-dimensional problem, Eqs. (18)–(20) provide 1, d,
and d(d + 1)/2 equations, respectively. These relations fix
only the first three tensors in Eq. (15) including A, B, and C,
leaving the following tensors unknown, calling for a closure
approximation. The simplest such closure is to ignore these
tensors by setting them equal to zero, but it is clearly desirable
to devise better closures such as to exploit such tensors to
minimize the information loss inherent to the redistribution
process. For the moment, we keep these tensors in the form of
a distribution function denoted by hi (h standing for higher-
order):

hi = wi(eiαeiβeiγ Dαβγ + eiαeiβeiγ eiδEαβγ δ). (21)

Note that as long as the zeroth to second moments of the
function hi is zero, the tensors A, B, and C can be determined
explicitly as functions of the macroscopic properties. In this
regard, the approximation of the nonequilibrium part [Eq. (15)]
can be rewritten in the following form:

f
neq
i ≈ wi[A + eiδBδ + eiδeiγ Cδγ ] + hi

where
∑

i

hi =
∑

i

hieiα =
∑

i

hieiαeiβ = 0. (22)

Substituting Eq. (22) into Eqs. (18)–(20) yields

A = −c2
s Cαα, (23)

Bα = − δt

2c2
s

Fα, (24)

Cαβ = − δt

4c4
s

[uαFβ + uβFα] − τδtρ

2c2
s

(
∂uα

∂β
+ ∂uβ

∂α

)
. (25)

So far, the approximation for the nonequilibrium part of
distribution function can be expressed as

f
neq
i ≈ wi

(
eiαeiβ − c2

s δαβ

)
Cαβ − δtwi

eiαFα

2c2
s

+ hi. (26)

In this approximation, Cαβ is related to the strain rate tensor
and symmetric effects of body forces by Eq. (25). The second
term, representing the antisymmetric effects of body forces
and a rearrangement of Eq. (26), indicates that the function
hi is of O(ε2) in the distribution function expansion

f
neq
i = ε[f (1)] + O(ε2)

≈ δt

[
wi

(
eiαeiβ − c2

s δαβ

)Cαβ

δt

− wi

eiαFα

2c2
s

]
+ hi.

For known values of ρ, Cαβ , and hi , unknown distribution
functions on the boundary node located at rb can be calculated
by summing up the equilibrium and nonequilibrium distribu-
tions as follows:

fi(rb,t) = f
eq
i (rb,t) + wi

[(
eiαeiβ − c2

s δαβ

)
Cαβ − δt

2c2
s

eiαFα

]
+hi(rb,t). (27)
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It should be observed that filling the unknown distributions
by approximated values [Eq. (27)] does not necessarily lead
to a no-slip condition. In fact, in order to enforce the desired
velocity on boundary nodes, Eq. (27) must be applied in all,
known and unknown, directions. During this redistribution,
some known information is lost because known distributions
are replaced by approximated values.

This information loss can be formally expressed as follows:

f
(loss)
i = fi(known) − fi(approximated).

When the approximated values are up to first order in Knudsen
number (f neq ≈ εf (1)) as in Grad’s approximation and the
regularized method, the information loss is second order in
the Knudsen number [f (loss)

i = O(ε2)]. In our scheme, hi is
included in the final approximation as a higher term in the
Knudsen number.

In this regard, the information loss during the redistribution
step in the present scheme is expected to be lower than in the
regularized method:

f
(loss)
i = [

f
(0)
i + εf

(1)
i + O(ε2)

]
known

− (
f

(0)
i + εf

(1)
i + hi

)
approximated = O(ε2)known − hi.

(28)

The exact value of ρ in the definition of f eq and Cαβ , and
the hi function, would of course completely avoid any loss
of information during redistribution step. Accordingly, by
using an approximation value for hi , one can reduce the
information loss (not necessarily to zero, though) for the
known distributions. The rest of this section describes how
to determine ρ, Cαβ , and hi , one by one.

A. Determination of mass density on boundary nodes

According to Eq. (4), the equilibrium distribution f eq

depends on macroscopic variables ρ and u. For no-slip BCs,
the density ρ is unknown, due to a lack of information about the
boundary nodes. As discussed in previous studies [7,12], the
value of the density on straight walls can be determined from
the known distribution functions and the boundary velocity
values. However, the available information about a boundary
node may not be sufficient for the evaluation of the density on
more complex geometries.

In these situations, a common approach is to extrapolate the
density from the neighboring fluid node [10,12]. Note, how-
ever, that this extrapolation enforces a zero-pressure gradient
along the extrapolation direction, which is obviously not valid
whenever the body force features a nonzero component along
the extrapolation direction.

f4

f2 f5

f1

f8

f6

f3

f7

"next" node

FIG. 1. Layout of distribution functions for a typical boundary
node on a wall in the D2Q9 lattice.

In this study, an approximation of mass density is in-
troduced, which is independent of boundary shape, with or
without body forces, and can be regarded as an extension of the
local density approach described in a previous paper [18]. We
first define three sets of indices and one superscript: the known
indices IK , which index lattice directions with known dis-
tribution functions; the unknown-known indices IUK , which
index directions with unknown distribution functions, where
the distributions in the opposite directions are known; the
unknown-unknown indices IUU , which index directions with
unknown distribution functions, where the distributions in the
opposite directions are also unknown; and finally the next
superscript next , which denotes the fluid node nearest the
boundary node. Even though the present boundary scheme
is compatible with 2D and 3D lattices, in Fig. 1 we show
specifications of the above indices for a simple 2D case,
namely, a concave corner boundary node, with five unknown
distribution functions entering the fluid domain from the solid
region, depicted as dashed vectors in Fig. 1.

For this typical boundary node the three indices are defined
as follows:

IK = {0,3,4,7}, IUK = {2,1,5}, IUU = {6,8}.
A detailed discussion to determine the next node is pre-

sented in Appendix C. As long as the boundary shape is fixed,
these indices and the next location are computed only once
for each boundary node during the initialization procedure and
then they are available to use in the simulation. By temporarily
ignoring the hi values and performing some algebra, the
local density for each boundary node can be calculated
as follows (see Appendix B for the detailed mathematical
derivation):

ρ =
∑

i∈IK
fi + ∑

i∈IUK
fopp(i) + ∑

i∈IUU
f

(next)
i − δt

c2
s

∑
i∈IUK

wieiαFα

1 − 2
c2
s

∑
i∈IUK

wieiαuα

, (29)

where the subscript opp(i) denotes the opposite of the i

direction.
B. Determination of Cαβ on boundary nodes

According to Eq. (25), the calculation of the C tensor re-
quires information about the density, body force, velocity, and
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velocity gradients. Density, body-force, and velocity values
are available by using Eq. (29) and boundary information.
Velocity gradients can also be determined by using velocity
values of neighboring nodes and a suitable finite-difference
scheme. Considering that evaluation of Cαβ in a d-dimensional
geometry requires gradients of d velocity components in the
d direction, one readily concludes that determination of the C
tensor by using Eq. (25) is computationally expensive.

Next we present a simpler way to determine this tensor
based on the knowledge of the known information. Note that
for any node in the computational domain, the Cαβcan be
calculated as follows:∑

i

fieiαeiβ =
∑

i

f
eq
i eiαeiβ +

∑
i

f
neq
i eiαeiβ,

∑
i

fieiαeiβ = (
ρc2

s δαβ + ρuαuβ

) + (
2c4

s Cαβ

)
,

Cαβ =
∑

i fieiαeiβ − ρc2
s δαβ − ρuαuβ

2c4
s

. (30)

For a boundary node, the density is known by Eq. (29) and
the velocity components are given by the no-slip boundary
conditions. If one assumes a series of initial approximations for
all unknown distribution functions, Cαβ can then be determined
by using Eq. (30). Note that, according to Eqs. (16), (17),
and (26), the first moment of f neq (which is involved in
macroscopic velocity definition) is independent of the C
tensor:∑

i

f
neq
i eiγ =

∑
i

wieiγ

[(
eiαeiβ−c2

s δαβ

)
Cαβ+ − δt

2c2
s

eiαFα

]

+
∑

i

hieiγ = −δt

2
Fγ .

Therefore, the C tensor does not directly affect the velocity
value and vice versa. In this regard, a series of rough approx-
imations for unknown distributions called initial approxima-
tions are good enough to determine the Cαβ values even if these
approximations do not completely satisfy the no-slip boundary
condition. Latt et al. [12] suggested bounceback of nonequi-
librium parts as initial approximations. There may be two
problems with this approach. First, applying the bounceback
rule on the nonequilibrium part of unknown distributions leads
to a symmetric distribution for the nonequilibrium parts along
the bounceback direction, whereas, according to Eq. (26),
the nonequilibrium distribution is generally a combination

of symmetric and antisymmetric components. Even if the
hi function is ignored, the body-force effects would result
in an antisymmetric distribution in the nonequilibrium part.
Second, to perform the bounceback rule, the distribution in
the opposite direction must be known. This information may
not be available in all geometries (e.g., the boundary node
depicted in Fig. 1).

Here an approach is introduced for the initial approxima-
tion, which applies to any arbitrary geometry and also accounts
for antisymmetric effects of body forces:

fi = (1 + τ )f eq
i − τf

eq(next)
i

− δt

2c2
s

wieiαFα for i ∈ IUK, i ∈ IUU . (31)

After assuming the above approximation for the unknown
distribution functions, the C tensor can consequently be
determined by using Eq. (30).

C. Determination of hi on boundary nodes

According to Eq. (21), the hi function can be decomposed
into a antisymmetric part denoted by �i and symmetric part
denoted by �i :

hi = �i + �i = wieiαeiβeiγ Dαβγ + wieiαeiβeiγ eiδEαβγ δ.

(32)

For a fluid node where all distribution functions are known,
�i and �i can be determined by using Eqs. (4) and (26) as
follows:

�i = fi − fopp(i)

2
− wiρ

c2
s

uαeiα + δt

2c2
s

wieiαFα,

�i = fi+fopp(i)

2
−wi

[
ρ+(

eiαeiβ−c2
s δαβ

)(
ρ

uαuβ

2c4
s

+Cαβ

)]
.

It is easy to show that the zeroth to second moments of �i and
�i are zero and consequently the hi as defined in Eq. (32) is
compatible with the nonequilibrium approximation in Eq. (22).

Here we choose to extrapolate �i and �i values at boundary
nodes from the next node:

�i(rb,t) ≈ f
(next)
i − f

(next)
opp(i)

2
− wiρ

(next)

c2
s

u(next)
α eiα

+ δt

2c2
s

wieiαF (next)
α , (33)

�i(rb,t) ≈ f
(next)
i + f

(next)
opp(i)

2
− wi

[
ρ(next) + (

eiαeiβ − c2
s δαβ

)(
ρ(next)

u(next)
α u

(next)
β

2c4
s

+ C(next)
αβ

)]
. (34)

So far, we approximated the symmetric and antisymmetric
parts of the hi , but it is not clear how this approximated
value would affect the accuracy of the present scheme. To
this purpose, three different cases, including body-force-driven
flow in a straight channel, pressure-driven flow in an inclined
channel, and flow between two rotating circular cylinders, are
simulated by using the present scheme when the hi is chosen

to be hi = 0, hi = �i , and hi = �i + �i , respectively. For
now, we focus on hi effects on overall accuracy and postpone
other details until the next section. The corresponding relative
errors of the velocity field for these three cases are reported in
Fig. 2 as a function of the Reynolds number. For the straight
channel, nonzero values of hi can considerably (about 40%)
enhance the accuracy of simulations. Since the hi distribution
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Re

E r

5 10 15 20 25

10-3

10-2

10-1

hi=0
hi=Γi
hi=Γi+Δi

case 1

case 3

case 2

FIG. 2. Relative error in the velocity field as a function of the
Reynolds number when hi is chosen to be hi = 0, hi = �i , and hi =
�i + �i . Points from bottom to top are numerical results for the body-
force-driven flow in a straight channel where the grid resolution along
the channel width is NR = 20, pressure-driven flow in an inclined
channel where the grid resolution is NR = 80 and the slope of the
boundaries is 1/3, and flow between two rotating circular cylinders
where the grid resolution along the inner cylinder radius is NR = 20
and radius ratio is β = 1/2.

does not affect the nonequilibrium moments in Eqs. (18)–(20),
this enhancement can only be associated with a reduction in
the information loss during redistribution step, due to the hi

distribution function.
Note that besides the hi function, the information loss can

also be affected by the density value used in the f eqand Cαβ

definitions. In other words, any decreases in the accuracy
of the density approximation may reduce recovering effects
of the hi function. For example, in the pressure-driven flow
in an inclined channel, where the accuracy of the density
approximation is affected by the stair-shaped nature of the flow
geometry, nonzero values of hi can enhance the simulation
accuracy only about 10%. For more critical conditions such
as flow between two rotating cylinders, where the density
approximation is affected by the stair-shaped geometry along
a potential mass leakage due to centripetal force, the effect of
nonzero values of hi on overall accuracy is not considerable.

Numerical results in Fig. 2 also show that the effects of �i

on the overall accuracy in all cases is rather negligible. In this
regard, the hi distribution function can be approximated by its
antisymmetric component

hi(rb,t) ≈ f
(next)
i − f

(next)
opp(i)

2
− wiρ

(next)

c2
s

u(next)
α eiα

+ δt

2c2
s

wieiαF (next)
α . (35)

The above discussion indicates that the benefits due to the hi

component are flow dependent and hence must be assessed

case by case. Routes to further improvement are beyond the
scope of the present work.

IV. BOUNDARY CONDITION ALGORITHMS

In this section we introduce various strategies to apply the
present scheme as the velocity, pressure, or initial condition in
LB simulations.

A. No-slip boundary condition

The implementation of the present scheme as a no-slip BC
is summarized as follows.

Step 1. Compute the mass density using Eq. (29).
Step 2. Assume an initial approximation for all unknown

distributions using Eq. (31).
Step 3. Determine the C tensor using Eq. (30).
Step 4. Determine the hi function using Eq. (35).
Step 5. Redistribute all distribution functions on boundary

nodes using Eq. (27).

B. Pressure boundary condition

Pressure in the lattice Boltzmann method is directly
connected to density by Eq. (8). Consequently, for a pressure
boundary condition, the mass density is known whereas
the velocity components are unknowns. In this situation,
the velocity value of the next node can be used as an
approximation for the boundary velocity:

u(rb,t) = u(rnext,t). (36)

After determining the boundary velocity, the boundary treat-
ment is similar to the no-slip condition. Steps to apply a
pressure boundary condition are as follows.

Step 1. Compute the mass density using Eq. (8).
Step 2. Calculate the boundary velocity using Eq. (36).
Step 3. Assume an initial approximation for all unknown

distributions using Eq. (31).
Step 4. Determine the C tensor using Eq. (30).
Step 5. Determine the hi function using Eq. (35).
Step 6. Redistribute all distribution functions on boundary

nodes using Eq. (27).

C. Initial condition

The accurate initialization of the fluid flow is an important
step in numerical simulations, specifically for time-dependent
flows. In these situations, the velocity field and density (pres-
sure) distribution are known and the distribution functions at
all nodes in the computational domain need to be determined.
For this condition the following algorithm is suggested.

Step 1. Calculate the equilibrium distribution functions
based on velocity and density values using Eq. (4).

Step 2. Determine the velocity gradients using an appropri-
ate finite-difference scheme.

Step 3. Determine the C tensor using Eq. (25).
Step 4. Initialize the distribution function for all nodes in

the computational domain using the following equation:

fi(r,t) = f
eq
i (r,t) + wi

[(
eiαeiβ − c2

s δαβ

)
Cαβ − δt

2c2
s

eiαFα

]
.

(37)
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Note that for an initial-value problem there is no equation
to calculate the hi function in terms of macroscopic quantities.
In this regard, the hi function is ignored in Eq. (37). If the
pressure distribution is not available, extra calculations may
be required to determine the density field. An example for this
situation is discussed in detail in the next section.

D. Curved boundaries

As mentioned before, the present scheme is an on-lattice
boundary treatment that approximates the curved boundaries
as a series of stair steps. This is a rough approach for curved
boundaries, but can nonetheless describe complex geometries
by increasing the grid resolution. Of course, this entails higher
resolution than curved boundary methods, hence potentially
more expensive simulations, even though the global tradeoff
between accuracy, efficiency, and simplicity of implementation
is ultimately the user’s choice. Nevertheless, with the aid of
suitable extrapolation schemes, the present boundary treatment
could also be used as an off-lattice BC, to track the exact
wall location. Combining the present treatment with the
extrapolation scheme is beyond the scope of present work.

V. NUMERICAL VERIFICATION

In this section we present the results of benchmark tests
we performed in order to assess the accuracy and stability
of the boundary treatment outlined above. We considered
the following test cases: 2D and 3D pressure-driven flows
in straight and inclined channels, flow between two rotating
cylinders, and the turbulent dipole-wall collision. The D2Q9
and D3Q27 lattices are employed for 2D and 3D benchmarks,
respectively. For the sake of comparison, the nonequilibrium
extrapolation method [10], Grad’s approximation scheme [11],
and the regularized method [12] are also included in the bench-
mark tests. It must be emphasized that the present scheme
does not involve any substantial computational overhead as
compared to the above treatments [10–12]. To assess the
computational accuracy of the LB solutions, the following

relative error measure is defined:

Er =
√√√√ 1

N

∑
N

(
Ranalytic − Rnum

Ranalytic

)2

, (38)

where Rnum and Ranalytic indicate the numerical and analytic
results, respectively, and N is the total number of nodes in the
computational domain.

A. Pressure-driven channel flows (in two and three dimensions)

A fully developed pressure-driven channel flow is a clas-
sical case to validate no-slip BCs. The flow is characterized
by a constant pressure drop along the channel. This pressure
drop can be applied by enforcing the velocity profile from
the analytic solution of the flow on the inlet and the outlet of
the channel, implementing the pressure drop as a body force
F = −∇p/ρ, or using pressure boundary conditions at the
inlet and outlet of the channel. Each of these methods has
its own benefits to challenge the present boundary treatment,
which are discussed below.

Enforcing the analytic solution at the inlet and the outlet of
the channel is a reasonable starting point because it provides
a chance to compare the current BC with some of well-known
boundary treatments that originally did not consider the
velocity shift associated with the body-force implementation.
In this respect, the method introduced by Zou and He [7],
in addition to those in [10–12], is employed in the test case.
The geometry is a 2D horizontal straight channel along the
x direction, with zero velocity at the walls and an analytic
velocity profile at the inlet and outlet for each BC treatment.
The analytic velocity distribution of this flow is given by [34]

U

Umax
= 4

y

H

(
1 − y

H

)
, (39)

where H is the channel height and the maximum value
of velocity Umax is defined as Umax = −∇pH 2/8μ. In this
simulation, the pressure drop is adjusted so as to keep the
Reynolds number at a constant value Re = 5.

NR

E r

20 40 60 8010-7
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10-4

10-3

10-2

10(a) (b)-1

Slope -2
Ref. [10]
Ref. [12]
Ref. [11]
present study
Ref. [7]

NR

E r

50 100 150 20010-6

10-5

10-4

10-3

10-2

10-1

slope -2
Ref. [10]
Ref. [11]
Ref. [12]
present study

FIG. 3. Relative error in the velocity field as a function of the lattice resolution for straight pressure-driven channel flow at Re = 5 in (a) a
two-dimensional geometry and (b) a three-dimensional geometry.
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Figure 3(a) shows the profile of the velocity relative error Er

as a function of the lattice resolution NR for the present bound-
ary treatment, wherein fitting of error data indicates second-
order overall accuracy for the present scheme. Also included
in this figure are results from other mentioned approaches.
As discussed previously, the nonequilibrium extrapolation
approach [10] and Grad’s approximation [11] do not cater to
velocity enforcement and consequently they lead to compar-
atively less accurate results. The regularized method [12] and
the present scheme enforce the desired velocity on the bound-
ary node, but they drop some information during the redistribu-
tion step, at variance with the Zou-He method [7], which does
not change the known distributions. As a result, the Zou-He

method leads to the most accurate results for this test, the
present scheme being the second most accurate, likely because
of the beneficial effects of the hi function.

To assess the compatibility of the present scheme with
body-force-driven flows, a pressure-driven flow is simulated
in a 3D rectangular duct. Again, the channel is horizontal and
aligned with the x direction. In this case, the pressure drop is
implemented as a body force, the no-slip condition is applied
to the walls, and the periodic condition is employed at the inlet
and outlet of the channel. The channel has a constant square
cross section, extending from y = −a to y = a and from
z = −a to z = a. This flow exhibits the following analytic
solution [35]:

U

Uref
= 1

0.6a2

(
a2 − y2 − 32a2

π3

∞∑
n=1,3,5,...

[
(−1)(n−1)/2 cosh(nπz/2a)

cosh(nπ/2)

cosh(nπy/2a)

n3

])
. (40)

In the above, the reference velocity is Uref = −0.3a2∇p/μ.
In this simulation, the flow parameters are adjusted to keep
the Reynolds number (based on the reference velocity and
hydraulic diameter) constant at Re = 5. The Zou-He method
was originally defined for straight walls and flat surfaces
on D2Q9 and D3Q15 lattices and consequently it is not
included in this test. Since the velocity definition (7) is not
directly involved in the nonequilibrium extrapolation method,
the formulation of this scheme is not affected by the body-
force implementation and is used without any modification.
For the regularized method and Grad’s approximation, the
nonequilibrium approximation (14) is adjusted for the velocity
shift in a way similar to the current approach, so as to
guarantee an equal treatment. Figure 3(b) presents the velocity
profile relative error variations for different lattice resolutions.
According to this figure, the present boundary treatment is
of second-order accuracy and leads to more accurate results
compared to the other tested schemes.

As the last method, we conduct a pressure-driven flow
simulation by applying the pressure difference directly to
both ends of the channel. As shown in Fig. 4, an inclined 2D
channel is modeled in the D2Q9 lattice, where the inclination
angle is set to a/b = 1/3. Note that upper and lower walls
and inlet and outlet ports are modeled as staircase-shaped
lines, due to the nature of the Cartesian LB grid. It must be
emphasized that no curved boundary treatment is employed

NR

p0

p0+Δp

b

a

FIG. 4. Geometry and velocity vectors for an inclined flat channel
where the grid resolution is NR = 40 and the inclination angle is
a/b = 1/3.

in this simulation and the desired velocity or pressure is
applied directly to boundary nodes. The velocity vectors are
presented at some typical locations along the channel in Fig. 4.
From the mentioned boundary treatments [7,10–12], only the
nonequilibrium extrapolation approach and the present scheme
allow us to implement a pressure boundary condition for an
arbitrary shape geometry. Figure 5 shows the velocity profile
relative error for the inclined channel flow as a function of the
grid resolution. It can be observed that the present BC provides
a considerably more accurate prediction of the velocity profile
as compared to the nonequilibrium extrapolation scheme.

B. Flow between two rotating circular cylinders

To demonstrate the capability of the present boundary
treatment for more complex geometries, the flow between
two rotating cylinders is simulated for Reynolds number
Re = Riω(Ro − Ri)/ν = 10. In this simulation, the inner

NR

E r

20 40 60 80 10010-3

10-2

10-1

Ref. [10]
present study

FIG. 5. Relative error in the velocity field as a function of lattice
resolution for the inclined pressure-driven channel flow at Re = 5,
where the inclination angle is a/b = 1/3.

033301-8



GENERAL VELOCITY, PRESSURE, AND INITIAL . . . PHYSICAL REVIEW E 95, 033301 (2017)

NR

FIG. 6. Geometry and velocity vectors for flow between two
rotating circular cylinders where the grid resolution is NR = 40 and
the radius ratio is β = 1/2.

cylinder with radius Ri = 1 cm is rotating at a constant angular
velocity ω and the outer cylinder with radius Ro = 2 cm
is kept stationary. This problem is a useful benchmark test
to examine the accuracy and efficiency of the proposed
boundary treatment in the simulation of moving and stationary
boundaries in complex geometries. Note that, similar to the
inclined channel case, no extrapolation associated with the
curved boundary treatment is employed. The Navier-Stokes
equations exhibit the following analytical solution for the
transversal velocity [34]:

Uθ (r)

U0
= β

1 − β2

(
Ro

r
− r

Ro

)
, (41)

where U0 = Riω is the reference velocity and β = Ri/Ro.
The computational domain is modeled using a square mesh
with the radius of the inner cylinder consisting of NR nodes
along lattice rows. A schematic view of this geometry is

reported in Fig. 6 for NR = 40. For validation purposes, the
velocity profile is compared with the analytic solutions in
Fig. 7(a), for different grid resolutions. Also included in this
figure are numerical results obtained from the nonequilibrium
extrapolation scheme [10] and Grad’s approximation [11],
and the regularized method [12]. It can be observed that
the present boundary condition provides a more accurate
velocity prediction as compared to the other schemes. Change
in the velocity direction as shown in Fig. 6 leads to a
centripetal force normal to boundary surfaces. This situation
provides a good challenge to assess the performance of our
density approximation [Eq. (29)] in comparison to the density
extrapolation, which is the most common approach in dealing
with complex geometries. In this regard, a measure of mass
leakage is defined as the rate of change in the summation of
the mass density over lattice sites in the computational domain
after N iterations:

Ṁloss =
∑

ρ(x,y)t+Nδt
− ∑

ρ(x,y)t
Nδt

. (42)

Figure 7(b) shows the variation of mass leakage when the
Reynolds number increases from 10 to 640 and the grid
resolution is kept constant at NR = 20. Since the boundary
is not straight in this geometry, Grad’s approximation [11],
the nonequilibrium extrapolation [10], and the regularized
method [12] use extrapolation to obtain the density value
from the nearest fluid node. Among these approaches, Grad’s
approximation [11] shows the best performance in terms of
mass leakage, as it keeps the known distributions unchanged.
In contrast, the regularized method [12], which approximates
both known and unknown distributions, shows considerable
mass leakage, especially at high Reynolds numbers. The
performances of these two schemes in the simulation of
velocity fields are completely different. As shown in Fig. 7(a),
the regularized method [12] has better accuracy in the velocity
field prediction compared to Grad’s approximation [11] be-
cause it can enforce the velocity values at the boundary nodes.
In other words, Grad’s approximation [11] and similarly the
nonequilibrium extrapolation method [10] deliver satisfactory
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Ref. [11]
Ref. [12]
present study

Re

M
as

s L
ea

ka
ge

101 102 10310-6

10-5

10-4

10-3

10-2

10-1

100
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Ref. [10]
Ref. [11]
present study

(a) (b)

FIG. 7. (a) Comparison of velocity relative errors for different boundary schemes as a function of lattice resolution at Re = 10 for flow
between two rotating cylinders. (b) Mass leakage variation as a function of the Reynolds number for a grid resolution of NR = 20 for flow
between two rotating cylinders.
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FIG. 8. Sequence of vorticity contour plots showing the flow evolution of a dipole collision for Re = 625 at (a) t = 0.1, (b) t = 0.3, and
(c) t = 0.5.

performances in mass leakage control by losing accuracy in
the velocity field prediction. However, the present scheme,
with the aid of Eq. (29), features an acceptable mass leakage,
comparable to Grad’s approximation [11] [Fig. 7(b)]. At the
same time, it also leads to the most accurate results in velocity
field prediction [Fig. 7(a)].

C. Turbulent dipole-wall collision

The complexity of a given flow is not necessarily due to
a complex geometry, the collision of a dipole with a flat wall
being a good example. A dipole is a system of two counter-
rotating vortices located next to each other. Due to rotation of
these vortices, a forward momentum is induced, leading to a
self-propelled motion of the dipole. The benchmark problem
considered in this section is the normal collision of a 2D dipole
with a no-slip flat wall. The fluid is incompressible and the
flow is confined in a square domain [−1,1] × [−1,1] with the
no-slip condition at boundaries. The initial condition is chosen
to reproduce two counterrotating monopoles, one with positive
core vorticity at the position (x1,y1) = (0,0.1) and one with
negative core vorticity at (x2,y2) = (0, − 0.1). This is obtained
with the following initial velocity field:

ux = − 1
2 |ωe|(y − y1) exp[−(r1/r0)2]

+ 1
2 |ωe|(y − y2) exp[−(r2/r0)2],

uy = − 1
2 |ωe|(x − x1) exp[−(r1/r0)2]

+ 1
2 |ωe|(x − x2) exp[−(r2/r0)2], (43)

where ri =
√

(x − xi)2 + (y − yi)2 is the distance from
(xi,yi), r0 is the diameter of a monopole, and ωe is its initial
core vorticity. The value of ωe = 299.5286 [36] is used with
the condition that the total kinetic energy of the system

E(t) = 1

2

∫ +1

−1

∫ +1

−1
u2(x,t)dx dy (44)

is initially E(0) = 2 for all runs. The diameter of a monopole
is set at r0 = 0.1 and the Reynolds number Re = UW/ν is
Re = 625, where U is a characteristic velocity of the flow and
W is the half-width of the domain that is modeled by NR nodes.
The total enstrophy of the dipolar flow field that is monitored

in this benchmark is defined as

�(t) = 1

2

∫ +1

−1

∫ +1

−1
ω2(x,t)dx dy, (45)

where ω = ∂xuy − ∂yux is the flow vorticity. The dipole flow
is an initial-value problem. The initial value for the velocity
field is described by Eq. (43) and can be implemented to the
LB approach by the present scheme using Eq. (37).

In this implementation, a second-order finite-difference
scheme is used to determine the velocity gradients and
consequently the C tensor is calculated using Eq. (25). The
local density, however, is unknown. One way to obtain the
local density values is to determine the pressure distribution
by solving the following Poisson equation:

∇2p = −∇ · [u · (∇u)]. (46)

After determining the pressure distribution, local densities can
be calculated using Eq. (8). There are many numerical schemes
available to solve the Poisson equation and here we use the one
proposed by Mohammadipour and Niazmand [37] to solve the
Poisson equation within the LB approach.

The evolution of the dipolar vortex during its collision with
the no-slip wall is shown in Fig. 8 as a contour plot of the
vorticity at three given time steps. After releasing the initial
monopolar vortices, a secondary vortex flow is constructed
around the main dipole. At a later stage, the main dipole travels
away along the positive-x direction and the secondary vortex
flow left behind combines into another dipole that translates
in the opposite direction [Fig. 8(a)]. The secondary dipole is
weaker and travels with lower velocity compared to the main
dipole Fig. 8(b). As the dipole approaches the wall, small-
scale structures are generated in the boundary layer close to
the wall, leading to an increase of the vorticity amplitude.
After the collision, the dipole halves separate from each other
along circular trajectories, preparing for a second collision
with the wall, as shown in Fig. 8(c). The time evolution of
the enstrophy of the system is shown in Fig. 9(a), where the
collision is signaled by a peak in the enstrophy curve. The
value of this local maximum will be used as a benchmark to
compare the present boundary scheme with results obtained
from well-known boundary approaches [7,10–12]. The error
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FIG. 9. (a) Enstrophy �(t) for the dipole-wall collision with Re = 625 and grid resolution NR = 700. (b) Numerical accuracy in capturing
the maximum enstrophy of the dipole-wall collision as a function of lattice resolution for Re = 625.

in the value of the enstrophy peak is quantified as follows:

Er =
∣∣�ref

max − �max

∣∣
�ref

max

, (47)

where �max is the value of the enstrophy peak obtained
from the lattice Boltzmann simulation and �ref

max = 933.4 is
the average value of the enstrophy maximum in previous
studies [36,38]. Since the flow in this case is a simple 2D
box with four straight walls, it can be easily implemented by
using the boundary schemes [7,10–12]. Figure 9(b) illustrates
the relative error as a function of grid resolution for the
present scheme and the other approaches. The implementation
of the Zou-He method [7] shows numerical instabilities
and fails to converge with the given grid resolutions. The
nonequilibrium extrapolation approach [10] shows a better
performance than the regularized method [12] in capturing the
collision phenomena. It can be further observed that the present
treatment is significantly more accurate than other approaches.

VI. CONCLUSION

An on-lattice boundary condition scheme was proposed
to handle pressure and velocity boundary conditions, based
on a third-order expansion of the distribution function in the
discrete lattice velocities. The basic idea is to decompose the
distribution function at the boundary node into equilibrium and
nonequilibrium parts and then to approximate each of them
with the help of available information from the boundary node
and its neighboring node. Schemes for pressure and velocity
boundaries were given based on this method, which can be
used for arbitrary shape geometries in combination with D2Q9,
D3Q15, D3Q19, and D3Q27 lattices. It replaces all distribution
functions on the boundary node to enforce the exact desired
boundary values while it makes use of higher-order terms of
the distribution to minimize the information loss due to the
redistribution step.

The scheme was tested against several well-established
problems including pressure-driven flow in 2D and 3D straight
channels, pressure-driven flow in an inclined channel, laminar

flow between two rotating cylinders, and the turbulent dipole-
wall collision. The numerical results indicate a competitive
performance with existing consolidated boundary treatments,
in terms of accuracy, mass leakage, and computational perfor-
mance. It is therefore hoped that the proposed method offers a
further valuable option for the implementation of boundary
conditions for in lattice Boltzmann flows and multiscale
applications thereof [39].
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APPENDIX A: DERIVATION OF THE NONEQUILIBRIUM
PART MOMENTS

In this appendix we derive the macroscopic approach for the
nonequilibrium part of the distribution function. The derivation
begins with expansion of the distribution functions around the
equilibrium value

fi(r,t) = f
(0)
i (r,t) + εf

(1)
i (r,t) + · · ·

= f
eq
i (r,t) + f

neq
i (r,t) + O(ε2), (A1)

where ε is the Knudsen number. Moments of Eq. (A1) in the
particle velocity field are calculated as follows:∑

i

fi =
∑

i

f
eq
i +

∑
i

f
neq
i , (A2)∑

i

fieiα =
∑

i

f
eq
i eiα +

∑
i

f
neq
i eiα. (A3)

With the definitions of macroscopic quantities (7) and (8) and
the equilibrium part (4), one can easily obtain the following
moments: ∑

i

f
neq
i = 0, (A4)

∑
i

f
neq
i eiα = −δtFα

2
. (A5)
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The calculation of
∑

i f
neq
i eiαeiβ is somewhat tricky and needs

some extra calculations. According to Eq. (2), the lattice
Boltzmann evolution equation for the distribution function can
be described as follows:

fi(r + eiδt ,t + δt ) = fi(r,t) + 1

τ

[
f

eq
i (r,t) − fi(r,t)

] + δtGi.

(A6)

The left-hand side of Eq. (A6) can be expanded around (r,t)
using Taylor series expansion:

fi(r+eiδt ,t+δt ) = fi(r,t)+
∞∑

n=1

Dn

n!
εn

(
f

(0)
i + εf

(1)
i + · · ·).

(A7)

Based on the formal multiscale approximation, known
as Chapman-Enskog expansion, the material derivative is

expressed as follows:

D = ∂t + eiα∂α =
∞∑

n=1

εn∂t(n). (A8)

Substituting Eqs. (A2) and (A3) into Eq. (A1) and collecting
coefficients of ε1 leads to

∂t0f
(0)
i + eiα∂αf

(0)
i = −f

(1)
i

τ
+ Gi. (A9)

According to Eq. (A9), the nonequilibrium part can be
expressed as

f
neq
i = εf

(1)
i = τδt

(
Gi − ∂t0f

(0)
i − eiα∂αf

(0)
i

)
. (A10)

Note that, to capture the physics, the time step δt should be
on the order of the Knudsen number (δt = ε). Consequently,∑

i f
neq
i eiαeiβ can be calculated as

∑
i

f
neq
i eiαeiβ =

∑
i

τ δtGieiαeiβ︸ ︷︷ ︸
term 1

−
∑

i

τ δt ∂t0f
(0)
i eiαeiβ︸ ︷︷ ︸

term 2

−
∑

i

τ δt eiαeiβeiγ ∂γ f
(0)
i︸ ︷︷ ︸

term 3

. (A11)

There are three terms in Eq. (A11) that are determined below one by one:∑
i

τ δtGieiαeiβ︸ ︷︷ ︸
term 1

=
∑

i

τ δtwi

(
1 − 1

2τ

)[
eiγ Fγ − uδFδ

c2
s

+ eiγ Fγ eiδuδ

c4
s

]
eiαeiβ,

term 1 = δt

(
τ − 1

2

)[∑
i

wi

−uδFδeiαeiβ

c2
s

+
∑

i

wi

eiαeiβeiγ eiδFγ uδ

c4
s

]
,

term 1 = δt

(
τ − 1

2

)
[uαFβ + uβFα], (A12)

∑
i

τ δt ∂t0f
(0)
i eiαeiβ︸ ︷︷ ︸

term 2

= τδt∂t0

(
ρc2

s δαβ + ρuαuβ

)
,

term 2 = τδt

[
c2
s δαβ(−∂γ ρuγ ) + uα∂t0ρuβ + uβ∂t0ρuα − uαuβ∂t0ρ

]
,

term 2 = τδt

{−c2
s δαβ∂γ ρuγ + uα

[
Fβ − ∂βρc2

s − ∂γ (ρuγ uβ)
] + uβ

[
Fα − ∂αρc2

s − ∂γ (ρuγ uα)
]

−uαuβ[−∂(∂γ ρuγ )]
}
,

term 2 = τδt

[−c2
s δαβ∂γ ρuγ + uαFβ − uα∂βρc2

s + uβFα − uβ∂αρc2
s + O(u3)

]
, (A13)

∑
i

τ δt eiαeiβeiγ ∂γ f
(0)
i︸ ︷︷ ︸

term 3

= τδtc
2
s [∂βρuα + ∂αρuβ + δαβ∂γ ρuγ ],

term 3 = τδtc
2
s [ρ∂βuα + uα∂βρ + ρ∂αuβ + uβ∂αρ + δαβ∂γ ρuγ ]. (A14)

Substituting Eqs. (A12)–(A14) into Eq. (A11) leads to∑
i

f
neq
i eiαeiβ = −δt

2
[uαFβ + uβFα] − τδtρc2

s [∂βuα + ∂αuβ]. (A15)

APPENDIX B: DERIVATION OF THE LOCAL MASS DENSITY APPROXIMATION

Derivation of the mass density approximation begins with the definition of density in the LB method:

ρ =
∑
i∈IK

fi +
∑
i∈IUK

fi +
∑
i∈IUU

fi =
∑
i∈IK

fi +
∑
i∈IUK

(
f

eq
i + f

neq
i

) +
∑
i∈IUU

fi . (B1)
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We temporarily define a new function as follows:

gi = f
eq
i

ρ
= wi

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− u2

2c2
s

]
. (B2)

Substituting Eq. (B2) into Eq. (B1) and approximating the IUU distribution functions by the corresponding distribution in the
next node leads to

ρ =
∑
i∈IK

fi + ρ
∑
i∈IUK

gi +
∑
i∈IUK

f
neq
i +

∑
i∈IUU

fi
(next). (B3)

According to Eq. (26), the nonequilibrium parts of distributions in the IUK directions are related to the distribution function in
opposite directions as follows:

f
neq
i ≈ f

neq
opp(i) − wiδt

c2
s

eiαFα + 2hi. (B4)

Substituting Eq. (B4) into Eq. (B3) leads to

ρ =
∑
i∈IK

fi + ρ
∑
i∈IUK

gi +
∑
i∈IUK

[
f

neq
opp(i) − wieiα

δtFα

c2
s

+ 2hi

]
+

∑
i∈IUU

fi
(next),

ρ =
∑
i∈IK

fi + ρ
∑
i∈IUK

gi +
∑
i∈IUK

[(
fopp(i) − f

eq
opp(i)

) − wieiα

δtFα

c2
s

+ 2hi

]
+

∑
i∈IUU

fi
(next). (B5)

By ignoring the hi , the above equation can be simplified as

ρ =
∑
i∈IK

fi + ρ
∑
i∈IUK

gi +
∑
i∈IUK

fopp(i) − ρ
∑
i∈IUK

gopp(i) −
∑
i∈IUK

wieiα

δtFα

c2
s

+
∑
i∈IUU

fi
(next),

ρ

⎛
⎝1 −

∑
i∈IUK

(gi − gopp(i))

⎞
⎠ =

∑
i∈IK

fi +
∑
i∈IUK

fopp(i) +
∑
i∈IUU

fi
(next) − δt

c2
s

∑
i∈IUK

wieiαFα. (B6)

According to Eq. (B2), the difference between gi values in two opposite directions is related to velocity as follows:

gi − gopp(i) = 2wiuαeiα

c2
s

. (B7)

Substituting Eq. (B7) into Eq. (B6) leads to the final approach for mass density:

ρ =
∑

i∈IK
fi + ∑

i∈IUK
fopp(i) + ∑

i∈IUU
fi

(next) − δt

c2
s

∑
i∈IUK

wieiαFα

1 − 2
c2
s

∑
i∈IUK

wiuαeiα

. (B8)

APPENDIX C: DETERMINATION OF THE
next NODE’S LOCATION

In the present study, a superscript (next) is introduced
that has a key role in our BC scheme. Here we discuss a
simple strategy to specify this parameter in an arbitrary shape
boundary in 2D and 3D geometries. The next node is the
nearest fluid point to the boundary node. Obviously, there is a
specific velocity direction in each boundary node that points
to this next node. We denote this specific velocity direction by
en and call it the normal velocity direction. To distinguish en

among lattice velocities, we define three categories for lattice
nodes. There are some nodes located in the fluid region, which
we call fluid nodes. A series of lattice nodes named boundary
nodes construct the fluid-solid interface and are subjected to
the boundary treatments. There are also some lattice nodes
that are located inside the solid region. These nodes that
are completely isolated from the computational domain by
boundary nodes are solid nodes.

Solid

Fluid

FIG. 10. Specifications of an arbitrary 2D geometry in the D2Q9
lattice.
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TABLE I. Lattice parameters and velocity set priority to examine the normal direction rule.

Velocity index Velocity set Weighting Priority to check
Lattice i ei factor the normal rule

D2Q9 0 (0,0) 4/9
D2Q9 1,2,3,4 c(±1,0),c(0, ± 1) 1/9 1
D2Q9 5,6,7,8 c(±1, ± 1) 1/36 2
D3Q15 0 (0,0,0) 2/9
D3Q15 1,2, . . . ,6 c(0,0, ± 1),c(0, ± 1,0),c(±1,0,0) 1/9 1
D3Q15 7,8, . . . ,14 c(±1, ± 1, ± 1) 1/72 2
D3Q19 0 (0,0,0) 1/3
D3Q19 1,2, . . . ,6 c(0,0, ± 1),c(0, ± 1,0),c(±1,0,0) 1/18 1
D3Q19 7,8, . . . ,18 c(0, ± 1, ± 1),c(±1, ± 1,0),c(±1, ± 1,0) 1/36 2
D3Q27 0 (0,0,0) 8/27
D3Q27 1,2, . . . ,6 c(0,0, ± 1),c(0, ± 1,0),c(±1,0,0) 2/27 1
D3Q27 7,8, . . . ,18 c(0, ± 1, ± 1),c(±1, ± 1,0),c(±1, ± 1,0) 1/54 2
D3Q27 19,20, . . . ,26 c(±1, ± 1, ± 1) 1/216 3

Figure 10 illustrates boundary configurations for an arbi-
trary 2D shape in the D2Q9 lattice where solid nodes are
depicted by white circles. The solid nodes can be employed as
a guide to specify the normal velocity direction en by checking
the following rule for all lattice velocities on each boundary
node: The velocity direction that connects the boundary node
to a fluid node while its opposite direction points to a solid
node is the normal velocity direction. This rule is compatible

with 2D and 3D lattices and must be examined on velocity
sets of the lattice from the lower velocity values to the higher
ones. After determining the normal velocity direction en, the
next node location is rnext = rb + δten. In Fig. 10 the normal
velocity vector is depicted as a single vector for each boundary
node and the corresponding next node is illustrated as a black
circle. The lattice parameters and the velocity set priority to
examine the normal direction rule are listed in Table I.

[1] F. J. Higuera and J. Jiménez, Europhys. Lett. 9, 663
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