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Heat transfer characteristics
of slip flow over solid spheres

Morteza Anbarsooz1 and Hamid Niazmand2

Abstract

In this study, heat transfer characteristics of slip flow over an isolated impermeable solid sphere are investigated

numerically. An isothermal solid sphere is considered at intermediate Reynolds numbers (04Re4 50) for Prandtl

numbers in the range of 0.7–7.0. The Navier–Stokes and energy equations are solved by a control volume technique

in conjunction with the velocity slip and temperature jump boundary conditions. It was found that the size of the

thermal wake region according to the Knudsen number depends on the Prandtl number. At lower Prandtl numbers

(0.74 Pr4 2.0), the thermal wake region shrinks as the Knudsen number increases, while at higher Prandtl num-

bers, it grows as the Knudsen number increases. The maximum temperature jump occurs at the front stagnation

point where the local Nusselt is itself maximum, owing to the maximum temperature gradient at this point. The

results show that due to the opposing effects of the velocity slip and temperature jump, the average Nusselt number

variation with the Knudsen number depends nonlinearly on both the Prandtl and Reynolds numbers. Furthermore,

for the limiting case of Re! 0, an analytical solution for the problem is presented which has also served as a

validation case.
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Introduction

Fluid flow and especially heat and mass transfer from
spheres are essential issues in many engineering and
environmental applications such as spray drying,
extraction, humidification, aerosol scrubbing and
evaporation, and fuel droplets heating and evapor-
ation, among others.

The classical problem of heat transfer from a
sphere has been the subject of several investigations
in the past. Heat transfer from spheres is governed
by two independent dimensionless parameters, the
Reynolds number and the Peclet number, which
account for the velocity and temperature fields,
respectively. The available solutions for the flow
and temperature fields over spheres can be classified
based on the Reynolds number. At creeping flow
regime (Reynolds numbers less than one), analytical
solution of viscous flow over spherical particles exist
for both rigid spheres1,2 and liquid spheres.3,4 At
Reynolds numbers higher than one, however,
stream function form of the momentum equations
have been solved numerically for flow over solid
spheres.5–13 A solution of the transient heat transfer
from a solid sphere at creeping flow regime is pre-
sented by Carslaw and Jaeger.14 Also, an analytical
expression for the heat transfer from a small

spherical particle can be found in Feng and
Michaelides15 at low Peclet numbers assuming a
Stokesian velocity distribution around the sphere.
Solutions to the stream function form of the heat
or mass transfer equation have also been obtained
by many researchers using the finite-difference
schemes.11,16–19

In all of the above mentioned studies, the bound-
ary condition applied to the solid sphere surface is
the well-known no-slip condition. This boundary con-
dition, however, can be violated in many practical
applications, which can be classified into two main
categories:

(a) Slip flow regime,20 where the sphere diameter is
comparable with the mean free path of its
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surrounding gas molecules and some degrees of
rarefaction effects are present.

(b) Liquid flow over hydrophobic surfaces,21 where
slip occurs as a surface phenomenon due to the
surface properties of the solid.

Despite the differences in fundamental physics asso-
ciated with each category, they both can be treated
similarly in numerical modeling under a unified bound-
ary condition. In this regard, incompressible flow simu-
lations with appropriate slip boundary conditions have
been employed by various researchers for both cate-
gories, yet the presentation of the boundary conditions
is slightly different. As a result, it seems reasonable to
make an attempt in developing a unified boundary
condition applicable to both categories, which has
not been addressed in previous studies. What follows
is a review on main characteristics of each category and
the related literature.

In the first category, the so called ‘‘slip flow regime’’,
fluid slippage on walls occurs due to fluid rarefaction
effects. The degree of rarefaction is evaluated via
Knudsen number defined as the ratio of the mean free
path of the surrounding gas molecules, l, to the diam-
eter of the spherical particle,D. It is well established that
the medium is continuous for Kn4 10�3, and Navier–
Stokes equations with the no-slip boundary condition
on walls predict the flow field accurately.20 On the other
hand, for Kn> 10 the continuum approach breaks
down completely and a free molecular flow is developed.
However, for 0.0014Kn4 0.1, which is commonly
referred to as the slip flow regime, slight rarefaction
effects are present and the Navier–Stokes equations
can still be employed in conjunction with modified
boundary conditions known as velocity slip and tem-
perature jump at walls.20

In many industrial applications where micron-sized
particles interact with a gas such as air at atmospheric
pressures (l¼ 70 nanometer), the associated particle
Knudsen number lies in the slip flow regime. The par-
ticles Reynolds numbers, however, are commonly in
the Stokes flow regime due to their micron size diam-
eters. Yet, in many applications particles, Reynolds
numbers can reach values much higher than those of
the creeping flow regime.22,23 There have been several
studies related to the spheres in the rarefied gas flows.
However, most of them have focused on experimen-
tally determining the particles drag coefficient in
Stokes’ flow regime by introducing correction fac-
tors.24–30 Recently, numerical studies on rarefaction
effects on the sphere drag coefficient have been per-
formed in Stokes’ flow regime31 and also at intermedi-
ate Reynolds numbers.32,33 However, not much
information is available related to the heat transfer
characteristics of spheres in the slip flow regime.

Nevertheless, numerous investigations have been per-
formed to study the Fuid flow and heat transfer behav-
ior in micro-scale devices such as the micro-channels.
Some of these studies are performed on gaseous flows

in slip flow regime over curved surfaces in which the
physical curved space is mapped to a uniform computa-
tional space. Effects of Knudsen number, geometry, creep
Fow, viscous dissipation, etc. have been investigated.34–37

In the second category, the liquid slips on walls
because of the solid surface hydrophobic inter-
action and it is characterized by the Trostel number
defined as38

Tr ¼
l0D
�

ð1Þ

where � is the liquid viscosity and l0 is a positive
scalar varying from zero to infinity, which is a func-
tion of liquid and wall properties, surface tempera-
ture, and wall roughness. At no-slip condition, the
Trostel number is infinite and in full-slip condition
is equal to zero. Watanabe et al.21,39–41 produced the
pioneering researches on slip of Newtonian liquids on
walls in macro-scale. They computed the slip coeffi-
cient of different surfaces experimentally, showing
that shear stress is proportional to liquid slip-velocity
on walls. Atefi et al.38 have numerically studied the
fluid dynamics of slip flow over hydrophobic solid
spheres at intermediate Reynolds numbers.

Despite the rich literature on the fluid dynamics of
slip flow over solid spheres in both categories as
reviewed above, no considerable investigations have
ever been made on the heat transfer characteristics of
slip flow over spheres. The current paper, however,
focuses on heat transfer characteristics of slip flow
over solid spheres. Momentum and energy equations
are solved numerically for an incompressible flow
over an isothermal solid sphere using the velocity–
slip and temperature jump boundary conditions on
wall at Reynolds numbers of 04Re4 50 for
0.74Pr4 7.0. The boundary conditions are unified
in a manner that can be employed in both flow cate-
gories. The numerical results are presented in terms of
Knudsen number, which is directly related to Trostel
number as will be given later. Temperature contours,
thermal wake structure, temperature jump and local
Nusselt number distributions have been examined in
detail. In addition, an analytical solution for the
Re! 0 limit is developed which can also serve as a
validation case for the presented numerical results.

Numerical procedure

Governing equations

A schematic diagram of the problem and the coord-
inate system is presented in Figure 1. A uniform flow
in the x-direction with the initial temperature of T1
passes over an impermeable isothermal solid sphere at
Tw. According to the range of Reynolds numbers con-
sidered here (04Re4 50), the problem will remain
axisymmetric. Continuity, momentum, and energy
equations for the laminar incompressible flow of a
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Newtonian fluid with constant properties in the spher-
ical coordinates ðr,’Þ are as follows
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All the variables in the above equations are non-
dimensional; vr and v� are the dimensionless velocity
components in the radial and tangential directions,
respectively; � ¼ ðT� T1Þ=ðTw � T1Þ, the non-
dimensional temperature; Tw, the wall temperature
and T1 is the free stream temperature. �1, U1 and
�1U

2
1 are used as the reference density, velocity and

pressure, respectively. Re is Reynolds number defined
as Re¼ �U1D/m, Pr is the Prandtl number, m is the
gas viscosity, D is the sphere diameter, �, the density,
p, the pressure, and m the gas viscosity.42

Computational grid and boundary conditions

The computational grid system and the boundary
conditions are also shown in Figure 1. The grid

distribution close to the sphere surface is refined in
the radial direction to resolve high gradients in this
region. The outer boundary is divided into inflow and
outflow sections by �out, and its location should be
adjusted according to the flow Reynolds number.
Present numerical investigations indicate that 120�

from the front stagnation point for �out works well
for all Reynolds numbers above 1, while for lower
Re it should be moved towards the 90� angle.42,43

For the outlet section, all gradients are set to zero in
the radial direction, while uniform flow is specified for
the inlet section. Symmetrical conditions are applied
on the horizontal axis.

On walls, the conventional no-slip boundary con-
dition must be replaced by appropriate slip velocity.
However, as stated in the introduction section, the
presentation of the boundary conditions is slightly
different in the two mentioned categories. For the
first category that is the slip flow regime, the first-
order slip velocity for an ideal gas has been expressed
by Maxwell44 as

us � uw ¼
2� �v
�v

� �
Kn

@us
@n

ð6Þ

where us and uw are the non-dimensional tangential
slip and wall velocities, respectively; n is the wall
normal direction and �v is the tangential momentum
accommodation factor, which describes the inter-
action of gas molecules with the wall.20 For the
second category, however, the boundary condition
proposed by Trostel45 for a general case of flow slip-
page on a solid surface is

us � uw ¼
1

Tr

@us
@n

ð7Þ

Comparing these two boundary conditions reveals
that despite the complete difference in the governing
physics of these two flow categories, they have been
both treated similarly in numerical modeling.
Therefore, the numerical results obtained based on
one of these boundary conditions can be used in the
other flow category using the following relation

Tr ¼
�v

2� �v

1

Kn
ð8Þ

Likewise, the temperature continuity at the wall
must be replaced by appropriate temperature jump
boundary condition. For the slip flow regime,
Smoluchowski von Smolan46 represented the first-
order temperature jump boundary condition as follows

Tg � Tw ¼
2�

� þ 1

� �
2� �T
�T

� �
Kn

Pr

� �
@T

@n

� �
ð9Þ

where Tw is the dimensionless wall temperature, Tg

the dimensionless temperature of the first layer of

Velocity inlet
Outlet

θout

yrtemmySyrtemmyS

U∞

x

y

Figure 1. A schematic of the problem, computational grid

and the boundary conditions.
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gas adjacent to the wall, � the gas specific heat cap-
acity ratio, �T the thermal accommodation coefficient,
Pr the Prandtl number, and @T=@n is the normal tem-
perature gradient at the wall. Generally, the values of
the tangential momentum and thermal accommoda-
tion coefficients depend on the surface finish and vel-
ocity at the fluid–wall interface, which are commonly
determined experimentally. They vary from nearly
zero to unity for specular and diffuse reflections,
respectively. For most engineering applications, the
value of accommodation coefficients is close to
unity20 and considering the approximate nature of
the slip velocity formulation, they are both taken as
unity in the present study.

For the second category, no investigation has ever
been made on the heat transfer characteristics and
therefore no boundary condition is available in the
literature. Inspired by the similarity between slip–vel-
ocity treatments in the both flow categories discussed
above, it is assumed that the temperature jump
boundary condition in the second flow category is
also proportional to the normal temperature gradient,
as it is in the slip flow regime.

In this study, all numerical simulations are per-
formed based on the boundary conditions proposed
for the slip flow regime that are equations (6) and (9)
for fluid flow and heat transfer equations, respect-
ively. However, for liquid flow over hydrophobic sur-
faces, the corresponding Tr number must be
calculated first using equation (8).

Solution procedure

The numerical solution is based on a projection-type
method, which has been self-coded. This numerical
scheme is originally developed by Chorin,47 and
improved further by Dwyer43 and the present
authors.48 The principle of the numerical method is
based upon the calculation of an intermediate velocity
Eeld, ~V�, from momentum equations using the pres-
sure Eeld from previous time step

~V� � ~Vn

�t
þ r � ~Vn ~V�

� �
¼ �rpn þ

1

Re
r2 ~V� ð10Þ

This intermediate velocity Eeld does not necessarily
satisfy the mass conservation equation and thus a vel-
ocity correction is introduced. According to the
Hodge decomposition theorem, which states that
any vector function can be decomposed into a diver-
gence-free component and the gradient of a scalar
potential, a velocity potential is assigned to the vel-
ocity correction. This is consistent with the fact that
an intermediate velocity Eeld obtained from the
momentum equations using an existing pressure Eeld
carries the exact vorticity information, and therefore,
the velocity correction comes from an irrotational
Eeld that can be described with a velocity potential.

As a result, the velocity and pressure corrections can
be expressed as

~Vnþ1 � ~V�

�t
¼ �r� ð11Þ

Pnþ1 ¼ Pn þ � ð12Þ

The velocity field in the new time step, ~Vnþ1, has to
satisfy the continuity equation, ~r � ~Vnþ1 ¼ 0.
Therefore, the pressure correction could be deter-
mined from the following relation using the known
intermediate velocity field

r2� ¼
1

�t
~r � ~V� ð13Þ

Mesh study and validations

Grid-independency studies are performed by compar-
ing the total drag coefficient and the average Nusselt
number for six different grid resolutions at Re¼ 30
and Pr¼ 1.0 in the no slip regime as tabulated in
Table 1.

The total drag coefficient and the average Nusselt
number at Re¼ 30 and Pr¼ 1.0 are reported in the
literature49 as 2.11 and 5.08. It can be concluded that
a mesh system with 81� 81 grid points generates rea-
sonable grid independent results. The outer boundary
radius should be adjusted according to the Reynolds
number. It was found that for all Re higher than 10,
the outer boundary can be located 10 radii away from
the sphere center, while for the lower Re, a larger
domain is required.

Local Nusselt distributions at three different
Reynolds numbers in comparison with available
results9 for Pr¼ 0.71 are plotted in Figure 2, where
reasonable agreements can be observed. Other flow
parameters such as the wake length and separation
angle have been validated in our previous work32

and they are not repeated here.
Since no previous work on the heat transfer char-

acteristics of the slip flow over solid sphere exists in
the literature known to the authors of the present
paper, the only case that can serve as a validation
for the numerical results in this concern is an analyt-
ical solution proposed in this study which is valid for
the Re! 0 limit. This is explained in detail in the
following section.

Results and discussions

The results can be presented in terms of either
Knudsen or Trostel number, and the other one can
be determined from equation (8). In this study, how-
ever, the results are presented in terms of the Knudsen
number. Reynolds, Prandtl, and Knudsen numbers
govern the flow and temperature fields in the presence
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of the velocity slip and temperature jump boundary
conditions. In the present study, they are considered
in the range of 04Re4 50, Kn4 0.1 and
0.74Pr4 7.0. The Pr numbers are selected accord-
ing to the air and water Pr numbers at standard con-
ditions that are Pr¼ 0.7 and 7, respectively. These
values have been chosen based on the discussions per-
formed on the two categories of slip flows. Air is a
representative of gaseous slip flow due to the rarefac-
tion effects and water is used for the liquid slippage
over hydrophobic surfaces due to solid surface prop-
erties. The selection of the Re number has been per-
formed according to the flow axisymmetric
assumption. The onset of flow separation for flow
over rigid sphere is Re � 2049 and the onset of wake
instability is Re � 130.49 Therefore, it is preferred to
keep a safe margin from this Re number to ensure
that the axisymmetric condition is applicable.

In the following, slip effects on the flow and ther-
mal wake structures, temperature jump distributions
and local and average Nusselt numbers will be exam-
ined in detail.

Figure 3 shows the slip effects on the wake struc-
ture in the continuum and slip flow regimes at Re¼ 50
and Pr¼ 0.7. The sphere wake at this Reynolds
number in the no-slip limit is rather large and slip
effects can be more significant. This figure shows
that as the Knudsen number increases, the wake
length decreases considerably due to the slip velocity
over the sphere surface, and it can be totally dis-
appeared at higher Knudsen numbers.32

(a) Kn=0.0 (b) Kn=0.01

(c) Kn=0.05 (d) Kn=0.1

Figure 3. Slip effects on the sphere wake structure at Re¼ 50, Pr¼ 0.7, for (a) Kn¼ 0, (b) Kn¼ 0.01, (c) Kn¼ 0.05, and

(d) Kn¼ 0.1.
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Figure 2. Surface Nusselt number comparison with the

results of Woo9 at Pr¼ 0.71.

Table 1. Grid study at Re¼ 30 and Pr¼ 1.0.

Grid CD Nu

CD rel. err.

vs. Clift

et al.49(%)

Nu rel. err.

vs. Clift

et al.49 (%)

41� 41 1.91 4.50 7.0 11.4

51� 51 2.04 4.65 3.2 8.46

61� 61 2.09 4.90 0.6 3.54

71� 71 2.12 4.96 0.6 2.36

81� 81 2.13 4.99 0.6 1.77

121� 121 2.13 5.00 0.6 1.57
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Thermal wake structures in the continuum and slip
flow regimes at the same Reynolds number and two
Prandtl numbers of 0.7 and 7 are shown in Figures 4
and 5, respectively. In these figures, the contours
of non-dimensional temperature defined as
� ¼ ðT� T1Þ=ðTw � T1Þ are plotted. Velocity slip
and temperature jump have two opposing effects on
the thermal wake region and the heat transfer rate.
Temperature jump reduces the heat transfer rate
because it decreases the temperature gradients in the
gas layer adjacent to the wall and as a result, the ther-
mal wake region shrinks as the Knudsen number
increases. Conversely, the velocity slip increases the
heat transfer rate due to the increase in convective
effects near the wall where velocities are controlled
by wall dragging effects. As a result, the thermal
wake region grows as the Knudsen number increases.
The relative importance of these two effects depends
on the Knudsen and Prandtl numbers according to
the equations (6) and (9) and also on the flow
Reynolds number. As can be seen in Figure 4 for
Pr¼ 0.7, the thermal wake region shrinks as the
Knudsen number increases, while at Pr¼ 7.0, shown
in Figure 5, the thermal wakes, which are thinner at
all Knudsen numbers as expected for high Prandtl
flows, slightly grow in the rear section by increasing
the Knudsen number.

Furthermore, an interesting feature of the tempera-
ture field is that the maximum temperature occurs

around the rear stagnation point since the maximum
temperature jump is at the front stagnation point as
shown in Figures 6 and 7. In these figures, tempera-
ture jump distributions over the solid sphere surface
are plotted for varying Knudsen numbers at Re¼ 10
and Re¼ 50 for Pr¼ 0.7 and 7.0. The angle is mea-
sured from the front stagnation point. Temperature
jump, �jump, is defined as �jump ¼ �w � �g, where �w is
the wall temperature and �g is the temperature of the
gas layer adjacent to the wall. The figures show that
the temperature jump values increase as the Knudsen
number increases at both Reynolds numbers. The
maximum temperature jump occurs at the front stag-
nation point due to the maximum temperature gradi-
ent at this point. As the Reynolds number increases,
the surface temperature gradient increases resulting to
higher values of the temperature jump.

In Figures 8 and 9, the local Nusselt number vari-
ations along the sphere surface at Re¼ 10 and
Re¼ 50 for different values of Knudsen number are
shown for both Pr¼ 0.7 and 7.0, respectively. The
Nusselt number based on the sphere diameter, D, is
defined as

Nu ¼
hD

k
¼ �

D

�Tref

@T

@n
ð14Þ

where @T
@n is the normal temperature gradient and

�Tref ¼ Tw � T1.
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Figure 4. Temperature jump effects on the sphere non-dimensional temperature contour at Re¼ 50, Pr¼ 0.7, for (a) Kn¼ 0, (b)

Kn¼ 0.01, (c) Kn¼ 0.05, and (d) Kn¼ 0.1.
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The opposing effects mentioned above can be seen
more clearly in the local distribution of the Nusselt
number as shown in Figures 8 and 9 for different
Prandtl and Knudsen numbers. As can be seen in
Figure 8 which corresponds to Pr¼ 0.7, the maximum
local Nusselt drop as compared to the no-slip case
occurs at the front stagnation point, where the
Nusselt number itself is maximum. In other words,
for this Prandtl number the front stagnation point
corresponds to the maximum temperature gradient,
maximum Nusselt number and the maximum

temperature jump point over the solid sphere surface.
Moreover, as the Knudsen number increases, the
Nusselt number decreases in both Reynolds numbers.
It states that in this Prandtl number, the temperature
jump effect is more dominant as compared to the vel-
ocity slip effect. While in Figure 9, which shows
Nusselt distribution for Pr¼ 7.0, the temperature
jump dominance on the heat transfer rate cannot
be observed at all Knudsen numbers. As can be
seen, the Knudsen effects on the local distribution of
the Nusselt number are different in the front and the
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(a) (b)

(c) (d)

Figure 5. Temperature jump effects on the sphere non-dimensional temperature contour at Re¼ 50, Pr¼ 7.0, for (a) Kn¼ 0, (b)

Kn¼ 0.01, (c) Kn¼ 0.05, and (d) Kn¼ 0.1.
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Figure 6. Temperature jump profiles at different Knudsen numbers for Pr¼ 0.7: (a) Re¼ 10 and (b) Re¼ 50.
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Figure 9. Nusselt distribution at different Knudsen numbers for Pr¼ 7.0: (a) Re¼ 10; (b) Re¼ 50.
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Figure 8. Nusselt distribution at different Knudsen numbers for Pr¼ 0.7: (a) Re¼ 10 and (b) Re¼ 50.
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Figure 7. Temperature jump profiles at different Knudsen numbers for Pr¼ 7.0, (a) Re¼ 10 and (b) Re¼ 50.
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rear sections of the sphere. The increase of velocity
slip is proportional to Knudsen number (equation 6)
while the temperature jump increase is proportional
to the Kn/Pr ratio (equation 9). Therefore, as the
Prandtl number increases the relative importance of
the temperature jump decreases, depending on the
Reynolds number.

The effect of Prandtl number on the average Nusselt
number is plotted in Figure 10 for varying Knudsen
number at Re¼ 30. As the figure shows, at lower
Prandtl numbers (Pr¼ 0.7 and 2.0), the Nusselt
number decreases as the Knudsen number increases,
due to the domination of the temperature jump effects
over the slip velocity effects. However, at higher Prandtl
numbers (Pr¼ 4.0 and 7.0), the Nusselt number initially
increases as the Knudsen number increases indicating
the dominance of the velocity slip effects, while at
higher Knudsen numbers of about Kn¼ 0.05 the tem-
perature jump effects gradually gains more weight over
the velocity slip effects and prevents the increasing trend
of the Nusselt number.

For the limiting case of Re! 0, one can find an
analytical solution for the problem, which can also
serve as a validation case for the presented numerical
scheme. In this limit, the energy equation reduces to
r2T ¼ 0, corresponding to the pure conduction
around an isothermal solid sphere with temperature
jump boundary condition. The fluid temperature dis-
tribution for this case reads to

T ¼ �
R2ðT1 � TwÞ

Rþ 2�
�þ1

2��T
�T

KnD
Pr

1

r
þ T1 ð15Þ

And the corresponding Nusselt number is

Nu ¼
1

0:5þ 2�
�þ1

2��T
�T

Kn
Pr

ð16Þ

At this limiting Reynolds number, for instance, the
Nusselt number reduction due to the jump effects

amounts to 25%, at Kn¼ 0.1, Pr¼ 0.7 for � ¼ 1:4
and �T ¼ 1, while the reduction is only 3% at
the same Kn and �T for Pr¼ 7.0 and � ¼ 1:0. The
numerical results also agree well with these analytical
results.

Conclusions

Heat transfer characteristics of slip flow over an isother-
mal impermeable solid sphere is investigated by solving
the momentum and energy equations numerically with
appropriate velocity slip and temperature jump bound-
ary conditions in the range of 04Re4 50, Kn4 0.1
and 0.74Pr4 7.0. The major findings of this study can
be summarized as follows

. The wake region shrinks as the Knudsen number
increases such that it can be completely dis-
appeared at higher limits of the slip flow regime.
This is due to the increase in the velocity slip on the
solid sphere surface and the resultant increase in
convective effects near the wall.

. The size of the thermal wake region according to
the Knudsen number depends on the Prandtl
number. At lower Prandtl numbers, the thermal
wake region shrinks as the Knudsen number
increases. Conversely, at higher Prandtl numbers,
the higher the Knudsen number, the larger the
thermal wake region.

. Temperature jump increases as the Reynolds and
Knudsen numbers increase. The point associated
with the maximum temperature jump is located at
the front stagnation point.

. The average Nusselt number variation with the
Knudsen number depends on the Prandtl and
Reynolds numbers. For an intermediate Reynolds
number of 30, the Nusselt number decreases as the
Knudsen number increase at low Prandtl numbers
(0.74Pr4 2.0), while at higher Prandtl numbers,
a non-linear trend is observed.

. For the limiting case of Re! 0, an analytical solu-
tion for predicting the average Nusselt number in
the slip flow regime is developed which served as a
validation case for the numerical simulations.
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