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Abstract—In this paper we propose a new joint image 

registration (IR) and super-resolution (SR) method by combining 

the three principal operations of warping, blurring and down-

sampling. Unlike previous methods, we neither calculate the 

Jacobian matrix numerically nor derive the Jacobian matrix by 

treating the three principal operations separately. We develop a 

new approach to derive the Jacobian matrix analytically from the 

combination of the three principal operations. Experimental 

results show that our method has better Peak Signal-to-Noise 

Ratio (PSNR) than the recently proposed Tian's joint method of 

IR and SR. Computational complexity also has been decreased in 

our proposed method.  
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I. INTRODUCTION 
   Super-resolution is a class of techniques that integrate the 
information of a Low Resolution (LR) image sequence 
captured from a scene to produce a High Resolution (HR) 
image with better quality. Each LR image frame is required to 
have partial unique information or it will not have any positive 
effect on the final HR image. This partial unique information 
can be obtained in a number of ways such as camera 
movement or zooming. There are various SR techniques 
which have been developed and reviewed in the literature 
including [1]-[4]. Generally SR techniques include the 
following three phases: 1) image registration, 2) image 
interpolation and 3) image deblurring and denoising [1]. In a 
small category of the techniques such as interpolation-based 
methods, these phases are performed separately [5]-[8]. To 
overcome the intensive presence of error propagation in these 
methods, a majority of other SR techniques attempt to perform 
the last two phases in an integrative phase called image 
reconstruction. However, an important source of error 
propagation is the inaccuracy of registration parameters. 
Therefore, to further prevent the propagation error, a large 
group of SR techniques have been developed recently that deal 
with the inaccuracy of registration parameters. Some of these 
techniques utilize median estimator to reduce the artifacts 
caused by errors and outliers of registration parameters [9], 
[10]. Some others use Bayesian methods in which the 
unknowns (including registration parameters) are treated as 
stochastic variables [11]-[13]. In Tipping's method [11], 
marginalization is applied to HR image but in Pickup's method 

[12], it is applied to registration and blurring parameters. 
Nevertheless, the latter provides a wide range of various priors 
(regularizations) to select, but in both of them, IR and image 
reconstruction are implemented in relatively separate steps 
without persistent interaction. It seems that such values are not 
reliable enough. Babacan [13] extends the Pickup's method to 
consider hyperparameters (such as the regularization 
parameter) as stochastic variables, and as an AM method, 
establishes persistent interaction between the estimation of the 
reconstructed HR image, registration parameters and 
hyperparameters. AM methods are a class of iterative SR 
techniques in which the HR image and registration parameters 
are improved in two consecutive steps at each iteration [14]. A 
group of AM methods use Expectation-Maximization (EM) to 
estimate the HR image (in the Expectation phase) and 
registration parameters (in the Maximization phase) iteratively 
[15],[16]. The AM methods, nevertheless, may lead to 
suboptimal solutions [17]. 
   There is another category of SR techniques which are also 
iterative similar to AM methods, but in this category, HR 
image and registration parameters are not calculated separately 
at each iteration [18]-[21]. A nonlinear cost function was used 
by Chung et al. [18] to estimate HR image and registration 
parameters. Using Euler–Lagrange necessary conditions for 
the cost function, they derived a nonlinear system of 
equations, proposing three methods for its solution. Their first 
method (called decoupled) resembled an AM method, but their 
second method (called partially coupled) was a kind of 
Variable Projection (VP) method [17]. A similar method was 
also proposed by Robinson et al. [19] where they used a 
similar non-linear cost function to derive the Maximum 
Likelihood (ML)/ Maximum a Posteriori (MAP) solution for 
the HR image. After substituting this solution of HR image 
into the cost function, the reduced cost function [18] was 
minimized with respect to the reminder of unknowns, i.e. 
registration parameters. Finally, these registration parameters 
were used to obtain the final HR image. Chung et al. [18] 
attempted to solve the non-linear system of equations through 
Gauss-Newton algorithm in their third method. This led to the 
development of a new class of methods called fully coupled. 
In these techniques, which are referred to as joint methods in 
this paper, the incremental values of the HR image and 
registration parameters are jointly calculated in only one 
system of equations. He et al. [20] used a similar cost function 
by linearizing it at existing current values for HR image and 
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registration parameters using Taylor series approximation. In 
this linearization, they obtained the Jacobian matrix 
analytically (in contrast to some methods like [11], [12] where 
it is calculated numerically). Finally, this linear system of 
equations (in terms of incremental values of HR image and 
registration parameters) has been solved through Conjugate 
Gradient (CG) optimization algorithm. They have used 
Euclidean motion model and it has been extended to the 
similarity motion model by Tian et al. [21]. 
   In all of these joint methods [18]-[21] the blurring is 
assumed to be the same for all LR images, which is 
impractical in many applications. In reality, when the motion 
model is more complex than Euclidean, the size of blurring 
function is no longer the same for all LR images [22]. This has 
not been considered in [18] and [21], where the motion model 
has not been restricted to Euclidean. However, in the methods 
proposed in [20] and [21], the convergence to the global 
solution is more probable (especially when the initial values 
are close enough to optimal values) but the derivation of 
Jacobian matrix is based on bilinear interpolation of warped 
pixels [18], [20], [21]. This may introduce a restriction in 
which only four neighboring pixels are effective in 
determining the values of warped pixels [20]. 
   As an inverse problem, SR dictates the three operations that 
should be applied to the original HR image to produce the 
corresponding LR images. These operations are image 
warping, image blurring and image down-sampling (hereafter 
referred to as principal operations). In many approaches, these 
steps are treated separately and in a few ones they are 
combined into a unit operation [2], [11], [12], [22]. This 
combination has some advantages including the possibility of 
incorporating the pixels in any arbitrary neighboring radius to 
obtain the warped pixels without changing the framework of 
problem and employing a new interpolation method. Another 
advantage is the reduced propagation error because the three 
principal operations are performed in one stage. Moreover, it 
allows having an adaptive kernel for blurring (blurring is 
treated as a function of zooming, which may be different for 
each LR image) 
   This paper focuses on the joint methods [20], [21] and treats 
the three principal operations in the inverse problem in a 
combinational form as [11]. Then, a new joint method based 
on this combinational form is proposed. In contrast to [11] and 
[12], the Jacobian matrix is not calculated numerically and 
unlike the common joint methods [20], [21], the Jacobian 
matrix is not derived by treating the three principal operations 
separately. In the proposed method, the bilinear interpolation 
is not used in the warp operation and its derivative. Moreover, 
the same blurring for all LR images [18] - [21] is not 
considered. We develop a new approach to derive the Jacobian 
matrix analytically based on the combinational form of the 
three principal operations. In this regard, a Gaussian kernel 
blur (as is more realistic) is adopted the radius of which is 
adaptive to each LR image. We also use a bilateral total 
variation (BTV) regularization [10], which incorporates the 

eight neighbors of each pixel in the cost function. In this 
paper, the similarity motion model is used (which consists of 
translation, rotation and zooming) similar to [21]. 
   The rest of this paper is organized as follows. In Section II 
problem formulation including notation of SR problem, 
Gaussian kernel blur and combinational coefficient matrix, is 
introduced. The proposed iterative joint method is developed 
in Section III. In Section IV experimental results on simulated 
and real life image sequences are presented. Conclusion and 
future works are discussed in Section V.  
 

II. PROBLEM FROMULATION 
A. Super Resolution Notations 
   Let us consider a series of K  discrete LR images kg  of 
size gg NM   where Kk 1 . The lexicographically 
ordered LR images are denoted by column vectors kg  and all 
these vectors are stacked in one column vector, i.e.

TTT ]g,...,[gg K1 . The purpose of the SR technique is to 
reconstruct the original HR image f of size ff NM  using 
existing LR images as well as some prior information about 
the original HR image. The lexicographically ordered original 
HR image is presented by column vector f . Here, it is 
assumed that the decimation factor is the same in both vertical 
and horizontal directions ( gfgf NNMM //  ). Each 
LR image kg is obtained by applying the three principal 
operations to the original HR image f  as follows: 
 

kkkk n)fS(αDHg        (1) 
 
 Where kn  is the column vector of additive white Gaussian 
noise (AWGN), D  is the down-sampling operator (which is 
realized as a ffgg NMNM   matrix), kH  is the blurring 
operator (which is realized as a ffff NMNM   matrix) 
and )S(α k  is the warping operator (which is realized as a 

ffff NMNM   matrix) [13],[20],[21]. kα  is the vector of 
unknown registration parameters used for warping the grid of 
original HR image f (called reference grid) onto the up-scaled 
grid of k th LR image. Practically one of the existing LR 
images (the first LR image in this paper) is selected as the 
reference image and the up-scaled grid of the reference image 
is considered as the reference grid. Generally, in all 
simultaneous IR and SR methods, including AM and joint 
methods, it is assumed that initial and imprecision values of 
registration parameters can be provided by some IR 
techniques. In this paper, Enhanced Correlation Coefficient 
(ECC) method [23] is used for the IR. 
   The combination of the three principal operations can be 
considered as a unit combinational operation which is realized 
by a matrix )(αW k

k
 of size ffgg NMNM   as follows: 
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   The similarity motion model has four degrees of freedom 
(zooming, rotation, vertical and horizontal translation). Hence, 

],...,[ 41 kkk hhα  where kk hh 41 ,...,  are the main elements 



of the 3x3 homogenous matrix [24] as follows: 
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Equation (2) shows a series of relations between the original 
HR image and each LR image. These relations can be written 
in one equation as: 
 

nWfg       (4) 
 
where 

TTT ])(αW,...,)(α[WW K
K

1
1  and we call it 

combinational coefficient matrix and 
TTT ]n,...,[nn K1 . 

 
B. Blur with Gaussian Kernel 
   Consistent with the literature, in this paper Gaussian kernel, 
which is more realistic, has been used to model the blurring 
caused by the atmosphere turbulence and camera lens, and the 
motion blurring has been excluded. Usually, the blurring is 
assumed to be isotropic in the imaging plane. When the 
motion model is similarity, the kernel of back-projected 
blurring into the scene plane will be isotropic too. However, 
the greater the distance of a scene plane from the image plane 
(or less zoom is applied) the more extensive is the area 
encompassed in the scene to contribute in blurring. Therefore, 
when the LR images are registered to the reference image, 
they have isotropic Gaussian blur, but possibly with different 
radiuses in the reference grid [22]. 
 
C. Combinational Coefficient Matrix 
   The elements of i th row of the )(αW k

k
 are the 

coefficients of linear combination of f  required to generate 
the gray scale value of i th pixel of kg . The elements of 

)(αW k
k

 are calculated as [2], [11],[12]: 
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where the new elements )(
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here 
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j

x
jj vvv is the position of j th pixel of the 

original HR image in the reference grid, 
T][ y

i
x
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the position of i th pixel of the LR image k  and 
T])()([)( i
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kik ususus  is its transformation through 

motion model, which is characterized by kα , with respect to 
reference grid: 
 

ky
i

kx
i

k
i

x
k huhuhs 321)( u   (7) 

 
ky

i
kx

i
k

i
y
k huhuhs 412)( u   (8) 

   Actually )( ik us  is center of isotropic Gaussian kernel after 
projection to the reference grid. 2  is the variance of 
isotropic Gaussian kernel of the blur and   is determinant 
operator. 
 
III. DEVELOPMENT OF NEW ITRATIVE JOINT 

METHOD OF SR 
A. Cost Function of the new joint method 
   As super resolution is an ill-posed problem there are infinite 
or instable solutions which can satisfy Equation (4). 
Therefore, to make the solution unique and stable, prior 
information is necessary. In the joint methods, both original 
HR image and registration parameters are unknowns. Total 
variation (TV) of the HR image is an important regularization 
which is often used in SR techniques as prior information. For 
the registration parameters, a simple Tikhonov regularization, 
i.e. the minimum energy has been used. Given the generative 
model of LR images expressed in (4) and considering the 
mentioned regularizations, the framework of the cost function 
for the joint method is [18], [20], [21]: 
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where 

TTT ],...,[ K1 ααα  ,   and   are regularization 
parameters, )(fVT  is TV of the HR image. Similar to Farsiu's 
[10] and Tian's [21] methods, BTV is used in our cost 
function, but here it encompasses all eight neighboring pixels 
to reduce edge penalization in any directions: 
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Because )(fVT  is a nonlinear function of f  using half-
quadratic scheme [25] and fixed-point techniques [26] it can 
be written as: 
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Where nm, is calculated in the previous iteration as follows: 
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and   is small positive value to ensure 

nm ,  is nonzero. 
)(fVT  can be expressed in a matrix-vector form as [21]: 
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2

)( ααα R  is the Tikhonov regularization for 
registration parameters. α  is a vector containing the average 
values of registration parameters during all previous iterations. 
Hence the cost function (9) can be expressed as: 
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where Wfgfαr ),(  is called residual vector. 
   To estimate the unknown HR image and registration 
parameters, the cost function should be minimized. Although 
this optimization problem is convex with respect to f , it is 
nonconvex in terms of α  because the term ),( fαr  is 
nonlinear with respect to α . To alleviate this difficulty, linear 
approximation has been used for ),( fαr . Linear 
approximation requires initial values for unknowns. As 
mentioned earlier, initial values for registration parameters 
may be obtained using registration techniques such as ECC 
algorithm [23]. Given these initial values for registration 
parameters, initial value for HR image can be obtained using a 
simple interpolation-based method [5]. If Δf  and Δα  are 
incremental values for f  and α  then )( ΔffΔα,αr   can 
be approximately linearized with respect to Δf  and Δα  as 
follows: 
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The two derivative terms in the above equation are calculated 
in the two following relations: 
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Substituting (16) and (17) in (15) yields: 
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Where ),( fαJ  is the Jacobian matrix, the calculation of 
which presents a challenging issue, as will be discussed in the 
next section (III-B). 
Substituting (18) in (14) and rewriting the content of the norm 
as a linear combination of the incremental values of unknowns 
leads to 
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   Now, instead of minimizing the nonlinear cost function in 
(14) with respect to the main unknowns, i.e. f  and α , the 
linear cost function in (19) is minimized with respect to their 
incremental values, i.e. fΔ  and αΔ  respectively [20]. The 
incremental values are used to update the main unknowns. 
Obtaining the optimal solution for the cost function in (14) is 
not guaranteed, but starting from initial values close to optimal 
values and continuing the optimization of the linear cost 
function in (19) may yield the optimal solution [20]. 
 
B. Proposed Method for Derivation of Jacobian Matrix 

),( fαJ  
   Jacobian matrix in the existing joint methods is derived from 
the three principal operations separately [18], [20], [21]. In 
this paper, however, we propose derivation of Jacobian matrix 
using combinational operation (5), and in contrast to [12], it is 
not calculated numerically, but rather analytically through our 
proposed method. As mentioned in (16) it can be written as 
follows: 
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),( fαJ  is a KNKM gg 4 block diagonal matrix [20] of 
matrices ),( fαJ k  where 
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Naturally ),( fαJ k  is a 4gg NM  matrix and the nth 
column of which can be obtained as follows: 
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where 41  n . Using the equations (5) and (6) each entry 
of matrix 
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where the operator n  is derivative with respect to 
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Where 

1
 kn M  and )(uS ikn  can be calculated simply 

using Equations (3),(7) and (8). 
The proposed method can be implemented in the framework 
of the following algorithm: 
 
Our Proposed Algorithm: 
Step 1: Calculating initial values for registration parameters (
α̂ ) using ECC algorithm. 
Step 2: Calculating initial value for HR image using Delaunay 
triangulation-based interpolation method of SR, given the LR 
images and estimated α̂ . 
Step 3: (At the iteration i ) Calculating the combinational 
coefficient matrix )(αW , Jacobian Matrix ),( fαJ , residual 
vector ),( fαr  and BTV matrix T  as discussed earlier. 
Step 4: Solving the linear system of equations (26) using the 
Conjugate Gradient (CG) algorithm: 
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This linear system of equations is result of minimizing the cost 
function expressed in (19), which is calculated by taking 
derivative of the cost function with respect to desired 
unknowns and equating the result to zero. 
Step 5: Updating the unknown variables using the estimated 
incremental values 
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Where  i

 means column vector of unknowns in i th iteration. 
Step 6: Updating α  according to the following relation: 
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Step 7: If the following condition of HR image, (29), is 
satisfied for a specified threshold (Thr), which is assumed 10-6 
here, or a maximum number of iteration is reached Then stop 
Else go to step 3. 
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III. EXPERIMENTAL RESULTS 
In this section, the performance of our proposed method is 
discussed and compared it with a recently proposed joint 
method (Tian's method [21]). Because of the space limitations 
in this paper, we have provided only two experiments, i.e. a 

synthetic image sequence and a real-life images sequence. The 
synthetic sequence, which is produced by warping a test image 
through different motion parameters, is used to evaluate the 
performance of methods according to the following metrics: 
Normalized Mean Square Error (NMSE) for the estimated 
registration parameters vector and PSNR for the reconstructed 
HR image, which are defined as follows [20],[21]: 
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where “~” denotes the currently estimated values of the 
unknowns. Lower values of NMSE and higher values of 
PSNR are preferred in a method. 
 

A. Experimental Results on Degraded Test Images 
The “Castle” test image [27] (Fig. 1(a)) is a 128x128 pixels 
image. Six LR images are produced by zooming factor, 
rotation angle in terms of degree and translation in both 
vertical and horizontal direction randomly chosen from the 
ranges [0.8,1.2], [-14,14] and [-2,2] respectively. Then they 
are blurred by an isotropic Gaussian kernel with a variance 
equal to 0.35 LR pixel size. These images are degraded by 
AWGN to have 30 dB SNR and finally are down-sampled by 
decimation factor of 2. One of the degraded LR images has 
been shown in Fig. 1(d). The reconstructed HR images along 
with their PSNR and the NMSE of estimated registration 
parameters using Tian's method [21] and the proposed method 
have also been indicated in Fig. 1. It can be observed, 
although the two methods have approximately the same 
NMSE, the PSNR of the proposed method has been improved. 
Nevertheless, the reconstructed image using the proposed 
method has better quality than Tian's method. This can be 
viewed in the areas located in the ellipses. 
 

B. Experimental Results on Real-life Images 
A sequence of four images (15th frame to 18th frame) has been 
extracted out of the “adyoron_rotation” video [28] (a video 
with a total number of 20 frames) for this experiment. The 
sequence contains 66x76 pixels images of a chart (Fig. 2(a)). 
The increasing factor (decimation factor) has been assumed 
equal to 2. The motion model between these images is 
Euclidian. As can be seen in these images, the relative rotation 
between these images is large (in contrast to the Tian's 
experiments reported in [21]). The reconstructed images using 
Tian's method and the proposed method have been indicated 
in Figs. 2(b) and 2(c). It is clearly observed that Tian's method 
produces some artifacts (white lines) in the margins of up-
scaled registered images. This can be result of propagation 
errors between the three principal operations, when they are 
treated separately (especially in the margins of the LR 
images). Moreover, in this experiment, Tian's method is 



trapped into a suboptimal point. Bottom of the reconstructed 
image (inside the circle) shows a detailed view of this event.  
   In all of experiments, the run time of the proposed method is 
less than Tian's method. For example the run time of this 
experiment is 26s for the proposed method and 39s for Tian's 
method using DELL/Vostro notebook with 4 GB RAM and a 
2.5 GHz dual core processor. The major reason for this 
computational complexity reduction of the proposed method is 
that the three principal operations are merged into one 
operation. 
 

IV. CONCLUSUION AND FUTURE WORKS 
In this paper we proposed a new joint method that combined 
the three principal operations in one operation. The application 
of this combinational operation in the calculation of Jacobian 

matrix is one of the most important contributions of this paper. 
The proposed joint method reduced propagation errors, was 
less likely to be trapped into suboptimal solutions, especially 
when the relative zooming between frames was considerable, 
and finally increased the quality of the reconstructed HR 
images. Additionally, the experiments showed the reduction of 
computational complexity in our method. In future works, we 
will extend the motion model to the affine and finally to the 
homography, and the size of blur kernel in the image plane 
will be refined during the iterations. 
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