

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263611109

Unique microstructure analysis of ethylenepropylene copolymer synthesized using catalytic system based on α -diimine nickel complexes: A comparative study by 13C NMR technique

Article in Journal of Polymer Research · March 2014

Impact Factor: 1.92 · DOI: 10.1007/s10965-014-0365-z

READS

51

3 authors, including:

Hamid Pourtaghi-Zahed Tabriz University 3 PUBLICATIONS 6 CITATIONS

SEE PROFILE

Saeid Ahmadjo Iran Polymer and Petrochemical Institute 35 PUBLICATIONS 210 CITATIONS

SEE PROFILE

ORIGINAL PAPER

Unique microstructure analysis of ethylene-propylene copolymer synthesized using catalytic system based on α -diimine nickel complexes: a comparative study by ¹³C NMR technique

Hamid Pourtaghi-Zahed · Gholam Hossein Zohuri · Saeid Ahmadjo

Received: 14 August 2013 / Accepted: 21 January 2014 © Springer Science+Business Media Dordrecht 2014

Abstract The microstructure of rubber-like ethylenepropylene copolymer (MN4) produced by a mixed nickelbased system (MN) containing catalysts of dibromo[N,N'bis(2,6-diisopropylphenyl)-2,3-butanediimine]nickel(II) n1 and dibromo[N,N'-(phenanthrene-9,10-divlidene)bis(2,6diisopropylaniline)]nickel(II) **n2** was determined by ¹³C NMR technique. Sequences distribution of ethylene (E), propylene (P), EP, inverted propylene and uninterrupted methylene and also methylene number-average sequence lengths for the copolymer (MN4) were estimated. The results obtained from the MN4 EP copolymer were compared with reported copolymers which had been synthesized using constrained geometry catalyst (CGC) and vanadium-based Ziegler-Natta catalyst. The results demonstrated that the MN4 EP copolymer had fewer alternating comonomer sequences than ethylene-propylene elastomers obtained by CGC and vanadium-based (V) catalysts. A large number of the inversion structures (66 %) and high mole percent of sequences containing a long branch (3.2 mol%) were also observed in unique microstructure of the copolymer (MN4).

Keywords Nickel-based catalyst · Ethylene-propylene copolymer · Elastomers · Microstructure · NMR

H. Pourtaghi-Zahed (🖂) · G. H. Zohuri (🖂) Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, PO Box 1436, Mashhad, Iran e-mail: hpzahedhp@gmail.com e-mail: zohuri@um.ac.ir

H. Pourtaghi-Zahed Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

S. Ahmadjo

Department of Catalyst, Iran Polymer and Petrochemical Institute, Tehran, Iran

Introduction

Ethylene-propylene elastomers (EPM) are amorphous materials with a glass transition temperature of -50 to -60 °C and represent an interesting class of synthetic elastomers. The commercial EPM copolymers are generally made using homogeneous specific vanadium-based and heterogeneous isospecific titanium-based Ziegler-Natta catalysts. Single site metallocene catalysts based on zirconium and titanium activated with Methylaluminoxane (MAO) are used to produce EPM, too [1–5].

In 1995, Brookhart and coworkers synthesized a new class of polymerization catalysts based on Ni(II) and Pd(II) stabilized by bulky α -diimine ligands. The α -diimine complexes based on nickel(II) activated by MAO are able to polymerize α -olefins to form high molecular weight polymers and are also used in copolymerization of ethylene and propylene. The α -diimine nickel and palladium catalysts produce poly(α olefin)s with very different structural properties from those obtained with conventional Ziegler-Natta or metallocene catalysts. The bulky substituent on the aryl group of the diimine ligand blocks associative olefin exchange and β -hydride elimination to produce the polymer with high molecular weight. Control over the catalyst structures, cocatalyst, and polymerization conditions allows one to readily produce a variety of materials, ranging from highly viscous liquids and highly branched to rigid linear polyethylene by adjusting the competition between chain walking and chain propagation processes [6-13].

Extensive research has been carried out to relate the physical properties and performance of EPM samples with their chain structure. Among different methods for the structural characterization, ¹³C NMR has been found to be the most effective technique. Carman and coworkers carried out a comprehensive analysis, treating EPM as a terpolymer with ethylene, normal (head-to-tail) propylene and inverted propylene as the termonomers. In Cheng's paper, efforts were made to use high-field ¹³C NMR to review the assignments of the spectrum of EPM. Using Cheng's assignments, has been obtained more accurate information on copolymer composition, sequence distribution, and tacticity [2, 14–16].

In this work, microstructure of rubber-like ethylenepropylene copolymer obtained by α -diimine nickel catalysts was determined by ¹³C NMR technique. The α -diimine nickel catalysts had been used because of their specific behavior (β hydride elimination and chain walking reactions) for ethylenepropylene copolymerization to produce different copolymer than those obtained by conventional catalysts. The α -diimine catalysts were bearing bulky substituent (isopropyl) in *ortho* aryl positions of the ligand. The comonomer sequences distribution, uninterrupted methylene sequences distribution and methylene number-average sequence lengths for the copolymer were estimated. A comparison with reported copolymers which had been synthesized using CGC and vanadium-based catalysts is also presented in this paper.

Experimental section

Materials, instruments and polymer characterization

Methanol was supplied by Merck Chemical Co. (Darmstadt, Germany) and was used without any purification. Toluene was obtained from Arak Petrochemical Co. (Arak, Iran), it was dried by refluxing over sodium wire/benzophenone and then distilled under dry N2 and stored over activated 4 Å/13X type molecular sieves. Toluene was used as solvent of the catalyst slurry and polymerization medium. Methylaluminoxane (MAO) was purchased from Sigma Aldrich Chemicals (Steinheim, Germany) as 10 wt% (1.5 M) solution in toluene. Polymer grade ethylene and propylene were obtained from Arak Petrochemical Co. (Arak, Iran) and it was used after passing through a column of activated 4 Å/13X type molecular sieves. Nitrogen was obtained from Roham Gas (Tehran, Iran) dried by passage through KOH, activated silica gel and 4 Å/13X type molecular sieve columns.

Synthesis of the catalysts **n1** and **n2** have been described in detail in our previous work (see Fig. 1) [17].

Dry toluene (200 mL) and MAO solution (10 wt% in toluene) were used as solvent and cocatalysts respectively. A mixed of 1:1 w/w of the nickel-based catalysts **n1** and **n2** (3.0×10^{-3} mmol) (**MN**) was suspended in toluene and was transferred into a stainless steel Buchi AG reactor (CH-8610) under nitrogen. Monomer injection system was equipped with mass flow controller (MFC) that loading of reactor was accomplished with the flow control of mixed of ethylene and propylene gasses in a fixed ratio. Toluene was saturated with a constant ratio from mixture of the both gases prior to the

Fig. 1 Structures of nickel diimine complexes: dibromo[*N*,*N*'-bis(2,6-diisopropylphenyl)-2,3-butanediimine]nickel(II) **n1** and dibromo[*N*,*N*'-(phenanthrene-9,10-diylidene)bis(2,6-diisopropylaniline)]nickel(II) **n2**

polymerization. After the desired reaction time, copolymerization ended with transfer of the reaction mixture into methanol containing HCl (5 %). The reaction mixture was stirred for 30 min, filtered and the polymer was washed with methanol and water several times and was dried for 12 h at 40 °C.

Direct application of Mark-Houwink equation of the form $[\eta] = 3.8 \times 10^{-4} M_v^{0.74} dL g^{-1}$, displayed the so-called viscosity average molecular weight, $M_{\rm v}$ [18]. The $M_{\rm v}$ of the copolymer samples were measured in decaline (decahydronaphthalene) at 135±1 °C by means of Ubbelohde suspended level dilution viscometer. Differential scanning calorimetry (DSC) measurements were performed on a Netzsch 200 F3 DSC instrument under an N_2 atmosphere. The samples were heated from -100to +200 °C with a rate of 10 °C min⁻¹. The glass transition temperature (T_{σ}) of the copolymers were determined by DSC. The molar proportion of ethylene and propylene units in the copolymers were determined using an IR method (Shimadzu FTIR-4300) [19]. ¹³C NMR technique was utilized to determine the microstructure of the ethylene-propylene copolymer. The 100.6 MHz ¹³C NMR spectrum was recorded on a Bruker Avance 400 spectrometer with broad-band proton decoupling at 120 °C and used a 90° pulse with a relaxation delay of 4 s. The sample solution was prepared in 1.2.4-trichlorobenzene at a concentration of around 10 wt%. The chemical shifts were referenced internally to the major backbone methylene carbon resonance, which was taken as 30.00 ppm. The main assignments and calculations were used to estimate the comonomer sequence distribution and methylene sequence length according to literature [2–4, 14, 20].

Result and discussion

Table 1 shows the catalytic activity behavior, M_v , ethylene content and T_g of obtained copolymers when Al/Ni molar ratio, propylene/ethylene relative pressure (P_{Pr}/P_{Et}) and temperature were varied from 1,000:1 to 3,000:1, 1:1 to 9:1 and 20 to 60 °C, respectively. The activity of catalysts **n1** and **n2** in the copolymerization of ethylene with propylene were 920 and 1,280 (g copolym/mmol Ni.h), respectively (runs **10** and

Run	Copolymerizati	on conditions			Results					
	n1/n2 (w/w)	[Al]/[Ni]	P_{Pr}/P_{Et}	Temp.(°C)	Yield (g)	Activity ^a	$T_{\rm g}$ (°C)	Et (%)	M _v (g/mol)	
1	1:1	2,000:1	1:1	20	3.825	2,550	-57.0	72.2	3.89×10 ⁵	
2	1:1	2,000:1	3:1	20	2.482	1,655	-56.2	64.4	3.72×10^{5}	
3	1:1	1,000:1	5:1	20	1.140	760	-	58.1	1.97×10^{5}	
4	1:1	2,000:1	5:1	20	1.620	1,080	-54.3	59.0	2.22×10^{5}	
5	1:1	3,000:1	5:1	20	1.608	1,072	-	61.8	2.53×10^{5}	
6	1:1	2,000:1	7:1	20	1.342	895	-45.5	56.0	2.02×10^{5}	
7	1:1	2,000:1	9:1	20	0.732	488	-32.3	51.5	1.36×10^{5}	
8	1:1	2,000:1	5:1	40	0.700	467	-	63.5	1.52×10^{5}	
9	1:1	2,000:1	5:1	60	0.240	160	-	69.5	1.18×10^{5}	
10	1:0	2,000:1	5:1	20	1.380	920	-	63.7	2.11×10^{5}	
11	0:1	2,000:1	5:1	20	1.920	1,280	-	57.1	2.43×10^{5}	

Table 1 Influence of MAO concentration, temperature and monomer relative pressure on copolymerization of ethylene-propylene using catalytic systems (n1, n2 and MN)

Copolymerization conditions: $[Ni]=1.5\times10^{-5}$ M, $P_r=5$ bar, reaction time=30 min, toluene=200 ml. Results obtained from reference 17

^a Activity in (g EPM/mmol Ni.h)

11, Table 1). The activity of the catalyst n2 was higher than the catalyst **n1**. The behavior could be due to less electron density around the nickel metal center which increased activity of the catalyst **n2** [17, 21]. The M_v of the copolymers produced using catalysts n1 and n2 were 211,000 and 243,000 (g/mol), respectively. The catalyst **n2** produced a polymer with different M_{ν} compared to the catalyst **n1**. Copolymerization using mixed catalysts n1 and n2 led to form several catalytic active centers with different behavior which applying this catalytic system has contributed to produce a large range of molecular weight. The best elastomeric figure were observed at the P_{Pr}/P_{Et} about 5:1, Al/Ni molar ratio about 2,000:1 and temperature of 20 °C (runs 4, 10 and 11, Table 1). Various runs of the copolymerization using the catalysts **n1**, n2 and mixed of 1:1 of them (MN) have been described in detail in our previous work [17]. The most rubber-like copolymer (MN4) was colorless and the ethylene content, $M_{\rm v}$ and $T_{\rm g}$ of the copolymer were 59 %, 222,000 g/mol and -54.3 °C (run 4, Table 1), respectively.

Microstructure of the ethylene-propylene copolymer

The ¹³C NMR spectrum of the rubber-like copolymer (**MN4**) produced using the nickel-based α -diimine catalyst system (**MN**) is shown in Fig. 2.

Four types of nomenclature to determine the complete microstructure of the copolymer (**MN4**) are shown in Table 2. In the third column of the Table 2, the nomenclature of Cheng [14] and Galland et al. [20] was used where the position of the types of carbons and tacticity around each carbon have been

determined. In the nomenclature, *m* and *r* refer to the meso and racemic which are defined for tacticity of paired branches, respectively (see **f** in Scheme 1) [14]. Also, sequences of ethylene unit (E) [CH₂–CH₂], propylene unit (P) [CH₂–CH(CH₃)], inverted propylene unit (P*) [CH(CH₃)–CH₂], α -olefin unit with a long branch (L) [CH₂–CH(CH₂)_nCH₃], unit containing a 2-methyl hexyl branch (2MH) [CH₂–CH(CH₂)₄CH(CH₃)₂], unit containing an *i*-butyl branch (*i*Bu) [CH₂–CHCH₂CH(CH₃)₂] have been determined. In the fourth column, the nomenclature of Usami and Takayama [22] was used. *x*B_n shows the presence of carbon *x* in the branch with length *n* (for branches starting with the methyl as "1" and for the backbone carbons as Greek letters and "br") (see **g** in Scheme 1) [23].

In the fifth column of Table 2, the nomenclature of Carman and coworkers [15] was used. The position of each of methyl (P), methylene (S) and methine (T) carbons relative to their nearest methine groups has been labeled by two Greek subscripts (see **a**, **b**, **c**, and **d** in Scheme 1) [14]. The first and second columns of Table 2 show the peak number and chemical shift related to types of carbons and their sequences.

Equations (1)–(24) are used for quantitative analysis of the copolymer (**MN4**) [2, 20]. The resonance integrals, I_x , where x is the peak number, are related to the various detected structures and are shown with their triad sequences. The quantitative analysis results obtained from Eqs. (1)–(15) are exhibited in Table 3.

In the following Equations, k is the normalization constant.

$$[\text{EEE}] = k(I_{19}/2) \tag{1}$$

$$[PEE + EEP] = k(I_{23} - 3I_{13} - 3I_2 - 2I_{24})$$
(2)

 $[EPE] = kI_{12} \tag{3}$

$$[PEP] = kI_{25} \tag{4}$$

$$[PPE + EPP] = k(I_{17} + I_{18} - (I_8 + I_{10}/2) - 3I_{13} - 2I_2 - 2I_{24})$$
(5)

$$[PPP] = k(I_{21} - I_2) \tag{6}$$

$$[PP^*P] = k(I_5 - I_{13} - I_2)$$
(7)

$$\left[\mathsf{PPP}^*\right] = kI_{29} \tag{8}$$

$$\left[\mathbf{PP}^*\mathbf{PP}\right] = kI_8 \tag{9}$$

$$[\mathbf{P}^*\mathbf{P}^*\mathbf{P}\mathbf{P}] = k(I_{10}/2) \tag{10}$$

1,4-B₁ between Ethylene = $k(I_{11}/2)$ (11)

1, 6-
$$\beta$$
 B₁ = $k(I_{22}-I_2)/2$ (12)

$$[ELE] = kI_{13} \tag{13}$$

$$[EiBuE] = kI_{24} \tag{14}$$

$$E2MHE] = kI_2 \tag{15}$$

The presented triad sequences in Table 3, such as [EPE], [PEP] and [PPE + EPP] were obtained about 17.2, 4.6 and 2.1 mol% in the copolymer (**MN4**), respectively. All the obtained values in Table 3 show the copolymer composition produced by the catalytic system (**MN**).

The structures of metallocene EPM samples were without significant structures of tail to tail and head to head. However, EPM synthesized using vanadium-based catalysts contained a large number of inverted propylene units. Presence of inverted propylene sequences in the copolymer structure changes the number of consecutive methylene units. Hence, the inverted propylene units can form the structures of tail to tail and head to head with carbons $S_{\alpha\beta}$, $T_{\gamma\gamma}$, $T_{\gamma\delta}$ and $S_{\beta\gamma}$ (see **c**, **d**, and **e** in Scheme 1) [2, 14, 20, 24].

The **MN4** EPM copolymer contained structures composed of inverted propylene sequences that could indicate the presence of sequences of [PPP*], [P*P*PP], [P*P*PP] and $1,4-B_1$ between ethylene with values of 3.1, 2.4, 3.7 and 4.0 mol%, respectively. In the unique structure of the copolymer,

been used

 Table 2
 ¹³C NMR
 of ethylene-propyle (MN4)

1 46.28-44.28 S _n α S _n α S _n α 2 39.20 E2MHE 3B _{2MH} S _n γ 3 38.30 r-S _n γ S _n β 4 38.30 r-S _n γ S _n β 5 37.98 Pl*P 1.2-brB ₁ T _n γ 6 37.68 (m + other)-S _n γ S _n β S _n β 7 37.40 (m + other)-S _n γ S _n β 8 35.77-35.28 PPPP 1.4-ά B ₁ S _n β 9 34.77-34.34 El* PE + E P *PE 1.4-ά B ₁ S _n β 9 34.77-34.34 El* PE + E P *PE 1.4-ά B ₁ S _n β 10 33.99 PP*PP P + P*PP*P 1.4-ά B ₁ S _n β 11 3.67-33.28 EP* DE + E P *PE 1.4-ά B ₁ S _n β 12 3.05 EE EE S _n β 13 3.22.2 ELE S _n β S _n β 14 31.13 T _β β (r) T _β β S _γ γ 15 30.67 T _β β (r) T _β β S _γ β 14 31.32 EEP S ₁ β S _β β 15 30.67 T _β β (r) T _β β S _β β 16 30.46 S	Table 2 ¹³ C NMR Assignmentof ethylene-propylene copolymer(MN4)	Peak number	Chemical shift experiment (ppm)	Sequence ^a	Sequence ^b	Carbon type ^c	
2 39.20 E2MHE $3B_{201}$ B_{201} S_{00} 3 38.71 $r S_{0r}$ S_{0r} S_{0r} 4 38.30 $r S_{0r}$ S_{0r} S_{0r} 5 37.98 PPP $l_2 \ge h B_1$ T_{0r} 6 37.68 $(m + other) - S_{0r}$ S_{0r} S_{0r} 7 37.40 $(m + other) - S_{0r}$ S_{0r} S_{0r} 8 $3.77 - 35.28$ $P^m PP$ $1.4 \div B_1$ S_{0r} 9 $3.477 - 34.34$ $EP P E + EP * PE$ $1.4 \div B_1$ S_{0r} 9 $3.477 - 34.34$ $EP * P E + EP * PE$ $1.4 \div B_1$ S_{0r} 10 3.397 $P^m PPP P + P^m PPP P$ $1.4 \div B_1$ S_{0r} 11 3.367 EPE BP_1 $1.4 \div B_1$ S_{0r} 12 3.061 EPE BP_1 T_{0r} T_{pr} 13 3.222 ELE $3B_{0r}$ T_{pr} T_{pr} 14 31.13 T_{pr} T_{pr} T_{pr} T_{pr}		1	46.28-44.28	S _{αα}		$S_{\alpha\alpha}$	
3 38.71 $r_{-S_{ay}}$ r_{ay} S_{ay} 4 36.30 $r_{-S_{ab}}$ S_{ab} 5 37.98 P^{PP} $[,2^{1}\sigma P_{1}]$ T_{ay} ELE+E2MHE 6 37.68 $(n + other) - S_{ay}$ S_{ab} 7 37.40 $(n + other) - S_{ab}$ S_{ab} S_{ab} 8 35.77 - 35.28 P^{-S}_{ab} $A^{-d} B_1$ S_{abgb} 9 34.77 - 34.34 E^{PP} PF $E + E^{P}$ PF $[A^{-d} B_1]$ S_{abgb} 10 33.99 $P^{PPPPP} + P^{PPPPP}$ $[A^{-d} B_1]$ S_{ycgbb} 11 33.67 - 33.28 E^{PP} PE $+ E^{P}$ PF $[A^{+d} B_1]$ S_{ycgbb} 12 33.05 EPP $rb^{-p} P^{-p} P^{-p}$		2	39.20	E2MHE	$3B_{2MH}$	0000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3	38.71	$r-S_{\alpha\gamma}$		Sav	
5 37.98 P^{PP} $1,2 \cdot PI_1$ T_{ay} ELF E2MHE ELF E2MHE Say Say Say 7 37.40 $(m \cdot oher) - Say$ Say Say 7 37.40 $(m \cdot oher) - Say$ Say Say 8 35.77-35.28 $r - S_{ab}$ $I.4 \cdot da$ $Syap$ 9 34.77-34.34 $P^{P}PP$ PF PF PF $I.4 \cdot da$ $Saya$ 9 34.77-35.28 $P^{P}PP$ PF PF PF $I.4 \cdot da$ $Saya$ 10 33.99 $P^{P}PPP P + PPPPP$ $I.4 \cdot da$ $Syap$ 10 33.99 $P^{P}PPP P + PPPPP$ $I.4 \cdot da$ $Syap$ 12 33.05 EPE Ba_{a} T_{ay} 13 32.22 ELE Ba_{a} T_{ay} 15 30.67 T_{ab} T_{ab} 16 30.46 $Sy_{y} T_{ay}$ T_{ay} 15 30.67 T_{ab} T_{ab} 16 30.46 Sy_{y} <td></td> <td>4</td> <td>38.30</td> <td>$r-S_{\alpha\delta}$</td> <td></td> <td>$S_{\alpha\delta}$</td>		4	38.30	$r-S_{\alpha\delta}$		$S_{\alpha\delta}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	37.98	PP*P	1,2-brB ₁	Ταν	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				ELE+E2MHE	, .	007	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	37.68	$(m + other) - S_{\alpha\gamma}$		Say	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7	37.40	$(m + other) - S_{\alpha\delta}$		$S_{\alpha\delta}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8	35.77-35.28	r–S _{αβ}		Sas	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				PP*PP	1.4-ά B ₁	Sugas	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9	34.77–34.34	EP* PE + EP *PE	1.4- α B ₁ (between E)	Sages	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				EiBuE	$\alpha \mathbf{B}_{\mathbf{B}_{1}}$	oupo	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				E2MHE	$\alpha B_{2MH} + 6B_{2MH}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				ELE	$\alpha \mathbf{B}_{\epsilon} + n \mathbf{B}_{\epsilon}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10	33 99	 P*P*PP + P*P*PP	$1.4 - \dot{\alpha} B_1$	Sugas	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		11	33.67-33.28	EP*PE + EP*PE	1.4-brB ₁ (between E)	Тур	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-,	Tws	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12	33.05	EPE	brB1	- γο Τες	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	32.22	ELE	3B6	00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	31.13	$T_{\beta\gamma}(m) + T_{\beta\gamma}(r)$	- 0- <i>n</i>	Tex	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		15	30.67	$T_{\alpha\delta}(\mathbf{r})$		Tes	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	30.46	$S_{22} + T_{\beta_{22}}(\mathbf{r})$		S	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		17	30.34	$T_{as}(\mathbf{r})$		Τες	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		18	30.23	EEEP	γB_1	$S_{\chi\delta}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		19	30.00	EEE	$\delta B_1, \delta B_{6-n}$	$S_{\delta\delta}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		20	29.48	ELE	4B _{6-n}	00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		21	27.73	$T_{\beta\beta}$ (mm) + $T_{\beta\beta}$ (mr + rr)	0 //	Тее	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				PPP	brB1	Твв	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				E2MHE	4В _{2МН}	44	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		22	27.39		$1.6-\beta'$ B ₁	SBY	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		23	26.99	PEE + EEP	$\beta' \mathbf{B}_1$	SBS	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				EiBuE	$\beta \mathbf{B}_{\mathbf{B}_{\mathbf{U}}}$	po	
Referenced to isolated methy- lenes at 30.0 ppm2425.46 $E2MHE$ $4B_{2MH}$ a^{a} From the nomenclature of [14] and Galland et al. [20] has been used2524.95–24.27PEP β' B1 $S_{\beta\beta}$ a^{b} From the nomenclature of Usami and Takayama [22] has2721.08–20.37 $P_{\beta\beta}$ (mr)+ $P_{\beta\gamma}$ (m)+ $P_{\beta\beta}$ (m)+ $P_{\beta\gamma}$ (m)+ $P_{\beta\beta}$ (m) $P_{\beta\gamma}$				ELE	$\beta B_{6-n} + (n-1)B_{6-n}$		
Referenced to isolated methy- lenes at 30.0 ppm2425.46 $EiBuE$ $2B_{iBu}$ a^{a} From the nomenclature of Cheng [14] and Galland et al. [20] has been used2621.57–21.08 $P_{\beta\beta}$ (mm) $P_{\beta\beta}$ a^{b} From the nomenclature of Usami and Takayama [22] has2820.43–19.28 $P_{\beta\beta}$ (rr)+ $P_{\beta\gamma}$ (r)+ $P_{\beta\delta}$ (r)+ $P_{\gamma\gamma}$ $P_{\gamma\gamma}$				E2MHE	4B _{2MH}		
$\begin{array}{c} \text{Introduct to bolated interregions} & 25 & 24.95-24.27 & \text{PEP} & \beta' \text{ B}_1 & \text{S}_{\beta\beta} \\ \text{lenes at 30.0 ppm} & 25 & 24.95-24.27 & \text{PEP} & \beta' \text{ B}_1 & \text{S}_{\beta\beta} \\ \text{a From the nomenclature of} & 26 & 21.57-21.08 & P_{\beta\beta} (\text{mm}) & P_{\beta\beta} \\ \text{(20) has been used} & 27 & 21.08-20.37 & P_{\beta\beta} (\text{mr})+P_{\beta\gamma} (\text{m})+P_{\beta\delta} (\text{m}) & P_{\beta\gamma} \\ 28 & 20.43-19.28 & P_{\beta\beta} (\text{rr})+P_{\beta\gamma} (\text{r})+P_{\beta\delta} (\text{r})+P_{\gamma\gamma} & P_{\gamma\gamma} \\ \text{Usami and Takayama [22] has} & 29 & 17.09 & \text{PPP}* & 1\text{B}_1 & P_{\alpha\beta} \end{array}$	Referenced to isolated methy-	24	25.46	EiBuE	2B _{iBu}		
^a From the nomenclature of Cheng [14] and Galland et al. [20] has been used ^b From the nomenclature of Usami and Takayama [22] has 26 $21.57-21.08$ $P_{\beta\beta}$ (mm) $P_{\beta\beta}$ (mm) $P_{\beta\beta}$ (mm) $P_{\beta\beta}$ (mm) $P_{\beta\gamma}$ $P_{\beta\beta}$ (mm) $P_{\beta\gamma}$ (mm) $P_{\beta\gamma}$ $P_{\beta\gamma}$ $P_{\gamma\gamma}$ $P_{\gamma\gamma$	lenes at 30.0 ppm	25	24.95-24.27	PEP	$\beta' \mathbf{B}_1$	See	
Cheng [14] and Galland et al. [20] has been used27 $21.08-20.37$ $P_{\beta\beta}(mr)+P_{\beta\gamma}(m)+P_{\beta\delta}(m)$ $P_{\beta\gamma}$ b From the nomenclature of Usami and Takayama [22] has28 $20.43-19.28$ $P_{\beta\beta}(rr)+P_{\beta\gamma}(r)+P_{\beta\delta}(r)+P_{\gamma\gamma}$ $P_{\gamma\gamma}$ P2917.09PPP*1B ₁ $P_{\alpha\beta}$	^a From the nomenclature of	26	21.57-21.08	$P_{\beta\beta}$ (mm)	ρ \mathbf{D}_{I}	Рее	
[20] has been used 28 $20.43-19.28$ $P_{\beta\beta}(m) + P_{\beta\gamma}(r) + P_{\beta\delta}(r) + P_{\gamma\gamma}$ $P_{\gamma\gamma}$ b From the nomenclature of Usami and Takayama [22] has 29 17.09 $PPP*$ $1B_1$ $P_{\alpha\beta}$	Cheng [14] and Galland et al.	27	21.08-20.37	$P_{a,a}$ (mr)+ $P_{a,a}$ (m)+ $P_{a,s}$ (m)		Pen	
⁶ From the nomenclature of 29 17.09 $PPP*$ $1B_1$ $P_{\alpha\beta}$	[20] has been used	28	20.43-19.28	$P_{BB}(rr) + P_{B2}(r) + P_{B3}(r) + P_{22}(r)$		Para	
Usahili ahu takayahla [22] lias	^o From the nomenclature of	29	17.09	PPP*	1B ₁	$P_{\alpha\beta}$	
been used 16.77	been used		16.77	-	- 1	- цр	
^c From the nomenclature of 30 15.00–14.00 PP*P 1B, P	^c From the nomenclature of	30	15.00–14.00	PP*P	1B ₁	Par	
Carman and coworkers [15] has ELE	Carman and coworkers [15] has	orkers [15] has		ELE		ur	

sequence of [ELE] and structure of 1,6- β' B₁ were about 3.2 and 11.7 mol%, respectively. The sequence of [ELE] can be as the structure carrying long branches and be effective on the rubber-like behavior of the copolymer.

Cases mentioned in above, can strengthen the idea of random distribution of ethylene and propylene units in chain of the copolymer (MN4) and can weaken the idea of consecutive monomer units formed in chain of this copolymer.

Scheme 1 Nomenclature used for, \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d} , \mathbf{e} , and \mathbf{f}) the types of carbons and their sequences; and \mathbf{g}) the types of branches, xB_n , in the ethylenepropylene copolymer

Methylene sequence lengths

Single succession of ethylene and propylene units such as EPP, PEP, etc. cannot explain the unique carbon sequence. For quantitative study of sequence distribution, ¹³C NMR data was used to determine the methylene sequence distributions from one to six and longer consecutive methylene carbons [2,

18]. According to the Eqs. (16)–(20), N_i is the moles of methylene sequences with length *i*. The $S_{\alpha\alpha}$ (peak 1), $S_{\alpha\beta}$ (peaks 8, 9 and 10), $S_{\beta\gamma}$ (peak 22), and $S_{\gamma\gamma}$ (peak 16) are uniquely related to N_1 , N_2 , N_4 , and N_5 . N_3 can be estimated from $S_{\beta\beta}$ (peak 25) with a possible check of $S_{\alpha\gamma}$ (peaks 3 and 6) resonance [2].

$$N_1 = kS_{\alpha\alpha} = kI_1 \tag{16}$$

 Table 3
 Quantitative analysis and providing comonomer sequences distribution in the copolymer (MN4)

Sequences	Molar content (%)
[EEE]	36.5
[PEE + EEP]	trace
[EPE]	17.2
[PEP]	4.6
[PPE + EPP]	2.1
[PPP]	7.8
[PP*P]	trace
[PPP*]	3.1
[PP*PP]	2.4
[P*P*PP]	3.7
1,4-B ₁ bet E	4.0
1,6- β' B ₁	11.7
[ELE]	3.2
[EiBuE]	1.9
[E2MHE]	1.8

From Eqs. (1) to (15) has been used

 $N_2 = k \left(\frac{1}{2} \mathbf{S}_{\alpha\beta} \right) = k \left[\frac{1}{2} (I_8 + I_9 + I_{10}) \right]$ (17)

$$N_{3} = k\mathbf{S}_{\beta\beta} = kl_{25} = k(^{1}/_{2}\mathbf{S}_{\alpha\gamma}) = k[^{1}/_{2}(I_{3} + I_{6})]$$
(18)

$$N_4 = k \left(\frac{1}{2} \mathbf{S}_{\beta \gamma} \right) = k \left(\frac{1}{2} I_{22} \right) \tag{19}$$

$$N_5 = k\mathbf{S}_{\gamma\gamma} = k \begin{bmatrix} 1/2 (\mathbf{S}_{\beta\delta} - \mathbf{S}_{\gamma\delta}) \\ = k \begin{bmatrix} 1/2 (I_{23} - I_{18}) \end{bmatrix}$$
(20)

$$\sum_{i=1}^{n} N_{i} = k \left[S_{\alpha\alpha} + S_{\beta\beta} + \frac{1}{2} \left(S_{\alpha\beta} + S_{\beta\gamma} + S_{\beta\delta} \right) \right]$$

= $k \left[I_{1} + I_{25} + \frac{1}{2} \left(I_{8} + I_{9} + I_{10} + I_{22} + I_{23} \right) \right]$ (21)

Table 4 Comparison of the copolymer composition and number fractions of uninterrupted methylene sequence for copolymers obtained using the mixed Ni-based (MN), vanadium-based (V) and CGC catalyst systems												he mixed
Sample	$F_{\rm Pr}$	Et%	$x_{n,1}$	$x_{n,2}$	<i>x</i> _{<i>n</i>,3}	$x_{n,4}$	$x_{n,5}$	$x_{n,6+}$	$\sum_{i=1}^{n} x_{n,2i}$	$P_{\rm EE}$	10 -	747 -

Sample	$F_{\rm Pr}$	Et%	$x_{n,1}$	<i>x</i> _{<i>n</i>,2}	<i>x</i> _{<i>n</i>,3}	$x_{n,4}$	<i>x</i> _{<i>n</i>,5}	$x_{n,6+}$	$\sum_{i=1}^{n} x_{n,2i}$	$P_{\rm EE}$	\overline{n}_0	\overline{n}_{2+}
MN4	_	59	0.212	0.232	0.095	0.312	0.042	0.107	0.657	0.447	4.39	5.31
V4 ^a	0.41	-	0.24	0.15	0.21	0.07	0.11	0.22	0.30	0.52	4.2	5.2
V5 ^a	0.50	-	0.30	0.17	0.20	0.08	0.09	0.17	0.32	0.45	3.5	4.6
CGC2 ^b	0.308	-	0.382	0.061	0.150	0.021	0.068	0.318	0.133	0.453	5.22	7.82
CGC3 ^b	0.321	-	0.394	0.062	0.154	0.020	0.069	0.301	0.128	0.451	4.93	7.49
CGC4 ^b	0.583	-	0.595	0.091	0.146	0.019	0.066	0.083	0.127	0.450	2.37	4.39

From Eqs. (16) to (26) has been used

^{a,b} Results are obtained from references [16] and [2] respectively

Equation (22) was used to define the number fractions of each sequence while total value $\sum_{i=1}^{n} N_i$ had been estimated

previously as Eq. (21) [2]. Also by uninterrupted methylene sequences, is calculated the chain propagation probability for

Scheme 2 Proposed mechanism for short- and long-chain branching and formation of inversion structure (**a**: two consecutive methylene units, 1,4-branch, **b**: four consecutive methylene units, 1,6-branch and **c**: six

consecutive methylene units) in ethylene-propylene copolymer chain via ethylene insertion, propylene 1,2- or 2,1-insertion and chain-walking using α -diimine nickel catalyst

ethylene inserted into an active center with terminal monomer group of ethylene (Eq. 23) [2].

$$x_{n,i} = N_i / \sum_{i=1}^{n} N_i$$
 (22)

$$P_{\rm EE} = N_5/N_3 \tag{23}$$

Equation 24 can be used to determine the total number fraction of even methylene sequences [2]. The total number fractions of even methylene sequences for the copolymers obtained using the mixed nickel (**MN**) and vanadium [16] (V) based catalysts and CGC [2] are introduced in Table 4 where $F_{\rm P}$ is the propylene mole fraction in the copolymer.

$$\sum_{i=1}^{n} x_{n,2i} = \frac{\sum_{i=1}^{n} N_{2i}}{\sum_{i=1}^{n} N_{i}}$$
$$= \frac{N_{2} + \frac{N_{4}}{1 - P_{\text{EE}}}}{\sum_{i=1}^{5} N_{5} + \frac{P_{\text{EE}}}{1 - P_{\text{EE}}} (N_{4} + N_{5})}$$
(24)

Table 4 shows comparison of the copolymer composition and uninterrupted methylene sequences distributions in the copolymer (**MN4**) (with Et%=59 or Pr%=41) with copolymers obtained by vanadium [16] (V4 with F_{Pr} =0.41 and V5 with F_{Pr} =0.50) and constrained geometry catalyst [2] (CGC2 with F_{Pr} =0.308, CGC3 with F_{Pr} =0.321 and CGC4 with F_{Pr} = 0.584) which Pr% of the copolymer (**MN4**) was in the ranges of propylene content of copolymers obtained by other catalysts.

The $x_{n,1}$, $x_{n,2}$, $x_{n,3}$, $x_{n,4}$, $x_{n,5}$ and $x_{n,6+}$ values in samples produced by each four types of the catalysts with a range of same propylene content were obtained. Alternating propylene-ethylene-propylene sequences can be detected by $x_{n,3}$ which was among the highest concentrations for vanadium EPM samples than CGC and MN4 EPM copolymers [16]. The $x_{n,2}$ and $x_{n,4}$ results of the copolymer (MN4) were higher than those of other copolymers. The higher $x_{n,2}$ and $x_{n,4}$ values in the copolymer (MN4) compared to vanadium and CGC EPM samples showed that the inversions in unique microstructure of the copolymer (MN4) were higher than other samples. The higher amount of the $x_{n,2}$ in the sample (MN4) is due to a significant amount of structures of [PP*PP], [P*P*PP] and $1,4-B_1$ between ethylene. The values observed for $x_{n,1}$ and $x_{n,6+}$ reflect the tendency toward block propylene and block ethylene sequences [16]. The results of $x_{n,1}$ and $x_{n,6+}$ of the V EPM samples were lower than those of the CGC EPM copolymers and close to those of the copolymer (MN4). In ethylene-propylene copolymerization system using the nickel-based α -diimine catalysts, polymer chain is branched via the insertion of propylene and chain-walking. The nickel-based system can produce inversion structures via propylene 1,2- or 2,1-insertion and chainwalking based on 3,1-enchainment as well as different types of short- and long-chain branches (see Scheme 2) [17, 25-27]. This behavior, formation of more values of inverted propylene by the catalytic system (MN) and the results of $x_{n,1}$, $x_{n,2}$, $x_{n,4}$ and $x_{n,6+}$ of the copolymer (MN4) showed which the MN4 EPM sample had more random distribution of ethylene and propylene units than the CGC EPM copolymers. However, the lower $x_{n,3}$ value in the **MN4** EPM sample compared to the other copolymers showed that alternating comonomer sequences were lower than vanadium and CGC samples. The value of the total number fractions of even uninterrupted methylene sequences in the V5 EPM sample was about 32 %, higher than about 13 % which had been reported for EPM obtained from CGC catalyst. The value of this type of methylene sequences in the copolymer (MN4) was about 66 %, higher than values of 32 % and 13 % in other copolymers (see Table 4 and Fig. 3).

The value of P_{EE} decreases with decreasing ethylene content of the ethylene-propylene copolymer [2]. The value of P_{EE} in the copolymer (**MN4**) was close to the P_{EE} of copolymers obtained by other catalysts (see EPM samples of Table 4).

The presence of an even number of methylene carbons between methine carbons demonstrates the presence of propylene inversion. With presence of inverted propylene

Fig. 3 Comparison of number fractions of uninterrupted methylene sequence and total number fractions of even methylene sequences for copolymers obtained by the mixed Ni-based (MN4), vanadium-based (V) and CGC catalyst systems

insertion, is possible to determine the number-average sequence lengths of uninterrupted methylene carbons [16]. The number-average sequence length of uninterrupted methylene carbons (\bar{n}_0) is calculated by Eq. 25 [2]:

$$\bar{n}_{0} = \frac{S_{\alpha\alpha} + S_{\alpha\beta} + 3S_{\beta\beta} + 2S_{\beta\gamma} + \frac{5}{2}S_{\beta\delta} + \frac{1}{2}S_{\gamma\delta}}{S_{\alpha\alpha} + S_{\beta\beta} + \frac{1}{2}(S_{\alpha\beta} + S_{\beta\gamma} + S_{\beta\delta})} = \frac{I_{1} + I_{8} + I_{9} + I_{10} + 3I_{25} + 2I_{22} + \frac{5}{2}I_{23} + \frac{1}{2}I_{18} + I_{19}}{I_{1} + I_{25} + \frac{1}{2}(I_{8} + I_{9} + I_{10} + I_{22} + I_{23})}$$

$$(25)$$

That (\overline{n}_0) has the same meaning as (\overline{n}_1) here and uninterrupted sequences of two or more methylene carbons (\overline{n}_{2+}) is written by Eq. 26 [2]:

$$\bar{n}_{2+} = \frac{S_{\alpha\beta} + 3S_{\beta\beta} + 2S_{\beta\gamma} + \frac{5}{2}S_{\beta\delta} + \frac{1}{2}S_{\gamma\delta}}{S_{\beta\beta} + \frac{1}{2}(S_{\alpha\beta} + S_{\beta\gamma} + S_{\beta\delta})} = \frac{I_8 + I_9 + I_{10} + 3I_{25} + 2I_{22} + \frac{5}{2}I_{23} + \frac{1}{2}I_{18} + I_{19}}{I_{25} + \frac{1}{2}(I_8 + I_9 + I_{10} + I_{22} + I_{23})}$$
(26)

According to Table 4, the (\overline{n}_0) and (\overline{n}_{2+}) values for the copolymer (**MN4**) (41 % propylene) were calculated higher than the samples of V5 (with $F_{\rm Pr}$ =0.50) and CGC4 (with $F_{\rm Pr}$ =0.583). The values of (\overline{n}_0) and (\overline{n}_{2+}) are strongly depended on copolymer composition. Increasing propylene of the copolymer causes decrease the (\overline{n}_0) and (\overline{n}_{2+}) values that is because of high incorporation of propylene in the copolymer chains.

Conclusions

Structural analysis of the rubber-like copolymer (MN4) obtained by a mixed system (MN) containing α -diimine nickel catalysts **n1** and **n2** was completely determined using ${}^{13}C$ NMR technique. Triad sequences distribution of [EPE], [PEP] and [PPE + EPP] were about 17.2, 4.6 and 2.1 mol%, respectively. A significant amount of structures with inverted propylene sequences such as [PPP*] (3.1 mol%), [PP*PP] (2.4 mol%), [P*P*PP] (3.7 mol%) and 1,4-B₁ between ethylene units (4.0 mol%) and structures of long branches (3.2 mol%) and 1,6- β B₁ (11.7 mol%) in the unique microstructure of the MN4 EPM copolymer were detected and calculated. The number fractions of uninterrupted methylene sequence in the copolymer (MN4) were compared to those in the copolymers obtained using vanadium-based Ziegler-Natta and CGC catalysts. The results indicated that the copolymer (MN4) had fewer alternating comonomer units than copolymers obtained by the vanadium and CGC catalysts while the MN4 EPM copolymer had more random distribution of ethylene and propylene units than the CGC EPM samples. The total number fractions of the even uninterrupted methylene sequences that could indicate the inversion structures in the copolymer (**MN4**) with unique microstructure were about 66 %, higher than values of 13 % and 32 % reported for copolymers obtained from CGC and vanadium-based catalysts, respectively.

Acknowledgments The authors express their appreciation to the Ferdowsi University of Mashhad for supporting the research project. Also we thank the NMR laboratory of Tabriz University and DSC laboratory of Polymer and Petrochemical Institute of Iran.

References

- 1. Kaminsky W (2001) New elastomers by metallocene catalysis. Macromol Symp. doi:10.1002/1521-3900(200109) 174:1<269::AID-MASY269>3.0.CO;2-0
- Wang WJ, Zhu S (2000) Structural analysis of ethylene/propylene copolymers synthesized with a constrained geometry catalyst. Macromolecules. doi:ma991234+/ma991614v
- Marengo E, Longo V, Robotti E, Bobba M, Gosetti F, Zerbinati O, Martino SD (2008) Development of calibration models for quality control in the production of ethylene/propylene copolymers by FTIR spectroscopy, multivariate statistical tools, and artificial neural networks. J Appl Polym Sci. doi:10.1002/app.28487
- Fu Z, Fan Z, Zhang Y, Xu J (2004) Chain structure of polyethylene/ polypropylene in-reactor alloy synthesized in gas phase with spherical Ziegler–Natta catalyst. Polym Int. doi:10.1002/pi.1527
- Britto ML, Galland GB, dos Santos JHZ, Forte MC (2001) Copolymerization of ethylene and 1-hexene with Et(Ind)₂ZrCl₂ in hexane. Polymer. doi:10.1016/S0032-3861(01)00117-3
- Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev. doi:10.1021/ cr9804644
- Johnson LK, Killian CM, Brookhart M (1995) New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J Am Chem Soc. doi:10.1021/ja00128a054
- Li L, Jeon M, Kim SY (2009) Synthesis, characterization and ethylene polymerisation of 9,10-phenanthrenequinone-based nickel(II)-αdiimine complexes. J Mol Catal A Chem. doi:10.1016/j.molcata. 2009.01.007
- Kumar KR, Sivaram S (2000) Ethylene polymerization using iron(II)bis(imino) pyridyl and nickel (diimine) catalysts: effect of cocatalysts and reaction parameters. Macromol Chem Phys. doi:10.1002/ 1521-3935(20000801)201:13%1513::AID-MACP1513%3.0.CO;2-X
- Merna J, Host'alek Z, Peleska J, Roda J (2009) Living/controlled olefin polymerization initiated by nickel diimine complexes: the effect of ligand *ortho* substituent bulkiness. Polymer. doi:10.1016/j. polymer.2009.08.030
- Sun T, Wang Q, Fan Z (2010) Selective activation of metallic center in heterobinuclear cobalt and nickel complex in ethylene polymerization. Polymer. doi:10.1016/j.polymer.2010.04.050
- Choi Y, Soares JBP (2009) Synthesis of supported nickel diimine catalysts for ethylene slurry polymerization. Macromol Chem Phys. doi:10.1002/macp.200900294
- Jiang H, He F, Wang H (2009) A new strategy to prepare branching polyethylene by using an α-diimine nickel (II) complex covalently supported on MgCl₂/AlRn(OEt)_{3-n}. J Polym Res. doi:10.1007/ s10965-008-9216-0

- Cheng HN (1984) Carbon-13 NMR analysis of ethylene-propylene rubbers. Macromolecules. doi:10.1021/ma00140a012
- Carman CJ, Harrington RA, Wilkes CE (1977) Monomer sequence distribution in ethylene-propylene rubber measured by ¹³C NMR. 3. Use of reaction probability model. Macromolecules. doi:10.1021/ ma60057a008
- Randall JC (1978) Methylene sequence distributions and number average sequence lengths in ethylene-propylene copolymers. Macromolecules. doi:10.1021/ma60061a006
- Pourtaghi-Zahed H, Zohuri GH (2012) Synthesis and characterization of ethylene-propylene copolymer and polyethylene using αdiimine nickel catalysts. J Polym Res. doi:10.1007/s10965-012-9996-0
- Pietikainen P, Seppala JV (1994) Low molecular weight ethylene/ propylene copolymers. effect of process parameters on copolymerization with homogeneous Cp₂ZrCl₂ catalyst. Macromolecules. doi: 10.1021/ma00084a007
- Zohuri GH, Mortazavi MM, Jamjah R, Ahmadjo S (2004) Copolymerization of ethylene–propylene using high-activity bisupported Ziegler–Natta TiCl₄ catalyst. J Appl Polym Sci. doi:10. 1002/app.20827
- 20. Galland GB, Silva LPD, Dias ML, Crossetti GL, Ziglio CM, Filgueiras CAL (2004) ¹³C NMR determination of the microstructure of polypropylene obtained with the DADNi(NCS)₂/ methylaluminoxane catalyst system. J Polym Sci A Polym Chem. doi:10.1002/pola.20047

- Damavandi S, Galland GB, Zohuri GH, Sandaroos R (2011) FI Zrtype catalysts for ethylene polymerization. J Polym Res. doi:10.1007/ s10965-010-9507-0
- Usami T, Takayama S (1984) Fine-branching structure in highpressure, low-density polyethylenes by 50.10-MHz carbon-13 NMR analysis. Macromolecules. doi:10.1021/ma00139a022
- Galland GB, Quijada R, Rojas R, Bazan G, Komon ZJA (2002) NMR study of branched polyethylenes obtained with combined Fe and Zr catalysts. Macromolecules. doi:10.1021/ma010744c
- Cheng HN, Smith DA (1986) ¹³C NMR studies of lowmolecular-weight ethylene-propylene copolymers and characterization of polymer chain ends. Macromolecules. doi:10. 1021/ma00161a047
- 25. Zou H, Zhu FM, Wu Q, Ai JY, Lin SA (2005) Synthesis of longchain-branched polyethylene by ethylene homopolymerization with a novel nickel(II) α-diimine catalyst. J Polym Sci A Polym Chem. doi: 10.1002/pola.20596
- 26. Gates DP, Svejda SA, Oñate E, Killian CM, Johnson LK, White PS, Brookhart M (2000) Synthesis of branched polyethylene using (αdiimine)nickel(II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules. doi:10.1021/ma991234+
- Ruiz-Orta C, Fernandez-Blazquez JP, Anderson-Wile AM, Coates GW, Alamo RG (2011) Isotactic polypropylene with (3,1) chainwalking defects: characterization, crystallization, and melting behaviors. Macromolecules. doi:10.1021/ma200231a