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Abstract In a conventional semi-batch seeded emulsion

copolymerization of vinyl acetate/butyl acrylate (VA/BA)

using hybrid surfactants namely, dioctyl sulfosuccinate

(DOSS) as an anionic surfactant, nonylphenol ethoxylate

(KENON 30) as a non-ionic type, and polydimethylsilox-

ane surfactant (having hydrophilic silanol-terminated,

called PDMS). The effect of PDMS on the properties of the

latex synthesized was investigated by measuring solid

content, viscosity, colloidal stability, particle size distri-

butions of the base latex, viscosity average molecular

weight ( �Mv) of the copolymer, latex particle morphology,

glass transition temperature (Tg) of a copolymer and ther-

mal gravimetric analysis (TGA). Particle size of the base

latex decreases (Z-average from 246.48 to 143.69 nm)

upon increasing the amount of PDMS surfactant in the

recipe (up to 6 wt%). The presence of PDMS surfactant in

the hybrid surfactants led to a significant increase in the

solid content (from 48.71 to 51.31 wt%), viscosity (from

334 to 806 centipoise, cp) and �Mv (from 1.91 9 105 to

2.34 9 105 g mol-1). Thermal stability and Tg of the

copolymer were increased with addition of PDMS surfac-

tant (thermal stability from 344.77 to 389.81 �C and Tg
from -20.7 to 21.7 �C). The colloidal stability evaluated

using the electrolyte addition method was improved with

addition of PDMS surfactant. The uniform morphological

structure of the final particle is the main effect of using

PDMS in the hybrid surfactants.

Keywords Emulsion copolymerization � VA/BA
copolymer � PDMS surfactant � Morphological structure �
Thermal stability

Introduction

Emulsion polymers of vinyl acetate have widespread

industrial application (i.e., exterior and interior architec-

tural waterborne coatings, adhesives, and paints) which is

due to their low risk of fire, toxicity and cost [1–5]. Vinyl

acetate copolymerizes with butyl acrylate and produces

useful latex for application in acrylic emulsion paints

[6–9]. The performance properties of colloidal stability,

thermal resistive coating, and control of particle morphol-

ogy were also evaluated in emulsion polymerization

[10–21]. Moreover, the quantity and nature of the surfac-

tants were used for the polymerization are major factors in

the final properties of the polymer latex [22–28].

Polymeric surfactants are most important materials that

are used in a wide range of industries for emulsion polymer

synthesis, paints, adhesives, agrochemicals, plastic and so

on [29–32]. Silicone surfactants (e.g. poly(dimethylsilox-

ane) and its derivatives) are commonly used in various

industrial applications. Some of their applications are in the

formulations of household, personal care and cosmetic

products, paints and coatings, drug delivery and surface

active agents [33–35]. The most common application of

silicone surfactants (without polar groups) is to improve

the stability of water-in-oil (w/o) emulsions. Emulsion

systems can be stabilized by silicon surfactants [36, 37].

Moreover, several papers have shown that siloxane sur-

factants consist of a permethylated siloxane hydrophobe

coupled to one or more polar groups can be used in

microemulsion polymerization. Polydimethylsiloxane-
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polyoxyalkylene copolymers and polyalkylmethylsilox-

ane–polyoxyalkylene copolymers have been studied as

surfactants [38–40]. Kumar et al. [41] and Strey et al. [42]

explained the role of siloxane polyoxyalkylene copolymer

as an ideal material to increase the efficiency of

microemulsions. The silicone-oil-in-water emulsions,

which are sometimes described as microemulsions have

been discussed by Hou [43]. Katayama et al. [44] used

salt ? amino-functionalized siloxane ? N,N-dimethy-

lethanolamine myristate ? alcohol to prepare silicon-oil-

in-water microemulsions. The relationship between

hydrophilic-lipophilic difference (HLD) and microemul-

sion formulation for silicone oils and silicone alkyl poly-

ether surfactants have been discussed by Castellino et al.

[45]. The amphiphilic nature of siloxane compounds with

few polar groups can be used for the preparation of

emulsions [46–49]. In the other word, silicon-oil-in-water

emulsions refers usually to nonionic dimethylsiloxane

polyoxyalkylene copolymers [50, 51].

More importantly, the high polarity of the end groups

supports a more surfactant-like structure, which can inter-

fere with the progressions seen in the silanol-terminated

poly(dimethylsiloxane) surface tension isotherm diagrams

[35].

In the present work, the effect of PDMS surfactant

(having hydrophilic silanol-terminated) in the hybrid sur-

factants systems on solid content, �Mv and viscosity of the

latex, colloidal characteristics (colloidal stability, particles

morphology, mean particle diameter and particle size dis-

tribution) and thermal stability of VA/BA copolymer

latexes were investigated.

Experimental

Materials

Butyl acrylate [BA, BASF Chemical Company (Lud-

wigshafen, Germany)] and vinyl acetate [VAc, Shazand

Petrochemical Co (Arak, Iran)] were distilled under

reduced pressure before use. The other materials were used

as received, including the acrylic acid monomer (AA,

Aldrich, ?99%, 3–5 ppm MEHQ), ammonium persulfate

(APS, 99%, Aldrich, Lancaster, UK) and sodium acetate

(CH3COONa, Aldrich) were used as initiator and buffer

respectively. The surfactants used were dioctyl sulfosuc-

cinate (DOSS, Aldrich) as an anionic surfactant,

nonylphenol ethoxylate [KENON 30, Kimyagaran Emrooz

Chemical Industries Co (Arak, Iran)] as non-ionic surfac-

tant and silanol-terminated poly(dimethylsiloxane) surfac-

tant (poly(dimethylsiloxane) 1050/0, OKS, Germany,

which was supported by FT-IR data (Fig. 3),

�Mn = 5200 g mol-1). Deionized water was used through-

out the work.

Apparatus

The particle size was measured using a VASCO-3 par-

ticle size analyzer (Cordouan Instruments Co, (mea-

surement range (nm): 0.5–6000). Gravimetric method

was used for the determination of total solid content of

an acrylic emulsion sample [52]. The viscosity of the

final copolymer latexes were evaluated with using a

Brookfield RVDV-II? viscometer with a 3# rotor at

60 revs min-1 at 26 �C. The thermal stabilities of the

copolymers were evaluated using thermogravimetric

analysis (Perkin-Elmer 7 series Shimadzu-TGA 50 H

thermal analysis system). The glass transition tempera-

ture, Tg, values of the acrylate copolymers were deter-

mined using differential scanning calorimetry (DSC).

A DSC-60A (Shimadzu, Japan) was used. All samples

were subjected to two heating/cooling cycles from -100

to 200 �C. The first cycle was used to eliminate any

thermal history. The second heating cycle from -100 to

200 �C was used for determination of Tg. All heat-

ing/cooling cycles were performed at a rate of

10 �C min-1 and 4 mg of the sample was used for the

analysis. The FT-IR spectrum of PDMS was measured

by a FT-IR spectrometer (Thermo Scientific Avatar 370,

USA) in the wave number of 450–4000 cm-1.

The morphology of the latex was observed by trans-

mission electron microscopy (TEM) using a Philips/

CM120 instrument. The viscosity average molecular

weight ( �Mv) of the copolymer was determined using an

Ubbelohde-type viscometer in acetone solvent at 25 �C.
Extraction of the copolymer was done using a solvent

(acetone) antisolvent (deionized water) method. The

molecular weight was determined using Mark-Houwink-

Sakurada equation [53].

g½ � ¼ K �Ma
v ð1Þ

(a = 0.75, K = 6.85 9 10-5 (dl g-1), copolymer con-

centration in acetone was 0.1 wt%).

Preparation of Poly(dimethylsiloxane)/Water

Emulsion

The required amount of PDMS (Table 1) was dispersed

into deionized water by ultrasonic irradiation at a fre-

quency of 42 kHz (Sper Scientific, Model U 4800) for

30 min to obtain an o/w emulsion [54, 55]. This o/w

emulsion was stable for at least 6 months at 25 �C and used

instead of deionized water as the continuous phase in the

emulsion copolymerization process.
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Semi-Batch Emulsion Copolymerization of VA/BA

Polymerizations were carried out in a 1-L four-necked

glass reactor equipped with a circulator, a mechanical

stirrer, an addition funnel and a thermometer. The emulsion

copolymerization was carried out with the formulas

according to Table 1. The seed was prepared at 72 �C by

means of batch emulsion copolymerization of VA and BA

using the recipe given in part A in Table 1.

The recipe given in part B in Table 1 were pre-emulsified

and continuously added to the seed latex over 6 h at 75 �C.
The polymerization was continued in a batch at 79 �C for

1 h further to complete the reaction of residual monomers.

FT-IR and 1H NMR were used to determine the structure of

the synthesized copolymer (Figs. 1, 2, respectively).

Characterization

The chemical structure of pure copolymer was examined

by FT-IR (Bruker Alpha FT-IR) and 1H NMR (Bruker AC

80 spectrometer, 80 MHz for 1H). As shown in Fig. 1, the

peaks at 2958, 2923 and 1738 cm-1 were associated with

the characteristic vibration of methyl (CH3), methylene

(CH2) and carbonyl (C=O) groups respectively. The C–O

stretching vibration of VA in 1222 cm-1 and C–O

stretching vibration of BA in 1167 cm-1 are present in the

copolymer. These results show that copolymerization has

taken place between vinyl acetate and butyl acrylate [56].

Figure 2 represent the 1H-NMR spectrum of the

copolymer obtained. The pure copolymer sample was

dissolved (5 wt%) in deuterated acetone. The spectra were

recorded at 24 ± 1 �C. In the 1H-NMR spectra of the

copolymer the signals at around 4 ppm and 3.5 ppm are

assigned to the protons of the VA and BA, respectively

[57].

Determination of Colloidal Stability

As a guide to aggregation, the turbidity of aqueous colloids

was measured using a Hach Analytical Nephelometer

Model 2100 Qis at room temperature. Each sample (0.1 g

latex) was diluted with distilled water (60 mL), the

required amount of Al2(SO4)3 (20 mL of the solution

containing 0.025, 0.050, 0.075 and 0.100 mol L-1) was

added with stirring. The mixture was left to stand for 24 h

at room temperature in a turbidimetric cell, turbidity was

measured according to the literature [58].

Fig. 1 The FT-IR spectra of VA/BA copolymer

Table 1 Recipe used for the semi-batch emulsion polymerization

Materials Part A (g) Part B (g)

BA 28 288

VA 7 73

AA 4 0

DOSS 2 6

KENON 30 4 12

Buffer (CH3COONa) 0.3 0.5

Initiator (NH4)2S2O8) 0.1 0.3

PDMSa Variable Variable

Deionized water 120 180

a The concentrations of PDMS surfactant were 0 (sample A1), 2

(sample A2), 4 (sample A3) and 6 (sample A4) wt% based on total

solid content of the latex (58.63 wt% total solid content)
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The Chemical Structure of PDMS

As shown in Fig. 3, the typical absorption peak of PDMS at

3697 cm-1 [m (O–H stretch of the SiOH group)], 1021 and

1093 cm-1 [m (Si–O–Si stretching vibrations on the back-

bone)], 2962 and 2904 cm-1 [m (C–H stretches of CH3)],

869 and 797 cm-1 [m (Si–C stretches of SiMe)] could be

seen clearly in the FT-IR spectrum.

Fig. 2 1H-NMR spectrum for

VA/BA copolymer

Fig. 3 The FT-IR spectrum of silanol-terminated poly(dimethylsiloxane)
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Results and Discussion

Influence of PDMS Surfactant on Particle Size

The mean particle size of the latex decreased with

increasing concentration of the PDMS surfactant (Table 2

and Fig. 4I–IV). As reported previously, type and con-

centration of surfactant play a major role in the final par-

ticle size [59–61]. Previous investigations have shown that

the hydrophilic-lipophilic balance (HLBmix) value of the

surfactant system is important in assessing the final particle

size and its distribution [62–65]. The mixed HLB values

were calculated according to Eq. 2 [66]:

HLBmix ¼ x A þ 1� xð ÞB½ � ð2Þ

where x is the proportion of a surfactant having an HLB

value of A, and the other surfactant has an HLB value of

B. Values of 8.5, 32 and 17.1 denote the HLB values of

PDMS, DOSS and KENON 30, respectively (were obtained

from the supplier company). When a lipophilic surfactant

with low HLB value (silicon surfactant with lipophilic nat-

ure) was added to the surfactant system with high value of

HLBmix, the surface area per surfactant molecule increased,

owing to a change in the HLBmix balance and reduction in

the entropy of the total system [62]. It can be seen from

Table 3 that the HLBmix and Z-average size (hydrodynamic

diameter) decrease with an increasing percentage of PDMS

surfactant in the mixed surfactant systems. Therefore, it may

be concluded that with increasing PDMS content (from 0 to

6 wt%), the hydrodynamic diameter of the latex particles

declines from 246.48 to 143.69 nm.

Effect of PDMS Surfactant Concentration

on the Copolymerization Behavior

Increasing the PDMS amount in the recipe resulted an

increasing, both the solid content of the latex and �Mv of the

polymer obtained linearly (Fig. 5). After the nucleation

period, three types of kinetic processes determine the

kinetics of emulsion polymerization: radical entry, polymer

chain formation (especially biomolecular termination) and

radical desorption.

Radical entry is given by Eq. 3:

e ¼ qe
kp½M�pNT

ð3Þ

where qe is the rate of radical entry into polymer particles,

including the re-entry of desorped radicals, NT is the

number of polymer particles, [M]p is the monomer con-

centration in the monomer-swollen polymer particles and

kp is the propagation rate constant [67].

Bimolecular termination is given by Eq. 4:

n ¼ 2ktp

kp½M�pmpNA

ð4Þ

where ktp is the bimolecular termination rate constant, NA

is Avogadro’s number and mp is the volume of a swollen

polymer particle.

Radical desorption is given by Eq. 5:

d ¼ Pdesð1þ Cf þ n� 1ð Þnþ k0

kp½M�p
ð5Þ

where k0 is the desorption rate coefficient for an oligomeric

radical, n is the number of radicals in the polymer particle,

Cf chain transfer frequency and Pdes chain transfer reaction

[67].

Increasing the amount of PDMS in the hybrid surfac-

tants system causes the final number of latex particles per

unit volume (NT) to increase or reducing the volume of a

swollen polymer particle (mp) and the possibility of multi-

ple radicals in the polymer particle (n), the polymerization

system due to no desorption and fast termination (invariant

amount of initiator) follows Smith-Ewart case II kinetics

(n = 0.5) given by Eqs. 6 and 7. In the Smith-Ewart case

II, high rates of polymerization and high molecular weights

of the polymer are obtainable [67].

dNi

dt
¼ qe

NT Ni�1 � Nið Þ þ
k0ap

mp iþ 1ð ÞNiþ1 � iNi½ �
þ ktp

mp iþ 2ð Þ iþ 1ð ÞNiþ2 � i� 1ð ÞNi½ � ð6Þ

(Ni, i = 0, 1, 2,…) where (Ni, i = 0, 1, 2,…) is number of

latex particles containing i free radicals per unit volume of

water and ap is surface area of single particle [67].

Table 2 The effect of PDMS

on particle size of the latex
Sample Dmean volume (nm) Dmean number (nm) PDIa Z-average size (nm)

A1 369.71 66.69 0.3990 246.48

A2 359.12 64.83 0.3950 241.19

A3 228.42 49.33 0.3300 178.07

A4 151.17 41.80 0.2950 143.69

a Polydispersity index of particle size
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Fig. 4 Influence of PDMS surfactant on particle size and particle size distribution of the latex (I) sample A1; (II) sample A2; (III) sample A3;

(IV) sample A4
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case II:
k0ap

mp
� qe

NT

� ktp

mp
no desorption and fast terminationð Þ

ð7Þ

n = N1/(N0 ? N1) = 0.5

A monotonic increase in viscosity with increasing

PDMS surfactant concentration was observed (Fig. 6).

Studies of high solids content lattices have shown that the

latex viscosity at a fixed shear rate is directly dependent on

the polymer concentration and molecular weight (as

already emphasized in Fig. 5) [68, 69]. The viscosity also

increases with decreasing particle size and increasing vol-

ume fraction ([) of latex particles (Fig. 4) [68, 69]. These

Fig. 5 Effect of PDMS

surfactant on the solid contents

and the viscosity average

molecular weight ( �Mv)
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Fig. 6 Effect of PDMS surfactant on viscosity of the latex obtained

Table 3 The relationship

between the final particle size

and the mixed HLB values for

samples with different

quantities of PDMS surfactant

Z-average(nm) HLBmix HLBmonomer Ratio of surfactant Surfactant

PDMS1 0 8.5b 246.48 22.02

DOSS 0.33 32a

KENON 30 0.67 17.1a

PDMS2 0.26 8.5 241.19 18.59

DOSS 0.25 32

KENON 30 0.49 17.1

PDMS3 0.42 8.5 178.07 16.81

DOSS 0.20 32

KENON 30 0.40 17.1

PDMS4 0.52 8.5 143.69 15.01

DOSS 0.16 32

KENON 30 0.32 17.1

a Were obtained from the supplier company
b Valid website (http://www.Chemicalland21.com/info/HLB_VALUES.htm)
1 Sample A1
2 Sample A2
3 Sample A3
4 Sample A4
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results are consistent with other findings which illustrate

that reducing of particle size, increasing of solid contents

and �Mv are more intensive in viscosity of the latex [68–70].

Effect of PDMS Surfactant on the Particle

Morphology

Core–shell particles with BA (reactivity ratio = 5.5 and

water solubility = 1–1.5 g L-1) mainly located in the core

(dark region) and the shell (light region) contains rich VA

(reactivity ratio = 0.04 and water solubility = 25 g L-1)

copolymer were produced for instance by seeded emulsion

polymerization in the presence of various conventional

surfactants such as sodium dodecyl sulfate and octylphe-

noxy polyethoxy ester (Fig. 7a) [71, 72]. Based on the

minimum surface free energy change principle, by simply

changing the type of surfactant used in the polymerization,

the particle morphology can change from core–shell to

other morphologies that agree with thermodynamic pre-

dictions [73, 74]. Addition of PDMS surfactant to the

hybrid surfactants systems (DOSS ? KENON 30), a tran-

sition from the core–shell to uniform morphological

Fig. 7 TEM images of a core–shell particles with BA as core (dark regions) and VA as shell (light regions), using conventional surfactants

(DOSS ? KENON30); b throughout uniform morphological structure, using hybrid surfactant systems (DOSS ? KENON30 ? PDMS)
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structure in final particle morphology takes place (Fig. 7b).

This behavior could be the result of a reduction in the

polymer (core)/polymer (shell) interfacial tension and

overall free energy of the system by PDMS surfactant.

Furthermore, PDMS as a lipophilic surfactant can solubi-

lize many organic monomers into the interior of the

micelles and can create a homogeneity environment for the

polymerization [62, 75, 76]. This fact is attributed to the

coiling of the long lipophilic chain in order to reduce the

entropy loss (due to the molar mass distribution of PDMS

used, it is well known that many properties of polymers

strongly depend on their average molecular weight, par-

ticularly below 104 g mol-1, because of the strong influ-

ence of oligomer chain ends. Therefore, short oligomeric

PDMS chains with low molecular weight and strong polar

end groups and long chains (red structures in Fig. 8) of

PDMS shift to outer (hydrophile, surfactant layer) and

inner (hydrophobe) part of micelles respectively) [35, 62].

This effect has been reported in the literature [76]. It can be

concluded that in the presence of PDMS bulk polymer-

ization in micro-reactors may convert to more homoge-

neous system in the emulsion polymerization. A model of

the particle as microreactors for synthesis of the polymer is

shown that is consistent with the available and presented

results (Fig. 8) [75].

Influence of PDMS Surfactant on Thermo-Oxidative

Degradation of VA/BA Copolymer

TGA curves for VA/BA copolymers are shown in Fig. 9.

There is a clear increase in thermal stability of copolymer

with increasing PDMS surfactant. This behavior could be

attributed to the greater participation of VA and BA for

copolymerization and increasing molecular weight (Fig. 5).

Similar behavior was reported for VA/BA copolymer

prepared by free radical mechanism [56, 77].

Influence of VA/BA ratio on the copolymers VA/BA

copolymers have higher thermal stability compared with a

Fig. 8 A model of formation of microreactor and its emulsion polymerization acrylic monomer in presence of PDMS surfactant
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polyvinyl acetate and poly(n-butyl acrylate) alloy [56]. The

dual nature of PDMS surfactant molecule leads to the

formation of particles having a more homogeneous distri-

bution of both monomers (Fig. 7b). Furthermore, when

penetration ratio of monomer and polymer radicals are

rapid relative to the reaction rate, we would expect the

monomer to be uniformly distributed throughout the par-

ticle, the behavior could lead to the greater participation of

VA and BA for copolymerization together and uniform

morphological structure of the latex particles (Figs. 7, 10).

This result has been formulated via Eqs. 8 and 9 [74]:

PRM ¼ DM=x
2

� �
= kp:n

� �
= vp:NA

� �� �
ð8Þ

where PRM is the penetration ratio for the monomers, DM is

the diffusion coefficient for the monomer assuming Fickian

diffusion, x is the jump distance for a diffusive step, kp is

Fig. 9 TGA thermogram of

VA/BA copolymer with

variable PDMS surfactant

concentration under air,

10 �C min-1

Fig. 10 Effect of PDMS on

particle size and morphological

development

Fig. 11 Influence of PDMS surfactant on glass-transition of the

copolymer
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the propagation rate coefficient, n is the number of radicals

per particle, vp is the particle volume and NA is Avogadro’s

number.

PRP ¼ DP=x
2

� �
= kt:nð Þ= vp:NA

� �� �
ð9Þ

where PRP is the penetration ratio for polymer radicals, DP

is the diffusion coefficient for polymer radical chain end

and kt is the termination rate coefficient.

Note that the PRp and PRM depends on the particle size

in emulsion polymerization, and are larger for smaller

polymer particle and high volume fraction (/) of latex

particles (Fig. 4). There is a good conformity between

experiment data (Figs. 7, 11) and Eqs. 3 and 4. In this

paper, the total mass and ratio of monomers were fixed, but

two polymers with different Tg were obtained at different

quantities of PDMS, as a result of greater participation of

VA as hard monomer for the copolymerization that cause

to increasing Tg of the copolymer (Fig. 11).

Colloidal Stability

The stability against electrolyte is very important for many

applications in combination with pigments, e.g., paints and

paper coatings [11]. The latex stability upon addition of

electrolyte can be determined by the turbidity ratio method;

the higher the slope of turbidity ratio of the latexes, the less

stable the system [78]. Figure 12 illustrates the change of

slope of the turbidity ratio for the diluted latexes with

various PDMS surfactant contents in hybrid surfactant

systems. The higher concentration of PDMS surfactant, the

lower slope of the turbidity ratio obtained in the range

studied. The higher colloidal stability of the latex in pres-

ence of PDMS surfactant could be due to the unique

structure of the PDMS such as longer bond lengths of Si–

O, larger bond angles of Si–O–Si and the presence of a

methyl group, more steric repulsion, compare to typical

hydrocarbon surfactants (Fig. 13) [33, 34]. In other words,

with increasing steric repulsion between adjacent particles,

aggregation is reduced.
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Fig. 12 Determination of colloidal stability by plotting turbidimetry

versus concentration of Al2(SO4)3 solution for VA/BA copolymer

latices

Fig. 13 Schematic

representation of colloidal

stability of the particles due to

more steric repulsion between

the particles with using PDMS

surfactant
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Conclusion

A series of VA/BA latexes were synthesized using hybrid

surfactant systems. The influence of PDMS surfactant

(having hydrophilic silanol-terminated groups) on the

copolymerization behavior was investigated. Increasing the

PDMS surfactant decreases the particle size while �Mv,

viscosity of the latex and its solid content were increased.

Increasing of PDMS concentration showed a positive effect

on thermal and colloidal stability, these improvements

could be due to an increase in the molecular weight ( �Mv),

uniformity of the morphology and steric repulsion between

the particles obtained respectively. Tg of the copolymer

also increases (from -20.7 to 21.7 �C) with addition of

PDMS.
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