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1. Introduction

Let B(#) denote the C*-algebra of all bounded linear operators on a complex Hilbert
space (S, (-,-)) and let I be the identity operator. An operator A € B(4#) is called
positive if (Az,xz) > 0 holds for every x € . and then we can write A > 0. We say,
A< Bif B—A>0;see [1] for other possible orders.

For a continuous real-valued function f and a self adjoint operator A with spectrum
in the domain of f, the operator f(A) is defined by the continuous functional calculus.
In particular, if J# is a Hilbert space of finite dimension n and A € M, (= B(.¢)) has
the spectral decomposition A = Z?Zl A P;, where P; is the projection corresponding to
the eigenspace of the eigenvalue \; of A, then

A continuous function f : J — R defined on an interval J is said to be matrix
monotone (or matrix increasing) of order n if A < B implies that f(A) < f(B) for any
pair of self adjoint n x n matrices A, B with spectra in J. A function f is called matrix
decreasing of order n if — f is a matrix monotone function of order n. Also, we say that
f is a matrix convex function of order n, if

FAA+ (1 =X)B) <Af(A)+ (1 - Nf(DB),

for all self adjoint matrices A, B in M,, with spectra in J and all A € [0, 1]. In the general
case, a function f : J — R is said to be operator monotone (operator convex) if it is
a matrix monotone function (matrix convex function) of any arbitrary order. For more
details, we refer readers to [3,6].

In [7], Hansen used the functional calculus developed by Koranyi [12] and presented
an extension of one variable operator convex functions to multivariable functions. In his
approach, Hansen considered A = (A1, ..., A) to be a k-tuple of self adjoint matrices of
order (nq,...,nk) such that the spectra of n; x n; matrix A, is contained in J; for each
i=1,... k. If

A =3 N (AP, (40,

is the spectral decomposition of A; and f is a k variable continuous function on the real
interval J; x ... x Jj, of R¥, then

f(A) = lekf(A“(Al),,)\lk(Ak)) Pil(A1)®...®PZ‘ (Ak),
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can be defined as a self adjoint matrix in M,, ®...® M,, . Now, we say that a k variable
continuous function f on a real interval J; x ... x J; of R* is matrix convex of order
(nly ce 7”]6)7 if

JAA+ (1 =XNB) <Af(A)+ (1 - Nf(B),

for any 0 < A < 1 and for any two k-tuples A = (44,...,4;) and B = (By,..., Bg)
of self adjoint matrices such that the spectra of A; and B; are contained in .J; for each
t=1,..., k. For more properties, see [20].

There are many approaches for extending the definition of one variable operator
monotone functions to functions of several variables [2,15,17,19]. In particular, Agler,
McCarthy and Young [2] worked on k-tuples of commuting self adjoint operators on
a Hilbert space ¢ and expressed an operator monotonicity for functions of several
variables. In this approach, for k-tuples A = (Ay,...,Ax) and B = (By, ..., By) of com-
mutating self adjoint operators, we say that A < B if A; < B; for every 1 < i < k.
A k variable continuous function f on a real interval J; x ... x Ji is called operator
monotone of order n if for any two k tuples A = (4;,...,A4x) and B = (By,...,By) of
n X n commuting matrices such that the spectra of A; and B; are contained in J;, the
inequality A < B implies that f(A) < f(B).

Similar to this approach, we define k variable operator monotone functions of order
(n1,...,ng). In particular, for k-tuples A = (A1,...,Ax) and B = (By,...,By) of self
adjoint matrices of order (nq,...,nk), wesay A< Bif A; < B; forall 1 <i <k.

Definition 1.1. A k variable continuous function f on a cell J; x ... x Jj, of R¥ is called
operator monotone of order (ny,...,n;) if for any two k-tuples A = (Ay,..., A;) and
B = (By,...,Bx) of self adjoint matrices of order (ni,...,nx) such that the spectra
of A; and B; are contained in J; for i = 1,...,k, the inequality A < B implies that
F(4) < £(B).

A linear map ® between two C* algebras A and B is said to be positive, if a > 0
implies ®(a) > 0, for each a € A. Also, ® is said to be completely positive if for each
n € N, the linear map ®" : M,,(A) — M, (B) defined by

0" ([aiz]) = [¢(ai ;)]

is positive. Any positive linear map is bounded and ||®|| = ||®(])||. In particular, if
B =C or ® is a positive linear functional, then ® is continuous.

Let X and 9 be Banach spaces. We say that a function f : X — 2) defined on a subset
& of X is Fréchet differentiable at an inner point « € ¢, if there exists a bounded linear
operator fl(z) € B(%,2) such that

lim [[]| 51| £ (2 + ) = f(2) = fH (@) (R)]|o = 0.
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In this paper, we first investigate the operator convexity and the monotonicity of some
functions of k variables by using one variable operator monotone functions. In particular,
we show that if ® is a positive linear functional on M, f is a matrix convex function of
order mn on [0,00) and

d(ti,ta,ta, ... tk) = P (f(11C1 + 120 + ... + 1,Cy)) ,

for positive matrices Cy,...,C, in M,, then ¢ is a k variable operator convex function
of order (ni,...,ng) such that m = ny...ng. Similar results are valid for operator
monotone functions.

In addition, by using a different approach, we extend some results of Hansen [10]
(section 3) and prove that for any arbitrary Hilbert space 5 and any positive linear
functional ® on B(J#), if f is an operator decreasing function on (0, 00), then the function
o(t) = ®(f(A+tB)) has a Laplace transform of a positive measure, for positive operators
A, B € B(s). Moreover, the famous equivalent statement for Bessis—-Moussa—Villani
theorem [18] which states for each p < 0 and for all positive semi-definite matrices A
and B, the function h,(t) = Tr (A + tB)? is completely monotone [13], is partially
extended (f : (0,00) — R is called a completely monotone function if (—1)"f™(¢) > 0,
for each n = 0,1,2,... and each ¢ > 0). Indeed, we show that for a positive linear
functional ® on B(.#), the function ¢,(t) = ® ((A + ¢tB)?) is completely monotone for
each —1 < p < 0 and all positive operators A, B € B(J¢).

Finally, some inequalities in relation to the sub-additivity of operator monotone func-
tions are described in section 4.

2. Several variable operator functions

We begin this section with introducing some notation being used in the paper. Let 7]

k
be a Hilbert space for each 1 < i < k and ® .7 denotes the tensor product Hilbert space
i=1

1=

K3

k
IO QR I ® ... RQ . Suppose that Yl’C : B(s) — B ( %’g) denotes the isometry
=1

YEA)=I®.. 1A ®...01I,

K3

k
for A; € B(44). Also, for any operator C in B(4%)), consider sz,c : B (@ jﬁ) —

k
B <'®0%> such that

Xic(d) = CwYi(4),
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k
for A € B ( %) Note that if C is a positive operator, then XfA is a completely
-1 )

T

k
positive linear map for each 1 < i < n. Now, let € 4. Assume that T}, , : ® J4 —
i=1

k
® ; is the linear map defined by
i=0

1=

Tize(1 QY2 @ ... QUK) =2 QY QY2 ® ... D Yg,

k k
forany 11 ® Y2 ® ...y in g@ljﬁ If T,:J : '@0% —

we can conclude that

k
J; denotes the adjoint of T}, ,,
i=1

1=

/

1@ YT, (W@ ®... @ uk)) = (Tha (Y1 @ Y)Y @ .. @ Yg)

= <.’E,y0> <y,13y1> ce <y;myk>,

k k
for each ¥} ® ... ®y;, € '®1<}ﬁ and Yo @Y1 Q... yp € '®0%' Therefore
Tiw(o @91 @ ... @yr) = (40, 2) (11 @ Y2 @ ... @ yp),

k
foryo @Y1 ®...Q Yk € _@O%%.
Let o,,(1, ..., k) be a word of length m over the set {1,2,...,k}. Put 0,,(Cy,...,C%)

to be the multiplication of operators Cy,Cs,...,C) corresponded to o,,(1,...,k). For
example, if m =5, k = 3 and 05(1,2,3) = (12113), then
0'5(01, CQ, Cg) = 0102C101C3 = C102C1203.

The set of all words of length m over set {1,2,...,k} is denoted by S(m, k).

Lemma 2.1. Let Cq,...,Cy be positive matrices in My, and f be a continuous function
on [0,00). Let x € C" and

Gty ta,ta, .. k) = (f(L1C1 + 1202 + ... + 1,Cr )z, ).
Then, the following statements hold.
(i) Let A= (Ay,...,Ag) be a k-tuple of positive matrices of order (ni,...,ny). Then
¢a(Ar, . A) = T, (F(XT e, (A1) + X5 0, (A2) + .+ X ¢, (AR))) Thoas
as a matriz in My, & ...Q M,, .

(ii) Let A = (A1,...,A) be a k-tuple of commutating positive matrices of order n.
Then
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Go(Ary o Ap) = 1, (F(XT 0 (A1) + o+ XT 0, (Ar)) Ty
as a matriz in M,,.

Proof. By the Stone-Weierstrass theorem, it is sufficient to prove the theorem for f(t) =
t™ for each m > 0. If m = 0 the proof is clear. Let m > 0. Then

G (ti,to, ... t) = (1CL + 1202 + ... + 1,C) ", x)
= Z oty ... tg) (o(Cy,...,Ck)z, ).

oceS(m,k)

(i) First, note that by a remark of Hansen [8, Page 1], if a k variable continuous function
g can be separated as a product g(t1,...,tx) = g1(t1)...gk(tx) of k functions each of
which depends on only one variable, then

g(A) =g1(A1) ® ... ® gr(Ag).

So, we can conclude that

Go(Ar, Ag, . Ag) = D (0(Ch,.., Cr)z,z) oY (Ar), ... Y (AR)).
oceS(m,k)

On the other hand, we have

Tio (Xhey (A) + o+ X, (41)™) Th

TI::K,z Z g (X{C,Cl (A1>7 R ‘XvIICC,C';C (Ak)) Tk,w

oceS(m,k)
= Y T (Xt (A, Xf o (A)) Tha
oeS(m,k)
= Ty, (XF (N @ (I@c(YF(A),...,Y"(A)) T
k,x 1,0(C1,...,C) oXp (Ar), .. Y ( Ak k-
oeS(m,k)

k
Let y1 ®y2 ® ... @ yx € @1((?"1‘. Then,

Ty <Xf,a(cl,..‘,ck)(1> ® (@Y (Ar),..., Ykk(Ak)))> Thzo(1 @Y2 ® ... Q yg)

=T (Xf,a(Cl,...,Ck)(I) ® (@Y (Ar),.. -7Ykk(Ak)))) QY1 QY2 ® ... Yk)
=Ty . (0(Cry e, Cr) () @ (0 (Yi(AL)s o, Ya(AR)) (11 @2 @ ... @ y))
=(0(C1,...,Cr)z,x)0(Y1(A1), .. ., Ye(Ap) (11 @ Y2 ® ... @ Yk),
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for each o € S(m, k). Therefore,

Oa(Ass s Ar) = Ty (XE e, (A1) + ot X, (40)) ™) T
(ii) It is clear that

Go(Ar, Ag, . A) = Y (0(Ch,. ., Cr)a,x) o(Ar,. ., A).

Moreover,
15 (X2e,(A) + o+ X2, (A0)") Tha

= Z Tl*,:ra (X%)CI(AI)M"7X12,Ck<Ak7)) TL:U
oceS(m,k)

Y T (0(Ch.. Cr) @0 (Ar,.. ., Ag)) T

oceS(m,k)

An argument similar to Part (i) implies that

ba(Ar, Ao, Ag) = Ti o (X2, (A) + o+ X0, (A0) ") T D

Theorem 2.2. Let C1,Cy,...,Cy be positive matrices in M, and f : [0,00) — R be a
continuous function. Let ® be a positive linear functional on M, and

d(tr,ta,ts, ... ty) = @ (f(11C1 + 1202 +t3C3 + ... + 1,Cy))

be a k variable continuous function. Then the following statements hold:

i) If f is an operator convex function of order mn, then ¢ is a k wvariable operator

convex function of order (ny,...,ng) such that m =nq ...ng.
ii) If f is an operator monotone function of order mn and m = ni...ny, then ¢
is a k wvariable operator monotone function of order (ni,...,ny) in the sense of

Definition 1.1.
iii) If f is an operator monotone function of order n*+1, then ¢ is a k variable operator
monotone function of order n in the sense of Agler, McCarthy, Young.

Proof. By the Riesz—Fischer theorem [11, Page 13] there exists a positive matrix 7" such
that ®(X) = Tr(XT) = Y (XT%e;, T/ %¢;) for each matrix X € M,. As the set of
operator monotone functions and the set of operator convex functions are both convex
cones, it is sufficient to prove the theorem for functions of the form

O (t1,ta,ts, .. te) = ((f(81C1 + t2C2 + t3C5 + ... + t,Ck)) x, ),

for each z € C™.
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i) Let A = (Ay,...,Ar) and B = (Bjy,...,Bx) be two k-tuples of positive matrices of

order (nq,...,nk) and 0 < A < 1. Then,

¢(M1 + (1= N)Bi,..., My + (1 — \)By)
=T, (F(XF e, ML+ (1= VB + ...+ XE o, My + (1= N)By)) T
=Tio (FOXT e, (A1) + (1= NXT ¢, (B1) + ...+ AXE ¢, (Ar) + (1= NXE ¢, (Br))) Tro
=Tio (fFOMXT o, (A1) + .+ XT e, (AR) + (1= N(XT o, (Br) + - + Xi ¢, (Br)))) T
<A (F((XF o, (AD) + -+ XF o, (A))) Thoa
+ (1= NT;, (f(Xfcl(Bﬂ +oo X0, (B))) Trw
= Aoz (Ar, ..., Ar) + (1 = XN)¢s(By,. .., B).
ii) Let A = (Ay,...,Ax) and B = (By,...,By) be two k-tuples of positive matrices of

order (nq,...,ng) and A; < B; for each 1 <14 < k. Since C; is positive, Xﬁci is a positive
linear map and X¥ o (4;) < X{ ¢ (B;) for each 1 <i < k. Therefore

Sa( A1, Ar) = T, (F(XT 0, (A1) + -+ XE 0, (AR))) Tho
ST (f(Xi e, (By) + ..+ XE 6, (B)) T
= ¢(B1,...,Bg).

iii) Using Part (ii) of Lemma 2.1 and the same reasoning as in Part (ii) we obtain the
result. O

3. Laplace transform of operator decreasing functions
The Bessis—Moussa—Villani conjecture [4] states that for a self adjoint matrix A and a

positive matrix B, the function f(t) =Tr (epr_tB)
transform

can be represented as the Laplace

/ exp™ " dp( (1)
0

for a positive measure p on [0,00) [4]. This conjecture has attracted a lot of attention.
Despite a lot of attempts to prove the conjecture, it remained open until 2012. Eventually,
Stahl [18] proved this conjecture. Hansen also got similar results [10].

Theorem 3.1. [10] If f is a non-negative operator decreasing function on [0,00), then
for positive matrices A, B, the map t — Trf(A + tB) can be written as the Laplace
transform of a positive measure.
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In his proof of this theorem, Hansen employed the theory of the Fréchet differentials
and the Bernstein’s theorem highlighting the measure p in (1) exists if and only if f
is completely monotone or (—1)"f"(t) > 0, for each n = 0,1,2,... and ¢t > 0. We can
extend Theorem 3.1 as the following form.

Theorem 3.2. Let A, B € B(J7) be positive operators and f be an operator decreasing
function on [0,00). For any positive linear functional ® on B(JZ), the function ¢(t) =
O (f(A+tB)) is operator decreasing. In particular, if f is non-negative, then ¢ can be
written as the Laplace transform of a positive measure.

Proof. By [3, Theorem 2.3], if f is an operator decreasing function on the (0,00), then
f on [0,00) can be represented as

r A
fO=a+8t+ [ - g O @
0

where 3 < 0 and p is a positive measure on (0,00) such that [ )\%ﬂ du(X) is finite;

see [6, Chapter 11]. Since [[¥(A + A+ tB)~' — )\%HI du(X) exists and @ is a bounded

linear functional, we have

T Al T Al
O [M+A+tB) " — ———du(N) | = [ @[ (A + A+tB)' — ——— | du())
/ ) - o o)
:/<I>((>\I+A+tB)*1) - iffi du(\).
0
Hence
o(t) =@ (f(A+tB)) = ad®(I) + pB(I)t +/<I> (M+A+tB)™") — i@idu()\).
0

As the set of operator decreasing functions on [0,00) is a closed cone, it is sufficient
to prove the theorem for the function fy(t) = AL-H where A > 0. Indeed, we show that
the function ¢(t) = ® (Al + A + tB)™') is operator decreasing on [0, 00). First, assume
that B be invertible. Note that ®p(X) = ®(B= XB2 ) is a positive lincar functional
and

o(t) =@ (fr(A+Bt)) =@ (M + A+tB)™")
s (B%I(AB‘l +BTABT + tl)—lB%l)

=3 (AB™ + BT ABY +t1)71).
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Consider H = A\B~14+ B% AB% . Note that H is a positive operator and ¢ has analytic
continuation to the whole upper half-plane {z € C : ¥(z) > 0} as

¢(2) = @p (H+2D)7"),

see [16, Lemma 1.2.4]. Now, if z = 2 + iy € C and y = Im(z) > 0, then

Im((¢(z)

m (0 ((H + (z +iy)I)~ "))

m (P ((H + ( xI—I—zyI )

m (05 (H + 21 —iyl)(A+21)? +y°1)7 1))
—®p (y((H +zI)* +y°1)7") <0.

Il
— = =

The last equality is valid. Indeed, because ® is a positive linear functional, ®(T) is real
for each self adjoint operator T € B(J#). Also, as y((H +zI)?+y?I)~! is positive invert-
ible, the last inequality holds. Therefore, ¢ is analytic on (0,00) and can be continued
analytically to the whole upper half-plane and represents an analytic function whose
imaginary part is negative. Hence, by Lowner’s theorem [14], ¢ is operator decreasing
on (0,00) and, by the continuity, on [0,00). If B is an arbitrary positive operator, then
on(t) = ©((A+A+t(B+1))71) is operator decreasing on [0,00) for each n. Since
¢n — ¢ in point-wise convergence topology, by [5, Proposition V.4.2], ¢ is operator
decreasing on [0, c0).

If f is non-negative, then ¢ is non-negative and has an integral representation of the
form (2). This representation shows that ¢ is an integral sum of functions that have
Laplace transform. Therefore, ¢ can be written as the Laplace transform of a positive
measure. O

By replacing f by —f, a similar statement can be obtained. However, we can extend
it as follows.

Corollary 3.3. Let A and B be positive matrices in M,,. Let f be an n® operator monotone
(convex) function on [0,00) and ® be a positive linear functional on M,. Then ¢(t) =
O (f(A+tB)) is an n-monotone (convex) function on [0,00).

Proof. Let f be an n® operator monotone function on [0,00). By Theorem 2.2, the
function ¢o(s,t) = @ (f(sA+tB)) of two variables is operator monotone on M,. If
S < T, then (I,S) and (I,T) are 2-tuples of commutating matrices and (I,5) < (I,T).
Therefore,

¢(S):¢O(I7S)§¢0(1—3T):¢(T) ]

The function f(t) = t¥ is operator increasing for 0 < p < 1 and operator decreasing
for —1 < p < 0. Therefore, as an example the following corollary can be given.
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Corollary 3.4. Let A, B be positive operators in B(5) and —1 < p < 1. For a positive
linear functional ® on B(JZ), the function ¢(t) = ® ((A+ tB)P) is operator increasing
if 0 < p <1 and operator decreasing if —1 < p < 0.

4. Sub-additivity type inequalities for operator monotone functions

If f is a non-negative operator monotone function on [0,00) and A, B are positive
operators in B(.57), then the inequality

f(A+B) < f(A) + f(B),

does not hold in the general case, for more details, see [15]. In the next corollaries, several
sub-additivity type inequalities for operator monotone functions are described.

Proposition 4.1. Let f : [0,00) — R be a non-negative operator monotone function of
order n® for some n > 1. Let A, B be positive operators in M,. Then

f(A+(s+1)B) < f(A+sB) + f(A+1B),
for each s,t € [0,00).

Proof. First note that by [9, Theorem 2.1] f is a concave function on [0, c0). Let ® be an
arbitrary positive linear functional on M,,. Then ¢(x) = ®(f(A+ xB)) is a non-negative
operator monotone function on [0, c0). Since ¢ is sub-additive on the real line, we have

O(f(A+ (s +1)B)) = ¢(t +5) < 6(t) + ¢(s)
O(f(A+sB) + f(A+1tB))

for each s,t € [0,00). Since ® is arbitrary, we obtain
f(A+(s+t)B) < f(A+sB)+ f(A+tB),
for each s,t € [0,00). O

Corollary 4.2. Let f : [0,00) — R be a non-negative operator monotone function of order
n3 for somen > 1. Let A, B be positive matrices in M,. Then

1 1
/fA+)\B d\< f(A+B) < 2/fA+/\B
0 0

Proof. Proposition 4.1 implies that

f(A+B) < f(A+AB) + f(A+ (1 - A)B),
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for each 0 < A < 1. Moreover, since A + B > A + AB we have
J(A+AB) < f(A+ B),

for each 0 < A < 1. Taking integral with respect to parameter A and using the equality

1 1
/f(A—H\B) X = /f(A+ (1—X\)B) dA,
0 0

we conclude the result. O

Assume that f![A] denotes the Fréchet derivative of f at A, in which f is a differential
function on an interval I and A is a Hermitian matrix with eigenvalues in I. Our next
result reads as follows.

Corollary 4.3. Let f € C1([0,00)) be an operator monotone function of order n® for some
n>1. If A, B € M,, are positive matrices, then

F(A+B) < f(A) + fM(4) 0 B,

where o stands for the Schur-product of two matrices with respect to the basis in which
A can be represented as a diagonal matriz.

Proof. By [5, Theorem V.3.3], we have

HU(A) o (B) = % |,_o f(A+1B).

Suppose that ® is an arbitrary positive linear functional on M,,. As ¢(t) = ®(A +tH)
is an operator monotone function on [0, 00), so it is concave. Hence

o (/)0 (B)) =@ (% |, f(A +tB))

d
i |t:0

d
4 |t:0 (1)

> 6(1) - 6(0)
= ®(f(A+B) - f(A).

®(f(A+1tB))

In the last inequality, we utilize the concavity of ¢. Since ® is arbitrary, we get

f(A+B) < f(A) + fM(A)oB. O
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