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1. Introduction

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert 
space (H , 〈·, ·〉) and let I be the identity operator. An operator A ∈ B(H ) is called 
positive if 〈Ax, x〉 ≥ 0 holds for every x ∈ H and then we can write A ≥ 0. We say, 
A ≤ B if B −A ≥ 0; see [1] for other possible orders.

For a continuous real-valued function f and a self adjoint operator A with spectrum 
in the domain of f , the operator f(A) is defined by the continuous functional calculus. 
In particular, if H is a Hilbert space of finite dimension n and A ∈ Mn(= B(H )) has 
the spectral decomposition A =

∑n
i=1 λiPi, where Pi is the projection corresponding to 

the eigenspace of the eigenvalue λi of A, then

f(A) =
n∑

i=1
f(λi)Pi.

A continuous function f : J → R defined on an interval J is said to be matrix 
monotone (or matrix increasing) of order n if A ≤ B implies that f(A) ≤ f(B) for any 
pair of self adjoint n × n matrices A, B with spectra in J . A function f is called matrix 
decreasing of order n if −f is a matrix monotone function of order n. Also, we say that 
f is a matrix convex function of order n, if

f(λA + (1 − λ)B) ≤ λf(A) + (1 − λ)f(B),

for all self adjoint matrices A, B in Mn with spectra in J and all λ ∈ [0, 1]. In the general 
case, a function f : J → R is said to be operator monotone (operator convex) if it is 
a matrix monotone function (matrix convex function) of any arbitrary order. For more 
details, we refer readers to [3,6].

In [7], Hansen used the functional calculus developed by Koranyi [12] and presented 
an extension of one variable operator convex functions to multivariable functions. In his 
approach, Hansen considered A = (A1, ..., Ak) to be a k-tuple of self adjoint matrices of 
order (n1, . . . , nk) such that the spectra of ni × ni matrix Ai is contained in Ji for each 
i = 1, . . . , k. If

Ai =
ni∑
im

λim(Ai)Pim(Ai),

is the spectral decomposition of Ai and f is a k variable continuous function on the real 
interval J1 × . . .× Jk of Rk, then

f(A) =
n1∑

. . .

nk∑
f (λi1(A1), . . . , λik(Ak)) Pi1(A1) ⊗ . . .⊗ Pim(Ak),
i1 ik
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can be defined as a self adjoint matrix in Mn1 ⊗ . . .⊗Mnk
. Now, we say that a k variable 

continuous function f on a real interval J1 × . . . × Jk of Rk is matrix convex of order 
(n1, . . . , nk), if

f(λA + (1 − λ)B) ≤ λf(A) + (1 − λ)f(B),

for any 0 ≤ λ ≤ 1 and for any two k-tuples A = (A1, . . . , Ak) and B = (B1, . . . , Bk)
of self adjoint matrices such that the spectra of Ai and Bi are contained in Ji for each 
i = 1, . . . , k. For more properties, see [20].

There are many approaches for extending the definition of one variable operator 
monotone functions to functions of several variables [2,15,17,19]. In particular, Agler, 
McCarthy and Young [2] worked on k-tuples of commuting self adjoint operators on 
a Hilbert space H and expressed an operator monotonicity for functions of several 
variables. In this approach, for k-tuples A = (A1, . . . , Ak) and B = (B1, . . . , Bk) of com-
mutating self adjoint operators, we say that A ≤ B if Ai ≤ Bi for every 1 ≤ i ≤ k. 
A k variable continuous function f on a real interval J1 × . . . × Jk is called operator 
monotone of order n if for any two k tuples A = (A1, . . . , Ak) and B = (B1, . . . , Bk) of 
n × n commuting matrices such that the spectra of Ai and Bi are contained in Ji, the 
inequality A ≤ B implies that f(A) ≤ f(B).

Similar to this approach, we define k variable operator monotone functions of order 
(n1, . . . , nk). In particular, for k-tuples A = (A1, . . . , Ak) and B = (B1, . . . , Bk) of self 
adjoint matrices of order (n1, . . . , nk), we say A ≤ B if Ai ≤ Bi for all 1 ≤ i ≤ k.

Definition 1.1. A k variable continuous function f on a cell J1 × . . .× Jk of Rk is called 
operator monotone of order (n1, . . . , nk) if for any two k-tuples A = (A1, . . . , Ak) and 
B = (B1, . . . , Bk) of self adjoint matrices of order (n1, . . . , nk) such that the spectra 
of Ai and Bi are contained in Ji for i = 1, . . . , k, the inequality A ≤ B implies that 
f(A) ≤ f(B).

A linear map Φ between two C∗ algebras A and B is said to be positive, if a ≥ 0
implies Φ(a) ≥ 0, for each a ∈ A. Also, Φ is said to be completely positive if for each 
n ∈ N, the linear map Φn : Mn(A) → Mn(B) defined by

Φn([ai,j ]) = [φ(ai,j)]

is positive. Any positive linear map is bounded and ||Φ|| = ||Φ(I)||. In particular, if 
B = C or Φ is a positive linear functional, then Φ is continuous.

Let X and Y be Banach spaces. We say that a function f : X → Y defined on a subset 
G of X is Fréchet differentiable at an inner point x ∈ G , if there exists a bounded linear 
operator f [1](x) ∈ B(X, Y) such that

lim ||h||−1
X ||f(x + h) − f(x) − f [1](x)(h)||Y = 0.
h→0
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In this paper, we first investigate the operator convexity and the monotonicity of some 
functions of k variables by using one variable operator monotone functions. In particular, 
we show that if Φ is a positive linear functional on Mn, f is a matrix convex function of 
order mn on [0, ∞) and

φ(t1, t2, t3, . . . , tk) = Φ (f(t1C1 + t2C2 + . . . + tkCk)) ,

for positive matrices C1, . . . , Cn in Mn, then φ is a k variable operator convex function 
of order (n1, . . . , nk) such that m = n1 . . . nk. Similar results are valid for operator 
monotone functions.

In addition, by using a different approach, we extend some results of Hansen [10]
(section 3) and prove that for any arbitrary Hilbert space H and any positive linear 
functional Φ on B(H ), if f is an operator decreasing function on (0, ∞), then the function 
φ(t) = Φ(f(A +tB)) has a Laplace transform of a positive measure, for positive operators 
A, B ∈ B(H ). Moreover, the famous equivalent statement for Bessis–Moussa–Villani 
theorem [18] which states for each p ≤ 0 and for all positive semi-definite matrices A
and B, the function hp(t) = Tr (A + tB)p is completely monotone [13], is partially 
extended (f : (0, ∞) → R is called a completely monotone function if (−1)nfn(t) ≥ 0, 
for each n = 0, 1, 2, . . . and each t > 0). Indeed, we show that for a positive linear 
functional Φ on B(H ), the function φp(t) = Φ ((A + tB)p) is completely monotone for 
each −1 ≤ p ≤ 0 and all positive operators A, B ∈ B(H ).

Finally, some inequalities in relation to the sub-additivity of operator monotone func-
tions are described in section 4.

2. Several variable operator functions

We begin this section with introducing some notation being used in the paper. Let Hi

be a Hilbert space for each 1 ≤ i ≤ k and 
k
⊗
i=1

Hi denotes the tensor product Hilbert space 

H1 ⊗ H2 ⊗ . . .⊗ Hk. Suppose that Y k
i : B(Hi) → B

(
k
⊗
i=1

Hj

)
denotes the isometry

Y k
i (Ai) = I ⊗ . . . I ⊗Ai ⊗ . . .⊗ I,

for Ai ∈ B(Hi). Also, for any operator C in B(H0), consider Xk
i,C : B

(
k
⊗
i=1

Hi

)
→

B

(
k
⊗
i=0

Hi

)
such that

Xk
i,C(A) = C ⊗ Yi(A),
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for A ∈ B

(
k
⊗
i=1

Hi

)
. Note that if C is a positive operator, then Xk

i,A is a completely 

positive linear map for each 1 ≤ i ≤ n. Now, let x ∈ H0. Assume that Tk,x :
k
⊗
i=1

Hi −→
k
⊗
i=0

Hi is the linear map defined by

Tk,x(y1 ⊗ y2 ⊗ . . .⊗ yk) = x⊗ y1 ⊗ y2 ⊗ . . .⊗ yk,

for any y1 ⊗ y2 ⊗ . . .⊗ yk in 
k
⊗
i=1

Hi. If T ∗
k,x :

k
⊗
i=0

Hi −→
k
⊗
i=1

Hi denotes the adjoint of Tk,x, 
we can conclude that

〈y′1 ⊗ . . .⊗ y′k, T
∗
k,x(y0 ⊗ y1 ⊗ . . .⊗ yk)〉 = 〈Tk,x(y′1 ⊗ . . .⊗ y′k), y0 ⊗ . . .⊗ yk〉

= 〈x, y0〉 〈y′1, y1〉 . . . 〈y′k, yk〉,

for each y′1 ⊗ . . .⊗ y′k ∈
k
⊗
i=1

Hi and y0 ⊗ y1 ⊗ . . .⊗ yk ∈
k
⊗
i=0

Hi. Therefore

T ∗
k,x(y0 ⊗ y1 ⊗ . . .⊗ yk) = 〈y0, x〉(y1 ⊗ y2 ⊗ . . .⊗ yk),

for y0 ⊗ y1 ⊗ . . .⊗ yk ∈
k
⊗
i=0

Hi.
Let σm(1, . . . , k) be a word of length m over the set {1, 2, . . . , k}. Put σm(C1, . . . , Ck)

to be the multiplication of operators C1, C2, . . . , Ck corresponded to σm(1, . . . , k). For 
example, if m = 5, k = 3 and σ5(1, 2, 3) = (12113), then

σ5(C1, C2, C3) = C1C2C1C1C3 = C1C2C
2
1C3.

The set of all words of length m over set {1, 2, . . . , k} is denoted by S(m, k).

Lemma 2.1. Let C1, . . . , Ck be positive matrices in Mn and f be a continuous function 
on [0, ∞). Let x ∈ C

n and

φx(t1, t2, t3, . . . , tk) = 〈f(t1C1 + t2C2 + . . . + tkCk)x, x〉.

Then, the following statements hold.

(i) Let A = (A1, . . . , Ak) be a k-tuple of positive matrices of order (n1, . . . , nk). Then

φx(A1, . . . , Ak) = T ∗
k,x

(
f(Xk

1,C1
(A1) + Xk

2,C2
(A2) + . . . + Xk

k,Ck
(Ak))

)
Tk,x,

as a matrix in Mn1 ⊗ . . .⊗Mnk
.

(ii) Let A = (A1, . . . , Ak) be a k-tuple of commutating positive matrices of order n. 
Then
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φx(A1, . . . , Ak) = T ∗
1,x

(
f(X2

1,C1
(A1) + . . . + X2

1,Ck
(Ak))

)
T1,x,

as a matrix in Mn.

Proof. By the Stone–Weierstrass theorem, it is sufficient to prove the theorem for f(t) =
tm for each m ≥ 0. If m = 0 the proof is clear. Let m > 0. Then

φx(t1, t2, . . . , tk) = 〈(t1C1 + t2C2 + . . . + tkCk)mx, x〉

=
∑

σ∈S(m,k)

σ(t1, . . . , tk) 〈σ(C1, . . . , Ck)x, x〉.

(i) First, note that by a remark of Hansen [8, Page 1], if a k variable continuous function 
g can be separated as a product g(t1, . . . , tk) = g1(t1) . . . gk(tk) of k functions each of 
which depends on only one variable, then

g(A) = g1(A1) ⊗ . . .⊗ gk(Ak).

So, we can conclude that

φx(A1, A2, . . . , Ak) =
∑

σ∈S(m,k)

〈σ(C1, . . . , Ck)x, x〉 σ(Y k
1 (A1), . . . , Y k

k (Ak)).

On the other hand, we have

T ∗
k,x

((
Xk

1,C1
(A1) + . . . + Xk

k,Ck
(Ak)

)m)
Tk,x

= T ∗
k,x

⎛
⎝ ∑

σ∈S(m,k)

σ
(
Xk

1,C1
(A1), . . . , Xk

k,Ck
(Ak)

)⎞⎠Tk,x

=
∑

σ∈S(m,k)

T ∗
k,xσ

(
Xk

1,C1
(A1), . . . , Xk

k,Ck
(Ak)

)
Tk,x

=
∑

σ∈S(m,k)

T ∗
k,x

(
Xk

1,σ(C1,...,Ck)(I) ⊗ (I ⊗ σ(Y k
1 (A1), . . . , Y k

k (Ak)))
)
Tk,x.

Let y1 ⊗ y2 ⊗ . . .⊗ yk ∈
k
⊗
i=1

C
ni . Then,

T ∗
k,x

(
Xk

1,σ(C1,...,Ck)(I) ⊗ (I ⊗ σ(Y k
1 (A1), . . . , Y k

k (Ak)))
)
Tk,x(y1 ⊗ y2 ⊗ . . .⊗ yk)

= T ∗
k,x

(
Xk

1,σ(C1,...,Ck)(I) ⊗ (I ⊗ σ(Y k
1 (A1), . . . , Y k

k (Ak)))
)

(x⊗ y1 ⊗ y2 ⊗ . . .⊗ yk)

= T ∗
k,x(σ(C1, . . . , Ck)(x) ⊗ (σ(Y1(A1), . . . , Yk(Ak))(y1 ⊗ y2 ⊗ . . .⊗ yk))

= 〈σ(C1, . . . , Ck)x, x〉σ(Y1(A1), . . . , Yk(Ak))(y1 ⊗ y2 ⊗ . . .⊗ yk),
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for each σ ∈ S(m, k). Therefore,

φx(A1, . . . , Ak) = T ∗
k,x

((
Xk

1,C1
(A1) + . . . + Xk

k,Ck
(Ak)

)m)
Tk,x.

(ii) It is clear that

φx(A1, A2, . . . , Ak) =
∑

σ∈S(m,k)

〈σ(C1, . . . , Ck)x, x〉 σ(A1, . . . , Ak).

Moreover,

T ∗
1,x

((
X2

1,C1
(A1) + . . . + X2

1,Ck
(Ak)

)m)
T1,x

=
∑

σ∈S(m,k)

T ∗
1,xσ

(
X2

1,C1
(A1), . . . , X2

1,Ck
(Ak)

)
T1,x

=
∑

σ∈S(m,k)

T ∗
1,x (σ (C1, . . . , Ck) ⊗ σ (A1, . . . , Ak))T1,x.

An argument similar to Part (i) implies that

φx(A1, A2, . . . , Ak) = T ∗
1,x

((
X2

1,C1
(A1) + . . . + X2

1,Ck
(Ak)

)m)
T1,x. �

Theorem 2.2. Let C1, C2, . . . , Ck be positive matrices in Mn and f : [0, ∞) → R be a 
continuous function. Let Φ be a positive linear functional on Mn and

φ(t1, t2, t3, . . . , tk) = Φ (f(t1C1 + t2C2 + t3C3 + . . . + tkCk))

be a k variable continuous function. Then the following statements hold:

i) If f is an operator convex function of order mn, then φ is a k variable operator 
convex function of order (n1, . . . , nk) such that m = n1 . . . nk.

ii) If f is an operator monotone function of order mn and m = n1 . . . nk, then φ
is a k variable operator monotone function of order (n1, . . . , nk) in the sense of 
Definition 1.1.

iii) If f is an operator monotone function of order nk+1, then φ is a k variable operator 
monotone function of order n in the sense of Agler, McCarthy, Young.

Proof. By the Riesz–Fischer theorem [11, Page 13] there exists a positive matrix T such 
that Φ(X) = Tr(XT ) =

∑n
i=1〈XT 1/2ei, T 1/2ei〉 for each matrix X ∈ Mn. As the set of 

operator monotone functions and the set of operator convex functions are both convex 
cones, it is sufficient to prove the theorem for functions of the form

φx(t1, t2, t3, . . . , tk) = 〈(f(t1C1 + t2C2 + t3C3 + . . . + tkCk))x, x〉,

for each x ∈ C
n.
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i) Let A = (A1, . . . , Ak) and B = (B1, . . . , Bk) be two k-tuples of positive matrices of 
order (n1, . . . , nk) and 0 ≤ λ ≤ 1. Then,

φx(λA1 + (1 − λ)B1, . . . , λAk + (1 − λ)Bk)

= T ∗
k,x

(
f(Xk

1,C1
(λA1 + (1 − λ)B1) + . . . + Xk

k,Ck
(λAk + (1 − λ)Bk))

)
Tk,x

= T ∗
k,x

(
f(λXk

1,C1
(A1) + (1 − λ)Xk

1,C1
(B1) + . . . + λXk

k,Ck
(Ak) + (1 − λ)Xk

k,Ck
(Bk))

)
Tk,x

= T ∗
k,x

(
f(λ(Xk

1,C1
(A1) + . . . + Xk

1,C1
(Ak)) + (1 − λ)(Xk

1,C1
(B1) + . . . + Xk

k,Ck
(Bk)))

)
Tk,x

≤ λT ∗
k,x

(
f((Xk

1,C1
(A1) + . . . + Xk

1,C1
(Ak))

)
Tk,x

+ (1 − λ)T ∗
k,x

(
f(Xk

1,C1
(B1) + . . . + Xk

1,Ck
(Bk)))

)
Tk,x

= λφx(A1, . . . , Ak) + (1 − λ)φx(B1, . . . , Bk).

ii) Let A = (A1, . . . , Ak) and B = (B1, . . . , Bk) be two k-tuples of positive matrices of 
order (n1, . . . , nk) and Ai ≤ Bi for each 1 ≤ i ≤ k. Since Ci is positive, Xk

1,Ci
is a positive 

linear map and Xk
1,Ci

(Ai) ≤ Xk
1,Ci

(Bi) for each 1 ≤ i ≤ k. Therefore

φx(A1, . . . , Ak) = T ∗
k,x

(
f(Xk

1,C1
(A1) + . . . + Xk

k,Ck
(Ak))

)
Tk,x

≤ T ∗
k,x

(
f(Xk

1,C1
(B1) + . . . + Xk

k,Ck
(Bk))

)
Tk,x

= φx(B1, . . . , Bk).

iii) Using Part (ii) of Lemma 2.1 and the same reasoning as in Part (ii) we obtain the 
result. �
3. Laplace transform of operator decreasing functions

The Bessis–Moussa–Villani conjecture [4] states that for a self adjoint matrix A and a 
positive matrix B, the function f(t) = Tr

(
expA−tB

)
can be represented as the Laplace 

transform

f(t) =
∞∫
0

exp−tx dμ(x), (1)

for a positive measure μ on [0, ∞) [4]. This conjecture has attracted a lot of attention. 
Despite a lot of attempts to prove the conjecture, it remained open until 2012. Eventually, 
Stahl [18] proved this conjecture. Hansen also got similar results [10].

Theorem 3.1. [10] If f is a non-negative operator decreasing function on [0, ∞), then 
for positive matrices A, B, the map t → Trf(A + tB) can be written as the Laplace 
transform of a positive measure.
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In his proof of this theorem, Hansen employed the theory of the Fréchet differentials 
and the Bernstein’s theorem highlighting the measure μ in (1) exists if and only if f
is completely monotone or (−1)nfn(t) ≥ 0, for each n = 0, 1, 2, . . . and t > 0. We can 
extend Theorem 3.1 as the following form.

Theorem 3.2. Let A, B ∈ B(H ) be positive operators and f be an operator decreasing 
function on [0, ∞). For any positive linear functional Φ on B(H ), the function φ(t) =
Φ (f(A + tB)) is operator decreasing. In particular, if f is non-negative, then φ can be 
written as the Laplace transform of a positive measure.

Proof. By [3, Theorem 2.3], if f is an operator decreasing function on the (0, ∞), then 
f on [0, ∞) can be represented as

f(t) = α + βt +
∞∫
0

1
λ + t

− λ

λ2 + 1 dμ(λ) (2)

where β ≤ 0 and μ is a positive measure on (0, ∞) such that 
∫∞
0

λ
λ2+1 dμ(λ) is finite; 

see [6, Chapter II]. Since 
∫∞
0 (λI + A + tB)−1 − λ

λ2+1I dμ(λ) exists and Φ is a bounded 
linear functional, we have

Φ

⎛
⎝

∞∫
0

(λI + A + tB)−1 − λI

λ2 + 1dμ(λ)

⎞
⎠ =

∞∫
0

Φ
(

(λI + A + tB)−1 − λI

λ2 + 1

)
dμ(λ)

=
∞∫
0

Φ
(
(λI + A + tB)−1)− λΦ(I)

λ2 + 1 dμ(λ).

Hence

φ(t) = Φ (f(A + tB)) = αΦ(I) + βΦ(I)t +
∞∫
0

Φ
(
(λI + A + tB)−1)− Φ(I)λ

λ2 + 1dμ(λ).

As the set of operator decreasing functions on [0, ∞) is a closed cone, it is sufficient 
to prove the theorem for the function fλ(t) = 1

λ+t where λ > 0. Indeed, we show that 
the function φ(t) = Φ 

(
(λI + A + tB)−1) is operator decreasing on [0, ∞). First, assume 

that B be invertible. Note that ΦB(X) = Φ(B −1
2 XB

−1
2 ) is a positive linear functional 

and

φ(t) = Φ (fλ(A + Bt)) = Φ
(
(λI + A + tB)−1)

= Φ
(
B

−1
2 (λB−1 + B

−1
2 AB

−1
2 + tI)−1B

−1
2

)

= ΦB

(
(λB−1 + B

−1
2 AB

−1
2 + tI)−1

)
.
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Consider H = λB−1 +B
−1
2 AB

−1
2 . Note that H is a positive operator and φ has analytic 

continuation to the whole upper half-plane {z ∈ C : 
(z) > 0} as

φ(z) = ΦB

(
(H + zI)−1) ,

see [16, Lemma 1.2.4]. Now, if z = x + iy ∈ C and y = Im(z) > 0, then

Im((φ(z)) = Im
(
ΦB

(
(H + (x + iy)I)−1))

= Im
(
ΦB

(
(H + (xI + iyI)−1))

= Im
(
ΦB

(
(H + xI − iyI)((A + xI)2 + y2I)−1))

= −ΦB

(
y((H + xI)2 + y2I)−1) < 0.

The last equality is valid. Indeed, because Φ is a positive linear functional, Φ(T ) is real 
for each self adjoint operator T ∈ B(H ). Also, as y((H+xI)2+y2I)−1 is positive invert-
ible, the last inequality holds. Therefore, φ is analytic on (0, ∞) and can be continued 
analytically to the whole upper half-plane and represents an analytic function whose 
imaginary part is negative. Hence, by Löwner’s theorem [14], φ is operator decreasing 
on (0, ∞) and, by the continuity, on [0, ∞). If B is an arbitrary positive operator, then 
φn(t) = Φ 

(
(λ + A + t(B + 1

n ))−1) is operator decreasing on [0, ∞) for each n. Since 
φn → φ in point-wise convergence topology, by [5, Proposition V.4.2], φ is operator 
decreasing on [0, ∞).

If f is non-negative, then φ is non-negative and has an integral representation of the 
form (2). This representation shows that φ is an integral sum of functions that have 
Laplace transform. Therefore, φ can be written as the Laplace transform of a positive 
measure. �

By replacing f by −f , a similar statement can be obtained. However, we can extend 
it as follows.

Corollary 3.3. Let A and B be positive matrices in Mn. Let f be an n3 operator monotone 
(convex) function on [0, ∞) and Φ be a positive linear functional on Mn. Then φ(t) =
Φ (f(A + tB)) is an n-monotone (convex) function on [0, ∞).

Proof. Let f be an n3 operator monotone function on [0, ∞). By Theorem 2.2, the 
function φ0(s, t) = Φ (f(sA + tB)) of two variables is operator monotone on Mn. If 
S ≤ T , then (I, S) and (I, T ) are 2-tuples of commutating matrices and (I, S) ≤ (I, T ). 
Therefore,

φ(S) = φ0(I, S) ≤ φ0(I, T ) = φ(T ). �
The function f(t) = tp is operator increasing for 0 ≤ p ≤ 1 and operator decreasing 

for −1 ≤ p ≤ 0. Therefore, as an example the following corollary can be given.
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Corollary 3.4. Let A, B be positive operators in B(H ) and −1 ≤ p ≤ 1. For a positive 
linear functional Φ on B(H ), the function φ(t) = Φ ((A + tB)p) is operator increasing 
if 0 ≤ p ≤ 1 and operator decreasing if −1 ≤ p ≤ 0.

4. Sub-additivity type inequalities for operator monotone functions

If f is a non-negative operator monotone function on [0, ∞) and A, B are positive 
operators in B(H ), then the inequality

f(A + B) ≤ f(A) + f(B),

does not hold in the general case, for more details, see [15]. In the next corollaries, several 
sub-additivity type inequalities for operator monotone functions are described.

Proposition 4.1. Let f : [0, ∞) → R be a non-negative operator monotone function of 
order n3 for some n > 1. Let A, B be positive operators in Mn. Then

f(A + (s + t)B) ≤ f(A + sB) + f(A + tB),

for each s, t ∈ [0, ∞).

Proof. First note that by [9, Theorem 2.1] f is a concave function on [0, ∞). Let Φ be an 
arbitrary positive linear functional on Mn. Then φ(x) = Φ(f(A +xB)) is a non-negative 
operator monotone function on [0, ∞). Since φ is sub-additive on the real line, we have

Φ(f(A + (s + t)B)) = φ(t + s) ≤ φ(t) + φ(s)

= Φ(f(A + sB) + f(A + tB))

for each s, t ∈ [0, ∞). Since Φ is arbitrary, we obtain

f(A + (s + t)B) ≤ f(A + sB) + f(A + tB),

for each s, t ∈ [0, ∞). �
Corollary 4.2. Let f : [0, ∞) → R be a non-negative operator monotone function of order 
n3 for some n > 1. Let A, B be positive matrices in Mn. Then

1∫
0

f(A + λB) dλ ≤ f(A + B) ≤ 2
1∫

0

f(A + λB) dλ.

Proof. Proposition 4.1 implies that

f(A + B) ≤ f(A + λB) + f(A + (1 − λ)B),
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for each 0 ≤ λ ≤ 1. Moreover, since A + B ≥ A + λB we have

f(A + λB) ≤ f(A + B),

for each 0 ≤ λ ≤ 1. Taking integral with respect to parameter λ and using the equality

1∫
0

f(A + λB) dλ =
1∫

0

f(A + (1 − λ)B) dλ,

we conclude the result. �
Assume that f1[A] denotes the Fréchet derivative of f at A, in which f is a differential 

function on an interval I and A is a Hermitian matrix with eigenvalues in I. Our next 
result reads as follows.

Corollary 4.3. Let f ∈ C1([0, ∞)) be an operator monotone function of order n3 for some 
n > 1. If A, B ∈ Mn are positive matrices, then

f(A + B) ≤ f(A) + f [1](A) ◦B,

where ◦ stands for the Schur-product of two matrices with respect to the basis in which 
A can be represented as a diagonal matrix.

Proof. By [5, Theorem V.3.3], we have

f [1](A) ◦ (B) = d

dt

∣∣
t=0 f(A + tB).

Suppose that Φ is an arbitrary positive linear functional on Mn. As φ(t) = Φ(A + tH)
is an operator monotone function on [0, ∞), so it is concave. Hence

Φ
(
f [1](A) ◦ (B)

)
= Φ

(
d

dt

∣∣
t=0 f(A + tB)

)

= d

dt

∣∣
t=0 Φ (f(A + tB))

= d

dt

∣∣
t=0 φ(t)

≥ φ(1) − φ(0)

= Φ (f(A + B) − f(A)) .

In the last inequality, we utilize the concavity of φ. Since Φ is arbitrary, we get

f(A + B) ≤ f(A) + f [1](A) ◦B. �
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