

A Note On The Stahl's Theorem

HAMED NAJAFI*

Abstract

Let \mathcal{H} be a Hilbert space and $\mathbb{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H} and A be a bounden operator in \mathcal{H} . Let $A, B \in \mathbb{B}(\mathcal{H})$ be positive operators and Φ be a positive linear functional on $\mathbb{B}(\mathcal{H})$. We show that, if f is a non-negative operator decreasing function, then the function $t \to \Phi(f(A + tB))$ can be written as a Laplace transform of a positive measure.

2010 *Mathematics subject classification:* Primary 15A15, , Secondary 15A16. *Keywords and phrases:* BMV conjecture, Laplace transform, Operator monotone functions..

1. Introduction

Let \mathcal{H} be a Hilbert space and $\mathbb{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H} and A be a bounden operator in \mathcal{H} . An operator A is called positive if $\langle Ax, x \rangle \ge 0$ holds for every $x \in \mathcal{H}$ and then we writ $A \ge 0$. For self-adjoint operators $A, B \in \mathbb{B}(\mathcal{H})$ we say $A \ge B$ if $A - B \ge 0$. For a continuous function f and a self adjoint operator A with spectra in domain of f, the operator f(A) is defined by standard functional calculus. In particular, if \mathcal{H} is a finite dimensional Hilbert space and A has the spectral decomposition $A = \sum_{i=1}^{n} \mu_i P_i$, where P_i are the projections corresponding to the eigenspaces of eigenvalue μ_i , then

$$f(A) = \sum_{i=1}^{n} f(\mu_i) P_i.$$

A function f on the interval I is called operator increasing if $A \ge B$ implies that $f(A) \ge f(B)$, for each self adjoint operators $A, B \in \mathbb{B}(\mathcal{H})$ with spectra in I. Also, f is called operator decreasing function if -f is operator increasing function.

The Bessis-Moussa-Villani conjecture states that for a self adjoint Matrix A and positive Matrix B, the function $f(t) = Tr(\exp^{A-tB})$ can be represented as the Laplace transform

$$f(t) = \int_0^\infty \exp^{-tx} d\mu(x),$$
 (1)

* speaker

H. Najafi

of a positive measure μ on $[0, \infty)$ [1]. This conjecture has attracted a lot of attention in mathematics and physics. Despite a lot of afford to prove the conjecture, it remained open until 2012. Eventually, Stahl [5] proved this conjecture. In [3], Hansen got a similar results.

Theorem 1.1. [3] If f is a non-negative operator decreasing function on $[0, \infty)$, then for positive matrices A, B the map $t \to Trf(A + tB)$ can be written as the Laplace transform of a positive measure.

In proof of this theorem, Hansen used the theory of Frechet differentials and the Bernsteins theorem highlighting the measure μ in (1) exists if and only if *f* is completely monotone or $(-1)^n f^n(t) \ge 0$, for each n = 0, 1, 2, ... and t > 0.

In this note, we extended the results of Hansen and prove that for an arbitrary Hilbert space \mathcal{H} and any positive linear functional Φ on $\mathbb{B}(\mathcal{H})$.

Also, in a special case, we obtained a partial extension of a famous equivalent statement for Bessis-Moussa-Villani conjecture which state for each $p \le 0$ and positive semi-definite matrices A and B, the function $h_p(t) = Tr (A + tB)^p$ is completely monotone [4]. Indeed, we show that for a positive linear functional Φ on $\mathbb{B}(\mathcal{H})$, the function $\phi_p(t) = \Phi((A + tB)^p)$ is completely monotone for each $-1 \le p \le 0$ and positive operators $A, B \in \mathbb{B}(\mathcal{H})$.

2. Main Results

The following theorem states the main results.

Theorem 2.1. Let $A, B \in \mathbb{B}(\mathcal{H})$ be positive operators and f be an operator decreasing function on $(0, \infty)$. For any positive linear functional Φ on $\mathbb{B}(\mathcal{H})$ the function $\phi(t) = \Phi(f(A + tB))$ is operator decreasing. In particular, if f is non-negative then ϕ is completely monotone.

By replacing f by -f we obtain the following corollary.

Corollary 2.2. Let $A, B \in \mathbb{B}(\mathcal{H})$ be positive operators and f be an operator increasing function on $(0, \infty)$. Then, for any positive linear functional Φ on $\mathbb{B}(\mathcal{H})$ the function $\phi(t) = \Phi(f(A + tB))$ is an operator increasing function.

Example 2.3. The functions $\ln (t + 1)$ is a non-negative operator increasing function on $[0, \infty)$. Hence, for positive operators A, B and positive linear functional Φ , the function $t \to \Phi (f(A + tB))$ is a non-negative operator increasing function on $[0, \infty)$.

The function $f(t) = t^p$ is operator increasing for $0 \le p \le 1$ and operator decreasing for $-1 \le p \le 0$. Therefore, As an example we the following corollary is given.

Corollary 2.4. Let A, B be positive operators in $\mathbb{B}(\mathcal{H})$ and $-1 \le p \le 1$. For a positive linear functional Φ on $\mathbb{B}(\mathcal{H})$, the function $\phi(t) = \Phi((A + tB)^p)$ is operator increasing if $0 \le p \le 1$ and operator decreasing if $-1 \le p \le 0$.

References

- [1] D. Bessis, P. Moussa and M. Villani, *Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics*, J. Math. Phys., **16** (1975) 2318-2385.
- [2] R. Bhatia, *Matrix Analysis*, Springer, New York, 1997.
- [3] F. Hansen, Trace functions as Laplace transforms, J. Math. Phys., 47 (2006), 1-11.
- [4] E. Lieb and R. Steiringer, *Equivalent forms of the Bessis-Moussa-Villani conjecture*, J. Stat. Phys., 115 (2004) 185-190.
- [5] R., H., Stahl, Proof of the BMV conjecture, Acta Math, 211 (2013), 255-290.

HAMED NAJAFI,

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

e-mail: hamednajafi20@gmail.com