The Extended Abstracts of
The $3^{\text {rd }}$ Seminar on Operator Theory and its Applications 8-9 ${ }^{\text {th }}$ March 2017, Ferdowsi University of Mashhad, Iran

POSITIVE BLOCK MATRICES

HAMED NAJAFI
Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran;. hamednajafi20@gmail.com

Abstract. Let C and D be positive operators such that $C \leq D$ and D be invertible. We show that there exists a trace preserving unital completely positive map $\Phi_{C, D}: \mathbb{B}(\mathcal{H}) \rightarrow \mathbb{B}(\mathcal{H})$ such that the block operator matrices

$$
\left(\begin{array}{cc}
\Phi_{C, D}(A) & C \\
C & \Phi_{C, D}(B)
\end{array}\right)
$$

are positive, for all positive operators A and B such that $D=A \sharp B$.

1. Introduction

Let \mathcal{H} be a Hilbert space and $\mathbb{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H}. An operator A is called positive if $\langle A x, x\rangle \geq 0$ holds for every $x \in \mathcal{H}$ and then we writ $A \geq 0$. For self-adjoint operators $A, B \in \mathbb{B}(\mathcal{H})$ we say $A \geq B$ if $A-B \geq 0$.
Choi in [3], showed that for operators A, X, and invertible operator B in $\mathbb{B}(\mathcal{H})$, the block matrix

$$
\left(\begin{array}{cc}
A & X \tag{1.1}\\
X^{*} & B
\end{array}\right)
$$

[^0]in $M_{2}(\mathbb{B}(\mathcal{H}))$ is positive if and only if A and B are positive operator and
\[

$$
\begin{equation*}
A \geq X B^{-1} X^{*} \tag{1.2}
\end{equation*}
$$

\]

For positive operators A and B, assume that

$$
A \sharp B=\max \left\{C \geq 0 \left\lvert\,\left(\begin{array}{cc}
A & C \tag{1.3}\\
C & B
\end{array}\right) \geq 0\right.\right\} .
$$

It is known that $A \sharp B=A^{\frac{1}{2}}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}}$ for two positive invertible operators A and B and in general case if A and B are positive, then

$$
A \sharp B=\lim _{\mathrm{SOT}}\left(A+\frac{1}{n}\right) \sharp\left(B+\frac{1}{n}\right) .
$$

We recall that, a linear map Φ between two C^{*} algebras \mathcal{A} and \mathcal{B} is said to be completely positive if for each $n \in \mathbb{N}$, the linear map $\Phi^{n}: M_{n}(\mathcal{A}) \rightarrow M_{n}(\mathcal{B})$ defined by

$$
\Phi^{n}\left(\left[a_{i, j}\right]\right)=\left[\phi\left(a_{i, j}\right)\right]
$$

is positive.

2. MAIN RESULTS

Theorem 2.1. Let X and Y be invertible operators in $\mathbb{B}(\mathcal{H})$ such that $\|X\|,\|Y\| \leq 1$. Then there exists unital completely positive linear maps $\Phi_{X}, \Phi_{Y}: \mathbb{B}(\mathcal{H}) \longrightarrow \mathbb{B}(\mathcal{H})$ such that for all positive operators A and B, the following operator matrix is positive.

$$
\left(\begin{array}{cc}
\Phi_{Y}(A) & Y(A \sharp B) X^{*} \\
X(A \sharp B) Y^{*} & \Phi_{X}(B)
\end{array}\right) .
$$

Also, if \mathcal{H} is finite dimensional then Φ_{X} and Φ_{Y} are trace preserving.

Theorem 2.2. Let C and D be positive operators such that $C \leq D$ and D be invertible. Then there exists a unital completely positive map $\Phi_{C, D}: \mathbb{B}(\mathcal{H}) \rightarrow \mathbb{B}(\mathcal{H})$ such that the following statements are hold:
(i) If C is invertible, Φ is normal and faithful.
(ii) If \mathcal{H} is finite dimensional, then $\Phi_{C, D}$ is a trace preserving map.
(iii) If T commute with C and D, then $\Phi(T)=T$.
(v) For any positive operators A and B such that $D=A \sharp B$, the block matrix

$$
\left(\begin{array}{cc}
\Phi_{C, D}(A) & C \\
C & \Phi_{C, D}(B)
\end{array}\right)
$$

are positive.

Theorem 2.3. Let A, B, and C be positive operators such that $C \leq$ $A \sharp B$. Then there exists a unital completely positive map $\Phi: \mathbb{B}(\mathcal{H}) \rightarrow$ $\mathbb{B}(\mathcal{H})$ such that the block matrix

$$
\left(\begin{array}{cc}
\Phi(A) & C \\
C & \Phi(B)
\end{array}\right)
$$

is positive. Moreover, if \mathcal{H} is finite dimensional then Φ is trace preserving.

In Theorem 2.2, if we assumed that $D=1$, then we have the following corollary.

Corollary 2.4. Let $0 \leq C \leq 1$. Then there exists a unital completely positive map $\Phi_{C}: \mathbb{B}(\mathcal{H}) \rightarrow \mathbb{B}(\mathcal{H})$ such that for each positive invertible operator A, the block matrix

$$
\left(\begin{array}{cc}
\Phi_{C}(A) & C \\
C & \Phi_{C}\left(A^{-1}\right)
\end{array}\right)
$$

is positive. Moreover, if \mathcal{H} is finite dimensional then Φ is trace preserving.

References

1. R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton (2007).
2. N. P. Brown, N. Ozawa, C^{*}-algebras and finite-dimensional approximation properties, Graduate studies in Mathematics, (2008).
3. M.D. Choi, Some Assorted Inequalities for Positive linear maps on C^{*}-algebras, J. Oper. Th., 4 (1980), 271-285.
4. F. Hansen and G. Pedersen, Jensen's inequality for operators and Lowner's theorem, Math. Ann. 258 (1981/82), no. 3, 229-241.

[^0]: 2010 Mathematics Subject Classification. Primary 47A63.; Secondary 47B65.
 Key words and phrases. Geometric mean, Positive block matrix, Completely positive linear map.

