The Extended Abstracts of The 3rd Seminar on Operator Theory and its Applications 8-9th March 2017, Ferdowsi University of Mashhad, Iran

POSITIVE BLOCK MATRICES

HAMED NAJAFI

Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran;. hamednajafi20@gmail.com

ABSTRACT. Let C and D be positive operators such that $C \leq D$ and D be invertible. We show that there exists a trace preserving unital completely positive map $\Phi_{C,D} : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ such that the block operator matrices

$$\left(\begin{array}{cc} \Phi_{C,D}(A) & C \\ C & \Phi_{C,D}(B) \end{array}\right)$$

are positive, for all positive operators A and B such that $D = A \sharp B$.

1. Introduction

Let \mathcal{H} be a Hilbert space and $\mathbb{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H} . An operator A is called positive if $\langle Ax, x \rangle \geq 0$ holds for every $x \in \mathcal{H}$ and then we writ $A \geq 0$. For self-adjoint operators $A, B \in \mathbb{B}(\mathcal{H})$ we say $A \geq B$ if $A - B \geq 0$.

Choi in [3], showed that for operators A, X, and invertible operator B in $\mathbb{B}(\mathcal{H})$, the block matrix

$$\begin{pmatrix}
A & X \\
X^* & B
\end{pmatrix}$$
(1.1)

²⁰¹⁰ Mathematics Subject Classification. Primary 47A63.; Secondary 47B65. Key words and phrases. Geometric mean, Positive block matrix, Completely positive linear map.

in $M_2(\mathbb{B}(\mathcal{H}))$ is positive if and only if A and B are positive operator and

$$A \ge XB^{-1}X^*. \tag{1.2}$$

For positive operators A and B, assume that

$$A\sharp B = \max \left\{ C \ge 0 \mid \begin{pmatrix} A & C \\ C & B \end{pmatrix} \ge 0 \right\}. \tag{1.3}$$

It is known that $A\sharp B=A^{\frac{1}{2}}(A^{\frac{-1}{2}}BA^{\frac{-1}{2}})^{\frac{1}{2}}A^{\frac{1}{2}}$ for two positive invertible operators A and B and in general case if A and B are positive, then

$$A\sharp B = \lim_{SOT} (A + \frac{1}{n}) \sharp (B + \frac{1}{n}).$$

We recall that, a linear map Φ between two C^* algebras \mathcal{A} and \mathcal{B} is said to be completely positive if for each $n \in \mathbb{N}$, the linear map $\Phi^n: M_n(\mathcal{A}) \to M_n(\mathcal{B})$ defined by

$$\Phi^n([a_{i,j}]) = [\phi(a_{i,j})]$$

is positive.

2. Main results

Theorem 2.1. Let X and Y be invertible operators in $\mathbb{B}(\mathcal{H})$ such that $||X||, ||Y|| \leq 1$. Then there exists unital completely positive linear maps $\Phi_X, \Phi_Y : \mathbb{B}(\mathcal{H}) \longrightarrow \mathbb{B}(\mathcal{H})$ such that for all positive operators A and B, the following operator matrix is positive.

$$\begin{pmatrix} \Phi_Y(A) & Y(A\sharp B)X^* \\ X(A\sharp B)Y^* & \Phi_X(B) \end{pmatrix}.$$

Also, if \mathcal{H} is finite dimensional then Φ_X and Φ_Y are trace preserving.

Theorem 2.2. Let C and D be positive operators such that $C \leq D$ and D be invertible. Then there exists a unital completely positive map $\Phi_{C,D} : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ such that the following statements are hold:

- (i) If C is invertible, Φ is normal and faithful.
- (ii) If \mathcal{H} is finite dimensional, then $\Phi_{C,D}$ is a trace preserving map.
- (iii) If T commute with C and D, then $\Phi(T) = T$.
- (v) For any positive operators A and B such that $D = A \sharp B$, the block matrix

$$\begin{pmatrix} \Phi_{C,D}(A) & C \\ C & \Phi_{C,D}(B) \end{pmatrix}$$

are positive.

Theorem 2.3. Let A, B, and C be positive operators such that $C \leq A \sharp B$. Then there exists a unital completely positive map $\Phi : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ such that the block matrix

$$\left(\begin{array}{cc} \Phi(A) & C \\ C & \Phi(B) \end{array}\right),\,$$

is positive. Moreover, if \mathcal{H} is finite dimensional then Φ is trace preserving.

In Theorem 2.2, if we assumed that D=1, then we have the following corollary.

Corollary 2.4. Let $0 \le C \le 1$. Then there exists a unital completely positive map $\Phi_C : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ such that for each positive invertible operator A, the block matrix

$$\left(\begin{array}{cc} \Phi_C(A) & C \\ C & \Phi_C(A^{-1}) \end{array}\right),\,$$

is positive. Moreover, if \mathcal{H} is finite dimensional then Φ is trace preserving.

References

- 1. R. Bhatia, *Positive Definite Matrices*, Princeton University Press, Princeton (2007).
- 2. N. P. Brown, N. Ozawa, C^* -algebras and finite-dimensional approximation properties, Graduate studies in Mathematics, (2008).
- M.D. Choi, Some Assorted Inequalities for Positive linear maps on C*-algebras,
 J. Oper. Th., 4 (1980), 271-285.
- 4. F. Hansen and G. Pedersen, Jensen's inequality for operators and Lowner's theorem, Math. Ann. 258 (1981/82), no. 3, 229-241.