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1. Introduction and motivation

Bilan and Uglesi¢ in [2], generalized the Whitehead theorem for the coarse shape theory. They proved
that, for m € N, if a pointed coarse shape morphism F* : (X, z) — (Y, y) between spaces with sd X <m—1
and sd Y < m, is a coarse shape m-equivalence, then F'* is a pointed coarse shape isomorphism. We recall
from [2], that F™* is a coarse shape m-equivalence, if the induced morphism

Fy =pro* — mp(F*) : pro® — mp(X, x) — pro® — (Y, y)

is an isomorphism of pro*-Group for £k = 1,2,...,m — 1, an isomorphism of pro*-Set for kK = 0 and an
epimorphism of pro*-Group for k& = m. Also, they defined a weak coarse shape equivalence as a coarse
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shape morphism F* : (X,z) — (Y,y) which is a coarse shape m-equivalence for all m € N; and mentioned
that by considering the Adams’s example (see [7]), one can conclude that the infinite dimensional Whitehead
theorem does not hold in the coarse shape category, in general. That means a weak coarse shape equivalence
need not be a coarse shape equivalence, in general.

In this paper, we study weak coarse shape equivalences for pointed continua (metric compact connected
spaces) and similar to the methods of [9], we prove that the infinite dimensional Whitehead theorem holds
for coarse shape theory in some conditions.

In [9], Morén and Portal, established an infinite dimensional Whitehead theorem in shape category. Using
the topology on the set of shape morphisms Sh(X,Y) defined in [3], they obtained a characterization of
weak shape dominations. Also, they introduced a pointed movable triple (X, F,Y"), for a shape morphism
F : X — Y and pointed spaces X and Y. In particular, they proved that for pointed movable triple (X, F,Y),
if X and Y are compact connected and F' is a weak shape equivalence, then F' is a shape equivalence.

Mashayekhy and the authors [6], defined a topology on the set of coarse shape morphisms Sh*(X,Y), for
every topological spaces X and Y. Here, we define a paradomination, similar to [4], and then we use this
topology to give a characterization of paradominations.

Morita in [8], stated and proved equivalent conditions for isomorphisms in the category pro-7. Bilan [1],
generalized this theorem for the category pro*-7 and now, using methods similar to [5], we obtain another
characterization of isomorphisms in the category pro*-HPoly. Also, we prove that if F* : (X,2) — (Y,y)
is a weak coarse shape equivalence, in which (Y,y) is movable, then F* is a paradomination and by using
this fact, we show that F* is an epimorphism in the category Sh§. Finally, we define the simultaneously
movability of (X, z) and (Y,y) according to a coarse shape morphism F* : (X,z) — (Y,y) and then we
prove that a weak coarse shape equivalence F* : (X,z) — (Y, y) between pointed continuum spaces (X, )
and (Y,y) is a coarse shape equivalence provided (X, z) and (Y,y) are simultaneously movable according
to F*.

2. Preliminaries

Recall from [1] some of the main notions about the coarse shape category and pro*-category. Let T be
a category and let X = (X, pan, A) and Y = (Y, guur, M) be two inverse systems in the category 7. An
S*-morphism of inverse systems, (f, f;/) : X — Y, consists of an index function f: M — A and of a set of
T-morphisms f} : Xy — Y,, n € N, p € M, such that for every related pair u < p' in M, there exist a
AeA A> f(p), f(1), and an n € N so that for every n’ > n,

Qup Fur g = Joi Prux-

If M = A and f = 14, then (14, f{) is said to be a level S*-morphism.

Let (f,fy) : X = Y and (g9,97) : Y — Z = (Z,,7,,/, N) be S*-morphisms of inverse systems. The
composition of S*-morphisms (f, f) and (g, gy) is an S*-morphism (h, k) = (g, 9, )(f, f}) : X — Z, where
h = fg and A = gﬁf;’(u), n € N, v € N. For an inverse system X = (X,pxn,A), the S*-morphism
(1a, 1’)‘@) : X — X, where 1, is the identity function and 1%, = 1x, in 7T, for all n € N and every A € A,
called the identity S*-morphism on X.

An S*-morphism (f, f}) : X — Y is said to be equivalent to an S*-morphism (f', f,") : X — Y, denoted
by (f, fi) ~ (f', f;"), if for every p € M there exist a A € A and n € N such that A > f(u), f'(n) and for

m
every n' > n,

Fi saon = £ pror

The relation ~ is an equivalence relation among S*-morphisms of inverse systems in 7. The equivalence
class [(f, f;)] of an S*-morphism (f, f;}) : X — Y is denoted by f*. Let pro*-7 be the quotient category
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corresponding to the equivalence relation ~. In this category, objects are all inverse systems X in 7 and
morphisms are all equivalence classes f* = [(f, f})] of S*-morphisms (f, f}). The composition in pro*-7 is
well defined by putting

g'f"=h"= [(h7h3)]>

where (h, hyy) = (9,97)(f, fil) = (f9, 95 f5,))- For every inverse system X in T, the identity morphism in
pro*-T is 1% = [(1a, 1%, )]-

A functor J = J i pro—T — pro* — T is defined. If X is an inverse system in 7, then J(X) = X and
if f € pro—T(X,Y) is represented by (f, f.), then J(f) = f* = [(f, f})] € pro™ — T(X,Y) is represented
by the S*-morphism (f, f}), where f;! = f,, for all p € M and n € N. Since the functor J is faithful, we
may consider the category pro-7 as a subcategory of pro*-7.

Let P be a subcategory of 7. For an object X in T, a P-expansion of X is a morphism p : X — X in
pro-T, where X belongs to pro-P with the following two properties:

(E1) For every object P of P and every map h: X — P in T, there exist a A € A and amap f: X\ — P
in P such that fp) = h;
(E2) If fo, f1: X» — P in P satisfy fopn = fipa, then there exists a A’ > X such that fopax = fipan-

The subcategory P is said to be pro-reflective (dense) subcategory of T provided that every object X in
T admits a P-expansion p : X — X.

Every two P-expansions of an object are isomorphic as the objects of pro-P. Let p : X — X and
p' : X — X’ be two P-expansions of an object X in 7, and let q : Y — Y and ¢’ : ¥ — Y’ be two
P-expansions of an object Y in 7. Then there exist two natural (unique) isomorphisms i : X — X’ and
j: Y = Y’ in pro-P with respect to p, p’ and q, q’, respectively. Consequently J(i) : X — X’ and
J() : Y = Y’ are isomorphisms in pro*-P. A morphism f* : X — Y is said to be pro*-P equivalent to a
morphism f'* : X’ — Y’, denoted by f* ~ f’*, if the following diagram commutes in pro*-P:

X J() X/
e e
NAR))

Y — Y.

The relation ~ is an equivalence relation on each set pro* —P(X,Y), such that if f* ~ f'* and g* ~ g’'*,
then g*f* ~ g’ *f'* whenever it is defined. The equivalence class of morphism f* is denoted by < f* >.

Let P be a pro-reflective subcategory of 7. Now, the (abstract) coarse shape category Sh?T,P) for the
pair (7,P) is defined as follows: The objects of Sh?T,p) are all objects of 7. A morphism F* : X — Y
which is called a coarse shape morphism, is the pro*-P equivalence class < f* > of a mapping f*: X - Y
in pro*-P, with respect to any pair of P-expansions p : X — X and q : Y — Y. The composition of
F*=<f*> X —>Yand G* =< g* > Y — Zis defined by G*F* =< g*f* >: X — Z. The identity coarse
shape morphism on an object X, 1% : X — X, is the pro*-P equivalence class < 1x* > of the identity
morphism 1x™* in pro*-P.

Since the homotopy category of polyhedra HPol is pro-reflective in the homotopy category HTop [7], the
coarse shape category Shp o, 1 pory = Sh™ is well defined. Also, from [7], the pointed homotopy category of
polyhedra HPoly is pro-reflective in the pointed homotopy category HTopg. Hence the pointed coarse shape
category Sh{ can be defined by Sh?ﬁp), where 7 = HTop, and P = HPolj.

The faithful functor J = J(7 p) : Sh¢rp) — Sh’(*TJ,) is defined as follows: If X is an object in 7, then
J(X)=Xand if F: X — Y is a shape morphism given by (f) in which f : X — Y is a morphism in
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pro-P, for P-expansions p: X — X and q: Y — Y of X and Y, respectively, then J(F) = F* that is a
coarse shape morphism given by (f*), where f* = J(f).

Remark 2.1. Let p: X — X and q : Y — Y be P-expansions of X and Y, respectively. For every morphism
f:X =Y in T, there is a unique morphism f : X — Y in pro-P such that the following diagram commutes
in pro-P:

X +— X
P

ol

Y <T Y.

If we take other P-expansions p’ : X — X’ and q' : Y — Y’, we obtain another morphism f’ : X’ — Y’
in pro-P such that f'p’ = q'f, and so we have f ~ f’ and hence J(f) ~ J(f') in pro*-P. Therefore,
every morphism f € T(X,Y) yields an pro*-P equivalence class < J(f) >, i.e., a coarse shape morphism
F*: X =Y, denoted by §*(f). If we put S*(X) = X for every object X of T, then we obtain a functor
S*: T — ShZ})P), which is called the coarse shape functor.

Let X and Y be objects in 7. Corresponding to any shape morphism F': X — Y, one can consider a coarse
shape morphism F* : X — Y as follows: Let p: X — X = (Xy,pan,A) and q: Y =Y = (Y, quu, M) be
P-expansions of X and Y, respectively and F is given by (f), where f : X — Y is represented by (f, f.).
Thus, the morphism f* : X — Y in pro*-P which is represented by (f, f}) and f} = f,,, for all p € M and
n € N, gives a coarse shape morphism F* = (f*) : X —» Y.

Recall from [7], an inverse system X = (X, pax/, A) of pro-T is said to be movable if every A € A admits
anm(A) > A (called a movability index of A) such that for any A” > X there is a morphism r* : X,,,(\) = Xy~
of T which satisfies

paort = Dam(N)-

An inverse system X = (X, pax, A) of pro-T is uniformly movable if every A € A admits an m(A) > A
(called a uniformly movability index of A) such that there is a morphism r()) : X,y — X in pro-7
satisfying

PxoT(A) = Pam(n)

where py : X — X is the morphism of pro-7 given by 1x,.

An object X € T is called movable (uniformly movable) if it has a movable (uniformly movable)
P-expansion.

From [11], for every inverse sequence (X,*) = ((Xy,*), Pnn+1) in Topg, one can associate a movable
inverse sequence (X*,*) = ((X}, *),p},41) in Topg by the star construction. If X,,’s are compact connected
polyhedra, then X’s are so, and hence (X*, %) = liin(X*, ) is a movable continuum (see [7]).

Mashayekhy and the authors [6], defined a topology on the set of coarse shape morphisms as follows: Let
X and Y be topological spaces, Y = (Y}, qu,v, M) be an inverse system in pro-HPol and q : Y — Y be an
HPol-expansion of Y. For every p € M and F* € Sh*(X,Y) put VMF* ={G" € SW*(X,Y)| S*(qu) o F* =
S*(qu) o G*}. They proved that the family {V#F* F* e Sh*(X,Y) and p € M} is a basis for a topology Tqy
on Sh*(X,Y’). Moreover, this topology depends only on X and Y.

Also, for topological spaces X, Y and Z and a coarse shape morphism F* : X — Y consider F .
Sh*(Y, Z) — Sh*(X, Z) and F* : Sh*(Z,X) — Sh*(Z,Y) with F*(H*) = H*oF* and F*(G*) = F*oG*.
They proved that F* and F* are continuous.
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Now, let (X,z) and (Y,y) be pointed topological spaces, (Y,y) = (Y., Yu)s quu» M) be an inverse
system in pro-HPoly and q : (Y,y) — (Y,y) be an HPoly-expansion of (Y,y). For every p € M and
F* e Shi((X,z),(Y,y)), put

V[ =G € Shi((X,2), (Y,9))] S™(gu) 0 F* = 8" (qu) 0 G*},

where §* : HTop, — Sh{ is the coarse shape functor defined in Remark 2.1. Similar to [6], one can see that
the family {VuF*| F* e Sh{((X,x),(Y,y)) and p € M} is a basis for a topology T4 on Shi((X, ), (Y,y)).
Moreover, if (X, z), (Y, y) and (Z, z) are pointed topological spaces and F* : (X, z) — (Y, y) is a coarse shape
morphism, then the maps F* : Shi((Y,y), (Z,2)) — Shi((X,z),(Z,2)) and F* : Shi((Z,2), (X, x)) —
Shi((Z,2), (Y,y)) with F*(H*) = H* o F* and F*(G*) = F* o G* are continuous.

3. Main results

First, we recall the notion weak coarse shape equivalence from [2]:

Definition 3.1. [2] Let m € N. A morphism f* : (X,x) — (Y,y) is said to be an m-equivalence of pro*-HTopy
if the induced morphism

T (£%) e (X, x) = (Y, y)

is an isomorphism of pro*-Set for k = 0, an isomorphism of pro*-Group for each k =1,2,...,m —1 and an
epimorphism of pro*-Group for k = m. A pointed coarse shape morphism F* : (X, z) — (Y, y) is said to be a
coarse (shape) m-equivalence if there exists a representative f* : (X,x) — (Y, y) which is an m-equivalence
in pro*-HPoly.

Definition 3.2. [2] A weak coarse shape equivalence is a coarse shape morphism F* : (X, z) — (Y, y) which
is coarse (shape) m-equivalence, for all m € N; i.e., it induces isomorphism between all the homotopy
pro*-groups.

In the sense of Dydak [4], for pointed topological spaces (X,z) and (Y,y) and shape morphism F :
(X,z) — (Y,y) with HPolg-expansions p : (X,z) = (X,x) = ((Xx,zA),pan,A) and q : (Yyy) — (Y,y) =
((Ya,9n), o, A) of (X, z) and (Y, y), respectively and level representative morphism (1y, fa) of F, shape
morphism F' is a weak shape domination if and only if for any A € A there exist A’ > X and a pointed map
g: (Ya,yn) — (X, ) such that f og ~p gax (by f ~0 g, we mean f is homotopic to g relative to the
base point).

In the following, by a similar way, we define the notion of paradomination.

Definition 3.3. Let F* : (X,z) — (Y,y) be a coarse shape morphism between pointed topological spaces
(X,z) and (Y,y), p: (X,z) = (X,x) = (X, 22),pan, A) and q : (Yiy) = (Y, y) = (Y2, ua), v, A) be
HPolp-expansions of (X, z) and (Y, y), respectively and (1y, f{) be a level morphism representative of F™*.
We say F™* is a paradomination, if for every A\ € A there exist A’ > X and n’ € N such that for any n > n’/
there exists a pointed map g™ : (Yo, yn) — (X, zx) such that the following diagram commutes in HPolg

axx’

(Y)\’uy)\’) (Y)\ay)\)‘

(X, )
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Proposition 3.4. Let (X, z) and (Y,y) be pointed continua. If F* : (X,z) = (Y,y) is a paradomination and
(X, ) is uniformly movable, then F*(Shi((Z, 2),(X,x))) is a dense subspace of Shi((Z,2),(Y,y)), for any
pointed continuum (Z, z).

Proof. Let 5* € Shi((Z,z),(Y,y)). Consider HPolg-expansions p : (X,z) — (X,x) = ((Xx,zx),pan, A)
and q : (Yyy) — (Y,y) = (Ya,00), o, A) of (X, z) and (Y, y), respectively, and level representative
(].)\7 f;f) of F*.

Let A € A. (X, z) is uniformly movable, so there exist a A’ > X and a morphism r(\) : (X, zy) — (X, x)
in pro-HPoly such that py or(A) = paxn, where py : (X,x) = (X, z,) is the morphism of pro-HPoly given
by 1x,. Note that r(\) determines the morphisms r(A\)* : (X, zx) = (X, z,4), p € A such that

Puwr 0T 20 e(V)* (if 1/ > ), and r(A)> = pax. (1)
Then r = ([(r(\)*)]) is a shape morphism and induces a coarse shape morphism r* : (X, xyx) = (X, z)

given by ([(r(A\)*™)]), where r(A\)*" = r(A\)#, for all u € A and every n € N.
F* is a coarse shape morphism, so for A’ > )\, there exists n; € N such that for every n > n;

IXpan =0 o (2)

and since F'* is a paradomination, there are \” > X and n, € N such that for all n > ny there exists a
pointed map g" : (Yar,ya+) = (X, ) such that the following diagram commutes in HPoly:

qx’ a1

(Y, yan) (Yo, yn) - (3)

X%

(X, za)

For every n < ng, consider ¢g" is the constant map at the point z ), of Xy, and hence we have a coarse shape
morphism ¢* : (Yar,ynr) = (Xn,zy) is given by ([(¢™)]). Define a* = r* o g* o S*(qr») o f* which is a
coarse shape morphism from (Z, z) to (X, z). We show that F*(a*) € Vf*.

Suppose s : (Z,2) = (Z,z) = ((Zv,2), Sv, N) is an HPolp-expansion of (Z,z) and g* = ([(8%,n)])-
Hence for A" > X there exist v > n(X\),n(\”) and ng € N such that for all n > ng

gxz © /8;\1//577(,\”)11 =0 ﬁZ\LSnO\)V' (4)

We know S*(gx) o F* o o™ and 8*(g)) o 8* are coarse shape morphisms from (Z, z) to (Yx,y») are given
by <[(fj\”r()\))‘ng"63f”,no)]> and ([(BY,m)]), respectively, in which ng,m : {A} = N with no(X) = n(\")
and 71 (A\) = n(\). Put ng = max{ny,ne,ns}. For every n > ng, by (1), fj\‘r()\)mg”ﬂ;‘,,sn(/\u)y ~0
ffp/\,\’gnﬁfusn(x/)u and by (2)7 fj\lp/\/\’gnﬁgnsn()\”)u =0 QA/\'f,QQnﬂfusn(,\”)w AlSOa by (5> and (4)’ one
obtains qxx/ fY/ 9" By Sny(ayw =20 DN G By Sy =0 O By Sp(vnyw =0 By Sy(x)w- Therefore, one can con-
clude that f)’fr()\)wgnﬁf\‘,,sn(,\u)y ~g Y5y, for every n > ng and hence S*(gz)o F*oa® = S*(qz)o*. O

As it is mentioned in [9], out of pointed compact connected polyhedra, there is a countable set
{(Pn,pn) : n € N} containing one of each pointed homotopy type that forms the inverse sequence
((Pn,pn), Gnnt1), where qn i (Poy1,Pn+1) — (Pn,ppn) is the constant pointed map. Applying the star-
construction of Overton—Segal [11] to the inverse sequence ((Py, pn), ¢nn+1), one obtains the pointed movable
connected space (W, w) which shape dominates every pointed finite polyhedron (see [9]).
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Proposition 3.5. Let (X, z) and (Y,y) be pointed continua and F* : (X,z) — (Y,y) be a coarse shape
morphism. If F*(Shi((W,w), (X, x))) is a dense subspace of Shi(W,w),(Y,y)) and (Y,y) is uniformly
movable, then F* is a paradomination.

Proof. Let p : (X,z) — (X,x) = ((Xx,za),pav,A) and q @ (Y,y) — (Y,y) = ((Ya,ya), an, A) be
HPolp-expansions of (X,z) and (Y,y), respectively and (1, fY') be a level representative of F*. Given
A € A. Since (Y,y) is uniformly movable, there exist a A’ > A and a morphism r(X) : (Ya,yn) — (Y,y)
in pro-HPolj such that qy o r(A) = g\, where qy : (Y,y) — (Y, y») is the morphism of pro-HPoly given
by 1ly,. Hence there are the morphisms r(A\)* : (Ya,ya) = (Y, yu), 1t € A such that

Qupr 0 TV o r(A\)* (if ¢/ > ), and r(A\) ~o gan
and so r = ([(r, =r(A\)H)]), u € A, is a shape morphism from (Y, yx) — (Y,y) such that
ra = (M) =0 g (5)

From [9, Proposition 5], (W, w) shape dominates every pointed finite polyhedron, so there are shape
morphisms 7’ : (Y, yx) = (W,w) and 7" : (W,w) — (Yx,yx) such that S(1y,,) = 7" o4’. Consider the

™ and r'* corresponding to the shape morphisms r, i and 7/, respectively

coarse shape morphisms r*, ¢
and put 8* = r* or’* € Shi((W,w),(Y,y)). By the hypothesis, there exists a coarse shape morphism
o € Shi(W,w), (X, z)) given by ([(a},a)]) such that F*(a*) = F* o a* € V/\B*.

Let s : (W,w) = (W,w) = (W,,w,), $p,r, N) be an HPolp-expansion of (W, w) and ' and ¢’ given by

([(r\,@)]) and ([(i),,)]). Put v/ = @(X'). We know ' 0 i’ = S(1y,,), so
v 0dy, o ly,,. (6)

Also, we know S*(gx) o F* o a* = §*(qx) o f* and B* is given by (1, o r),), p € A. Hence there exist
v > a(A), v and n’ € N such that for every n > n/

n n ~ !
f)\ O Q) OSu(AN)y =0TANOTy OSyry. (7)

Now for every n > n/, put g" = af\boz"a()\) s (Yo, yn) = (X, za). From (7), floaRosaaywil, ~o TA0TY 08,1,
and by (5) and (6), it follows that f{ o ¢" = fl ool o i’a(A) ~oraoTh, 04, 0 TN o @an. O

In the following, by Proposition 3.4 and Proposition 3.5, we characterize paradominations of uniformly
movable pointed continua.

Corollary 3.6. Let (X,x) and (Y,y) be uniformly movable continua and F* : (X,z) — (Y,y) be a coarse
shape morphism. Then the following statements are equivalent:

a) F* is a paradomination.
b) F*(Shi((Z,2),(X,x))) is a dense subspace of Shi((Z,2), (Y, y)), for every pointed continuum (Z, z).
¢) F*(Shi(W,w), (X,x))) is a dense subspace of Shi((W,w), (Y, y)).

Bilan in [1], proved the following lemma which is a similar result to the well known Morita lemma [8],
and characterizes isomorphisms in the category pro*-T.

Lemma 3.7. [1] Let X = (Xy,par,A) and Y = (Y, qox, A) be inverse systems over the same index set
and f* : X — Y be a morphism in pro*-T which admits a level representative (1p, f{). Then £* is an
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isomorphism if and only if for every A € A there exist N > X and n’ € N such that, for every n > n' there
exists a morphism hY : Yy — Xy in T, such that the following diagram commutes in T :

X)\ P X)\/

axn’

Now, using techniques similar to those employed by Geoghegan in [5], we give another characterizations

of isomorphisms in pro*-HPoly.

Lemma 3.8. Assume ((Xx,zx),par, A) and (Ya,yn), @xn, A) are inverse systems in pro*-HPoly. A level
map (fY : (X,\,x)\) — (Y, y»)) in pro*-HPoly is an isomorphism if and only if for every A € A, there
exist X' > X and n’ € N such that for every n > n’, there exist morphisms r™ and g™ making the following
diagram commute in HPoly

(X, za) ‘\pw (X, xa) (8)
y,\'
Jo

(Yx, yx) (Yar, yar).

axx’

n
)\/

The space M (f) is the mapping cylinder of f : (X, z9) — (Y, yo) with base point [xg, 1] = [f(x0)] = [yo]

and i : (X, z0) = (M(f), [yo]) and j : (Y, 40) = (M(f), [y0]) are maps given by i(z) = [z, 1] and j(y) = [y},
forallz € X andyeY.

Proof. First, suppose for every A € A, there are X' > X and n’ € N such that for every n > n/, there exist
morphisms 7™ and ¢" that commute the above diagram. For every n > n’, put hY = g™ 0 j3 : (Y, yx) —
(X, x)). We have

Nofy=g"0jy o fl~0g"oiy ~o par,
and
X ohy = flog"ojy ~oqu-

Then by the previous lemma, the level representative (f}) gives an isomorphism in pro*-HPoly.

Conversely, since (fY) is an isomorphism in pro*-HPoly, by the previous lemma, for every A € A, there
exist A’ > X and n; € N such that for every n > n; there exists a morphism A} : (Ya,yx) — (Xa, )
that A} o f{, ~o pax and f{ o b} ~g gax. Since F™* is a coarse shape morphism, there is no € N such that
Y opay o @ o fY, for every n > no.

Put n’ = max{ni,n2}. For every n > n/, consider the map H" : Xy, x I — Y} such that H"(—,0) =
fXopan and H"(—,1) = qxx o f. Define v (M(f30), [yn]) = (M(fY), [ya]) by 7" ([z,t]) = [pax (2), 2t],
ifo<t< % and r"([x,t]) = [H™(z,2t — 1)], if % <t <1and r([y]) = [gpn(y)], for every x € X and
y € Yy, and define ¢g" = hY o w™ : (M(f3), [yn]) = (X, zx) in which 7™ : (M(f3), [yx]) = (Yo, yn) is
projection. It is obvious that the diagram (8) commutes, for every n > n/. 0O
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Consider the following diagram which commutes up to homotopy, for all but finitely many n

(Xn,z)) < 2 (X, ) (9)
| |
(Yx,yx) (Y, ya).

axx’

The maps ™ : (M(f%), lyn]) — (M(fY),[ya]), which always exist by Lemma 3.8, are said the maps
associated with the bonds.

Lemma 3.9. Let ((Xx,z),pan,A) and (Ya,yr), gxn, A) be inverse systems and (f{ : (Xx,zx) = (Y, yr))
be a level morphism in pro*-HPoly. Suppose the level map (f{, : mi(Xx,zx) = m(Yx,yr)) is an isomor-
phism in pro*-Group, for all k < m. Then for every A € A, there exist 6(A,m) > X and N € N such that
for every n > N, there exist maps r™ and g™ making the following diagram commute in HPoly

(X, zn) Procm (Xo(nm)» To(a,m)) (10)

—_—

o (M(fé‘(A,m))v [ye(A,m)])

(Ya, ) (Yo(x,m)s Yo(r,m))-

dxe(x,m)

3 fon,m)

Proof. The level map (f{, : 7 (Xx, 2x) = 7 (Y, ya)) is an isomorphism in pro*-Group, so by Lemma 3.7,

for every A € A there exist 5 > A and v >  and ng € N that for every n > ng there exist homomorphisms

a™ (Y, yp) — me(Xa, 2x) and 0" 7w (Yy, yy) — 7 (X, 25), where f', 0a™ = gap, and b" o f2! = pg,,.
Also, there is n; € N so that for every n > nq, there are maps

n n

(M), lyy)) —= (M(fB), [ys)) ~= (M), [ya])

associated with the bonds.

Consider X, as a subspace of M (f}), with the map [ : Xy — M(f}), where {(z) = [2,0], z € X},
A € A, n € N. We abbreviate the pointed triple (M (f7), Xx,2x) to (M(fY),X»). For the map ™ :
(M(f3), lya]) = (M(f3), [ya]) associated with the bonds, it is obvious that (X)) € X, and so we have
the induced homomorphism 77 : 7w, (M (f3), Xx) = m (M (), X»).

Put n’ = max{ng,n1} and for every n > n’ consider the following commutative diagram

me(M(f3), X5) ——= me—1(Xy) ——= me—1(M(f7))

T(M(f5)) — m(M(f5), Xp) —— me_1(Xp)

=l

e (X2) ——= me(M(fY)) ——= me(M(f), X2)
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in which horizontal rows are exact. It is obvious that rj orl :mp(M(f}), Xy) = me(M(fY), Xi) is zero.
Now take v = v x, then for every A € A and k < m there is n’ € N such that for every n > n’ there exists
s (M(f3 ) W ]) = (M(fL), [ya]) associated with the bonds such that the induced homomorphism
i, (ML, ) Xoa k) = me(M(fY), X)) is zero.

Consider the sequence A\g = A\, A1 = Yagmy---rAi = Vaiirm—(i=1)s- -3 Am = YAn_y,1- For every 1 <
i < m, there exists n; € N such that for every n > n; there exists map 7 : (M(fY), [yx,]) — (M(f{._,),
[Y,_,]) which induces the zero homomorphism 77, : mp,_;_1)(M(fY,), Xx,) = Ty (M (fY ), Xai_y)-
Put N = max{n;}, then for every n > N, the map s" = riry...r, « (M(fY ), [yxn.]) = (M(f3), [ya])
induces the zero homomorphism s7 : m, (M (fY ), X,,) = mm(M(f3), Xx). We can find a cellular map
o (MY ) [yan]) = (M(fY), [ya]) homotopic to s™ rel X, such that 7" (M(f} )™) C Xx. Now take
0(A,m) = A = A and N = max{n;}, then for every n > N, we have maps 1" : (M (f5\ ;) [Yoor,m)]) —
(M(f3); [yAl) and g™ = 1" |aa(rp )y mUXonm o (M (Fgnm)™ U Xo(ym)s To(xm)) = (Xx, zx) such that the
diagram (10) commutes. O

Let p: (X,z) = (X,x) = ((Xx,zA), pax, A) be an HPolp-expansion of a pointed topological space (X, x).
Consider the inverse system

Shé((z7 Z)’ (X7 J))) = (Sh;;((Z, Z)a (X)\,x,\)),p)\)\r*,l\)

in pro-Topy, for every pointed topological space (Z, z). Now, similar to the Theorem 1 of [10], we prove the
following useful result.

Theorem 3.10. Let F* : (X,x) — (Y,y) be a weak coarse shape equivalence. Then the induced morphism
F*: Shy((P,p), (X,x)) — Shi((P,p), (Y,y)) is an isomorphism in pro*-Topy, for every compact connected
pointed polyhedron (P, p).

Proof. Let p : (X,2) = (X,x) = ((Xx,22),pan,A) and q = (Yyy) = (Y,y) = (Ya,97), a0, A) be
HPoly-expansions of (X, z) and (Y, y), respectively and (1, f{) be a level representative of F*.

Let (P, p) be a compact connected pointed polyhedron, so dim P = m < co. Given A € A. By hypothesis,
(fY, m(Xx, 2a) = m(Ya, ya)) is an isomorphism in pro*-Group, for all & < m, then by Lemma 3.9, there
exist 8(A,m) > X and N € N such that for every n > N there are maps r" and g™ for which diagram (10)
commutes. Consider the following commutative diagram

(M (f5onm)™ Y Xoxmy: Toam))

/ Vit
(X z) (Xo(nm)s To(r,m))
s u™ Foxm)
(Yx, ) (Yooa,m)s Yo(a,m))
M(fg5m)

in which k™ = 7" or™ and 7" : (M(f{), [ya]) = (Y, yx) is projection. By the approximation theorem, we
conclude that uf : ShS((P,p), (M(fgL()\7m))m U X@(z\,m)a x@()\,m))) — Sh’é((Pa p)7 (M(fen(x)m)% [ye()\,m)])) is a
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bijection, so for every n > N we have the map A} = g7 o u? ! 05, = Shi((P,p), Yorm)» Yor,m))) —
Sh((P,p), (Xx,xy)) such that the following diagram commutes

Pxo(x,m),

Sha((P7p)a (X)\a ﬂf)\)) Sha((Pv p)7 (XG()\,m)7 x@(/\,m)))
o
3. l \ lf&mm*
N axe(x,m), N
Shs((P,p), (Y, yr)) Shi((P,p); (Yo(r,m)s Yo(am)))-

Now by Lemma 3.7, the result holds. O

Theorem 3.11. Let (X, z) and (Y,y) be pointed continua and F* : (X,z) — (Y,y) be a coarse shape mor-
phism. If F* is a weak coarse shape equivalence and (Y,y) is movable, then F* is a paradomination.

Proof. Let p : (X,2) — (X,x) = ((Xx,zx),par,A) and q : (Yyy) — (Y,y) = (Y, yr), 20, A) be
HPolp-expansions of (X, z) and (Y, y), respectively and (1, f{) be a level representative of F™*.

Given A € A. (Y,y) is movable, so there is movability index X\ > X such that for every A > A, there
exists ) : (Yx,yy) —)_(Y,\//,y)\//) with gaxz o Tx >0 -

By Theorem 3.10, F* : Shi((Ya,ya), (X, z)) — Shi((Ya,yx), (Y,y)) is an isomorphism in pro*-Topyg.
Hence by Lemma 3.7, there exist A > X and n’ € N so that for every n > n’, there exists hY :
Shi((Yar,ya )y Yar,ynr)) = Shi(Yar, yar), (X, 2)) that commutes the following diagram

P«

Sh3 (Vv ). (Xa22)) Sh((Yars g ), (Xars o)
hn
f;‘l* \L 2 lf;//*
q .
Shi (Yo, yn), (Yaua)) >~ Shi((Yar, yn ), (Yar, yar)).

Let r* : (Yar,yn) = (Yar, ya) be the coarse shape morphism corresponding to the map 7y : (Y, yn) —
(Y, yar). Consider the coarse shape morphism A% (r*) which is given by (a™ : (Ya,yn) — (Xa,z))),
m € N. We know f{_(A%(r*)) = g, (%), in which f{_(h%(r*)) and gxav, (7*) are coarse shape morphisms
from (Y, yn) to (Ya,ya) given by (f¥ oa™) and (gaa~ o 7)), respectively. Then there exists N,, € N such
that for every m > Ny, f{ 0 a™ ~y gxav 0 7x.

Now, if we consider X’ > X and n’ € N, then there exists the map g" = a™» : (Y, yn) — (X, x) with
flogh= floaN" ~y q\xv oy > qrx, for every n >n/. O

Theorem 3.12. Let (X, z) and (Y,y) be pointed continua and F* : (X,z) — (Y,y) be a coarse shape mor-
phism. If F* is a weak coarse shape equivalence and (Y,y) is movable, then F* is an epimorphism in the
category Shg.

Proof. Let p : (X,2) — (X,x) = (X, zx),2an,A) and q : (YVyy) = (Y,y) = (Ya,yr),axn, A) be
HPoly-expansions of (X, z) and (Y, y), respectively and (1y, f{') be a level representative of F*.

Consider the coarse shape morphisms G*, H* : (Y,y) — (Z, 2) such that G* o F* = H* o F*, in which
(Z, z) is a pointed topological space with HPoly-expansion r : (Z,2) — (Z,z) = ((Z,,2,), 707, N) and G*
and H* are given by ([(¢7, ¢)]) and ([(hZ,¢)]), respectively. We show that G* = H*.

Given v € N. Since G*oF* = H*oF™* there exist A > ¢(v), ¥ (v) and ny € N such that g{}of;‘(y)opv(y)/\ ~0
hl o fﬁ(u) O Py (), for every n > ny.

Also, since F'™* is a coarse shape morphism, there is no € N so that fg(u) O Py =0 G © fx and
fﬁ(y) O Py()A =0 Gy()r © [ for every n > ny. Hence for every n > nq,no,
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9y © p)r © fX =0 Iy o qyyr o fX- (11)
On the other hand, by Theorem 3.11 F* is a paradomination, so there exist A’ > X and n3 € N such that
for every n > ng there exists a map g” : (Y, yn) = (X, zy) with
fXog" =0 . (12)
Now, if we consider X' > ¢(v),¥(v) and n’ = max{ny,na,ng}, then by (11) and (12),

91 © Qo()x' =0 Gy © Qp()A © DN
~0 gy © Gu(w)r © fX 09"
~0 hy o qyuno frog"
~0 hy 0 qy)x © D
>~ hy o Ay ()N

for every n > n’. It follows that G* = H*. O

Definition 3.13. Let (X,z) and (Y,y) be pointed topological spaces and F* : (X,z) — (Y,y) be a
coarse shape morphism. We say (X,z) and (Y,y) are simultaneously movable according to F* if there
are HPolp-expansions p : (X, z) = (X,x) = ((Xx,zA),pan, A) and q : (Y;y) = (Y,y) = (Y, yr), xn, A)
of (X,z) and (Y, y), respectively and a level representative (1y, i) of F* such that for every A € A, there
exist A > X and n’ € N so that for every \” > X and n > n’ there exist maps 7] : (X, zx) = (Xor, za)
and 73 : (Y, ya) = (Yar, ynr) with the following commutative diagram

I

(X, zar) - (Y, yn) (13)

ry ry

Pax/ axxn/

f;//
()(}\//7 Q’,‘)\H) (Y)\”7y)\")
k %
(Xx,2) (Y, yr)

n
A

Also, we say (X, z) and (Y,y) are simultaneously uniformly movable according to F™* if for every A € A,
there exist A’ > X and coarse shape morphisms af : (Xy,zyn) — (X, z) and o : (Y, yn) — (Y,y) such
that the following diagram commutes

3,
(Xa,zn) ————— (Yar,yn)
q

aj az
3*(PM’) S* M’)
F
(Y,y)

in which F} and FY, are coarse shape morphisms given by ([(f{)[) and ([(f{)]), respectively.

(
(Xn,2n) —————— (Y, un)
FY



F. Ghanei et al. / Topology and its Applications 229 (2017) 2741 39

Theorem 3.14. Let (X, z) and (Y,y) be pointed continua and F* : (X,z) — (Y,y) be a weak coarse shape
equivalence. If (X,z) and (Y,y) are simultaneously movable according to F*, then F* is a coarse shape
equivalence.

Proof. Let p : (X,z) — (X,x) = ((Xx,za),pav,A) and q = (Y,y) = (Y,y) = ((Ya,yr),arn, A) be
HPoly-expansions of (X, z) and (Y, y), respectively and (14, fY') be a level representative of F™*.

First, we show that for every A € A, there exist X' > X and M, € N such that the triple (A, N, M)
satisfies the following condition:

(%) For any n > M) and any compact connected pointed polyhedron (P, p),
(i) Every map h: (P,p) — (Y, yx) admits a map k™ : (P,p) — (X, x)) so that

JX o k™ =0 qax o h.
(#4) For any two maps ki, ks : (P,p) = (X, xa) with f{, o k1 >~ f{ o ko, we have

Pax © k1 ~g pax o ko.

Given A € A. (X,z) and (Y,y) are simultaneously movable according to F™*, so there exist A’ > XA and
no € N which satisfy in Definition 3.13.

Let (P,p) be a compact connected pointed polyhedron. By Theorem 3.10, the morphism F* :
Shi((P,p), (X,z)) — Shy((P,p),(Y,y)) is an isomorphism in pro*-Topg, so there exists a morphism
G : Shy((P,p), (Y,y)) = Shy((P,p), (X, x)) given by (g%, g) which is the inverse of F*. Since G o F* = id,
so by the definition there exist Ay > A, g(\) and n; € N such that for every n > n; the following diagram
commutes:

faon.,
Sh(ﬁ((—P’p)a (Xg()\)vxg()\)))

ShS((P, p)7 (Yg()\)a yg()\)))

Pg(M)A1 . gx

Shi((P,p), (Xays 2,)) ——————= Shi((Pp), (Xx, x)),

PAXg

and since F* o G = id, so there exist Ay > )\, g()\) and ny € N such that for every n > ny the following
diagram commutes:

gv

ShE((P,p), (Yyr)s Vo)) —————= Shi((P.p), (X, 1))
dg(M)Ag, .
ShE(P.p), (YVag:ns)) —5— Shi((P,p), (Ya,yr))-

Hence for a 1 > A1, A2, the following diagrams are commutative, for every n > max{ny, na}
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900

Shi((P,p), (Xgn), Tgn)) —————= Shg((P,p), (Yg(n), Yg(n)))

Pg(Mp g;f
S (P.p). (X, 2,)) ——— = Sh((P.p). (X», 7)),
SBE((P, ), (Yo Uo(y)) —— = SE((P,p), (Xa, )

LETeNY IR

SH3((P.p). (Vi )~ Shi((P.p)(Y2,2)).

Since g > A, by Definition 3.13, for any n > ng, there exist the maps r? : (Xy,zn) — (X, z,) and
ry (Y, yn) = (Y, y,) satistying (13).
Also, since F'* is a coarse shape morphism, for p > g(\), there exists ng € N such that for every n > ngs,

Fax) ©Pg0u =0 dgyp 0 fii- (14)

Put M) = max{ng,n1,ne,n3} and let n > M.

To prove (i), consider a map h : (P,p) — (Y, yx ). Let a* be the coarse shape morphism from (P, p)
to (Yy,yu) given by ([(a™)]), where a™ = r§ oh : (P,p) = (Y, yu), for every m € N. Then g* =
(9% © qg(ayu,)(@*) is a coarse shape morphism from (P, p) to (Xx,zx) given by ([(b™)]). We know f}, o g} o
Qg3 (@) = qap, (@¥), i.e., two coarse shape morphisms f3, (6%) and gy, (a*) given by ([(c™ = f{ o b™)])
and ([(d™ = qx, o 74 o h)]), respectively, are equal. So by the definition, there exists M, € N that for every
m > M,,

f3ob™ ~ gy 07 o h.
Take k" = b= : (P,p) — (X, ). Hence, by (13)
fRok™ = f{obMr ~g qruory oh =y qan oh.

To prove (it), suppose ki, ka : (P,p) = (X, zx) are maps with fJ, ok >~ fT, oks and so rj o f{, o k1 >~
130 floky. By (13), r3o f, > filor],so forfoky ~q f]lorfoks and then gy), 0 frori oki ~o qgny0f)i0
7‘7110]{2. From (14)7 fgn@\) opg()\)uoﬂfokl =~ ;(A) Opg()\)uor?ok% hence f;(A)*opg(A)u*(lT) = f;L(A)*Opg(/\)u*(l;)v
in which [} and /3 are coarse shape morphisms in Sh§((P, p), (X, x,)) given by ([(I{* = r{ok;)]) and ([(I5* =
i o ko)), respectively. Then g% o ;’(A)* o Py, (17) = gX o ;’(A)* 0Py, (15) and so pa,, (17) = pay, (13) as
coarse shape morphisms which are given by ([(pxu o 17" = pap o7 0 k1)]) and ([(pap 0 15" = pau o r} o k2)]),
respectively. Therefore,

DPap OTT 0 k1 ~o papory o ks
and by (13),

Dax' © k1 ~g pax o k.
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Finally, to prove that F* is a coarse shape equivalence, by Lemma 3.7, it is sufficient to show that the
morphism £* : (X,x) — (Y,y) given by the level map (f}) is an isomorphism in pro*-HPoly.

Given A € A. By the above argument, there exist triples (A, X', M) and (N, \’, M) satisfying the
condition (#x).

Since F™* is a coarse shape morphism, there exists ny € N that for every n > ny,

X opxnv =0 @ o fi,

and there exists n; € N that for every n > nq,

£ 0 paar =0 quar © i,

Now consider \’ > X\ and put N = max{ng,ny, Mx, My }. Let n > N. If P = Y)» and h = id :
(Yar,yne) = (Yar, yxr), then by (i) there exists a map k™ : (Y, yar) — (X, 2y ) such that

f;\L/ o k™ =0 gy (15)
Also, put P = X~ and k1 = k" o f},, and ka = pxn» which are maps from X,» — X, . Hence

Iy ok = fl o k™o fl ~o qaar o fn =0 f o paar =0 fii 0 k.
So by (it),
Pax © k1 >0 pay o ka.
Take hY = pax 0 k™ : (Yo, yar) = (X, z). We have

X ohY = fYopax o k™ ~g qaxn o f 0 k™ ~0 qxn 0 g o @,
and
No fn =panvok™o fli = pxn ok =~ pax 0 ka = pax 0P o Panre O
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