Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Weak coarse shape equivalences and infinite dimensional Whitehead theorem in coarse shape theory

Fateme Ghanei^a, Hanieh Mirebrahimi^{a,*}, Tayyebe Nasri^b

^a Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran ^b Department of Pure Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran

ARTICLE INFO

Article history: Received 22 April 2017 Received in revised form 3 July 2017 Accepted 5 July 2017 Available online 13 July 2017

MSC: 55Q07 55P5554C56

Kenwords: Weak coarse shape equivalence Coarse shape equivalence Paradomination

ABSTRACT

In this paper, we study the weak coarse shape equivalences. First, we define paradominations and then we give a characterization of them, for uniformly movable pointed continuum spaces. Also, we show that a weak coarse shape equivalence to a pointed movable space is a paradomination. Finally, we prove that a weak coarse shape equivalence F^* : $(X, x) \to (Y, y)$ between pointed continuum spaces is a coarse shape equivalence, if (X, x) and (Y, y) are simultaneously movable according to F^* .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Bilan and Uglešić in [2], generalized the Whitehead theorem for the coarse shape theory. They proved that, for $m \in \mathbb{N}$, if a pointed coarse shape morphism $F^*: (X, x) \to (Y, y)$ between spaces with $sd X \leq m-1$ and $sd Y \leq m$, is a coarse shape *m*-equivalence, then F^* is a pointed coarse shape isomorphism. We recall from [2], that F^* is a coarse shape *m*-equivalence, if the induced morphism

$$F_k^* \equiv pro^* - \pi_k(F^*) : pro^* - \pi_k(X, x) \to pro^* - \pi_k(Y, y)$$

is an isomorphism of pro^{*}-Group for k = 1, 2, ..., m - 1, an isomorphism of pro^{*}-Set for k = 0 and an epimorphism of pro^{*}-Group for k = m. Also, they defined a weak coarse shape equivalence as a coarse

* Corresponding author.

E-mail addresses: fateme.ghanei@mail.um.ac.ir (F. Ghanei), h_mirebrahimi@um.ac.ir (H. Mirebrahimi), tnasri72@yahoo.com (T. Nasri).

shape morphism $F^*: (X, x) \to (Y, y)$ which is a coarse shape *m*-equivalence for all $m \in \mathbb{N}$; and mentioned that by considering the Adams's example (see [7]), one can conclude that the infinite dimensional Whitehead theorem does not hold in the coarse shape category, in general. That means a weak coarse shape equivalence need not be a coarse shape equivalence, in general.

In this paper, we study weak coarse shape equivalences for pointed continua (metric compact connected spaces) and similar to the methods of [9], we prove that the infinite dimensional Whitehead theorem holds for coarse shape theory in some conditions.

In [9], Morón and Portal, established an infinite dimensional Whitehead theorem in shape category. Using the topology on the set of shape morphisms Sh(X, Y) defined in [3], they obtained a characterization of weak shape dominations. Also, they introduced a pointed movable triple (X, F, Y), for a shape morphism $F: X \to Y$ and pointed spaces X and Y. In particular, they proved that for pointed movable triple (X, F, Y), if X and Y are compact connected and F is a weak shape equivalence, then F is a shape equivalence.

Mashayekhy and the authors [6], defined a topology on the set of coarse shape morphisms $Sh^*(X, Y)$, for every topological spaces X and Y. Here, we define a paradomination, similar to [4], and then we use this topology to give a characterization of paradominations.

Morita in [8], stated and proved equivalent conditions for isomorphisms in the category pro- \mathcal{T} . Bilan [1], generalized this theorem for the category pro^{*}- \mathcal{T} and now, using methods similar to [5], we obtain another characterization of isomorphisms in the category pro^{*}-HPol₀. Also, we prove that if $F^* : (X, x) \to (Y, y)$ is a weak coarse shape equivalence, in which (Y, y) is movable, then F^* is a paradomination and by using this fact, we show that F^* is an epimorphism in the category Sh_0^* . Finally, we define the simultaneously movability of (X, x) and (Y, y) according to a coarse shape morphism $F^* : (X, x) \to (Y, y)$ and then we prove that a weak coarse shape equivalence $F^* : (X, x) \to (Y, y)$ between pointed continuum spaces (X, x)and (Y, y) is a coarse shape equivalence provided (X, x) and (Y, y) are simultaneously movable according to F^* .

2. Preliminaries

Recall from [1] some of the main notions about the coarse shape category and pro*-category. Let \mathcal{T} be a category and let $\mathbf{X} = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{Y} = (Y_{\mu}, q_{\mu\mu'}, M)$ be two inverse systems in the category \mathcal{T} . An S^* -morphism of inverse systems, $(f, f_{\mu}^n) : \mathbf{X} \to \mathbf{Y}$, consists of an index function $f : M \to \Lambda$ and of a set of \mathcal{T} -morphisms $f_{\mu}^n : X_{f(\mu)} \to Y_{\mu}, n \in \mathbb{N}, \mu \in M$, such that for every related pair $\mu \leq \mu'$ in M, there exist a $\lambda \in \Lambda, \lambda \geq f(\mu), f(\mu')$, and an $n \in \mathbb{N}$ so that for every $n' \geq n$,

$$q_{\mu\mu'}f_{\mu'}^{n'}p_{f(\mu')\lambda} = f_{\mu}^{n'}p_{f(\mu)\lambda}.$$

If $M = \Lambda$ and $f = 1_{\Lambda}$, then $(1_{\lambda}, f_{\lambda}^n)$ is said to be a *level* S^{*}-morphism.

Let $(f, f_{\mu}^{n}) : \mathbf{X} \to \mathbf{Y}$ and $(g, g_{\nu}^{n}) : \mathbf{Y} \to \mathbf{Z} = (Z_{\nu}, r_{\nu\nu'}, N)$ be S*-morphisms of inverse systems. The composition of S*-morphisms (f, f_{μ}^{n}) and (g, g_{ν}^{n}) is an S*-morphism $(h, h_{\nu}^{n}) = (g, g_{\nu}^{n})(f, f_{\mu}^{n}) : \mathbf{X} \to \mathbf{Z}$, where h = fg and $h_{\nu}^{n} = g_{\nu}^{n} f_{g(\nu)}^{n}$, $n \in \mathbb{N}$, $\nu \in N$. For an inverse system $\mathbf{X} = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$, the S*-morphism $(1_{\Lambda}, 1_{X_{\lambda}}^{n}) : \mathbf{X} \to \mathbf{X}$, where 1_{Λ} is the identity function and $1_{X_{\lambda}}^{n} = 1_{X_{\lambda}}$ in \mathcal{T} , for all $n \in \mathbb{N}$ and every $\lambda \in \Lambda$, called the *identity* S*-morphism on \mathbf{X} .

An S^{*}-morphism $(f, f_{\mu}^{n}) : \mathbf{X} \to \mathbf{Y}$ is said to be *equivalent* to an S^{*}-morphism $(f', f_{\mu}'^{n}) : \mathbf{X} \to \mathbf{Y}$, denoted by $(f, f_{\mu}^{n}) \sim (f', f_{\mu}'^{n})$, if for every $\mu \in M$ there exist a $\lambda \in \Lambda$ and $n \in \mathbb{N}$ such that $\lambda \geq f(\mu), f'(\mu)$ and for every $n' \geq n$,

$$f_{\mu}^{n'} p_{f(\mu)\lambda} = f_{\mu}^{\prime n'} p_{f^{\prime}(\mu)\lambda}$$

The relation ~ is an equivalence relation among S*-morphisms of inverse systems in \mathcal{T} . The equivalence class $[(f, f^n_{\mu})]$ of an S*-morphism $(f, f^n_{\mu}) : \mathbf{X} \to \mathbf{Y}$ is denoted by \mathbf{f}^* . Let pro*- \mathcal{T} be the quotient category

corresponding to the equivalence relation ~. In this category, objects are all inverse systems **X** in \mathcal{T} and morphisms are all equivalence classes $\mathbf{f}^* = [(f, f^n_\mu)]$ of S*-morphisms (f, f^n_μ) . The composition in pro*- \mathcal{T} is well defined by putting

$$\mathbf{g}^*\mathbf{f}^* = \mathbf{h}^* = [(h, h_{\nu}^n)],$$

where $(h, h_{\nu}^n) = (g, g_{\nu}^n)(f, f_{\mu}^n) = (fg, g_{\nu}^n f_{g(\nu)}^n)$. For every inverse system **X** in \mathcal{T} , the identity morphism in pro^{*}- \mathcal{T} is $\mathbf{1}_{\mathbf{X}}^* = [(1_{\Lambda}, 1_{X_{\Lambda}}^n)]$.

A functor $\underline{\mathcal{J}} = \underline{\mathcal{J}}_{\mathcal{T}}$: $pro - \mathcal{T} \to pro^* - \mathcal{T}$ is defined. If **X** is an inverse system in \mathcal{T} , then $\underline{\mathcal{J}}(\mathbf{X}) = \mathbf{X}$ and if $\mathbf{f} \in pro - \mathcal{T}(\mathbf{X}, \mathbf{Y})$ is represented by (f, f_{μ}) , then $\underline{\mathcal{J}}(\mathbf{f}) = \mathbf{f}^* = [(f, f_{\mu}^n)] \in pro^* - \mathcal{T}(\mathbf{X}, \mathbf{Y})$ is represented by the S*-morphism (f, f_{μ}^n) , where $f_{\mu}^n = f_{\mu}$ for all $\mu \in M$ and $n \in \mathbb{N}$. Since the functor $\underline{\mathcal{J}}$ is faithful, we may consider the category pro- \mathcal{T} as a subcategory of pro*- \mathcal{T} .

Let \mathcal{P} be a subcategory of \mathcal{T} . For an object X in \mathcal{T} , a \mathcal{P} -expansion of X is a morphism $\mathbf{p} : X \to \mathbf{X}$ in pro- \mathcal{T} , where \mathbf{X} belongs to pro- \mathcal{P} with the following two properties:

- (E1) For every object P of \mathcal{P} and every map $h: X \to P$ in \mathcal{T} , there exist a $\lambda \in \Lambda$ and a map $f: X_{\lambda} \to P$ in \mathcal{P} such that $fp_{\lambda} = h$;
- (E2) If $f_0, f_1: X_{\lambda} \to P$ in \mathcal{P} satisfy $f_0 p_{\lambda} = f_1 p_{\lambda}$, then there exists a $\lambda' \ge \lambda$ such that $f_0 p_{\lambda\lambda'} = f_1 p_{\lambda\lambda'}$.

The subcategory \mathcal{P} is said to be *pro-reflective* (*dense*) subcategory of \mathcal{T} provided that every object X in \mathcal{T} admits a \mathcal{P} -expansion $\mathbf{p}: X \to \mathbf{X}$.

Every two \mathcal{P} -expansions of an object are isomorphic as the objects of pro- \mathcal{P} . Let $\mathbf{p} : X \to \mathbf{X}$ and $\mathbf{p}' : X \to \mathbf{X}'$ be two \mathcal{P} -expansions of an object X in \mathcal{T} , and let $\mathbf{q} : Y \to \mathbf{Y}$ and $\mathbf{q}' : Y \to \mathbf{Y}'$ be two \mathcal{P} -expansions of an object Y in \mathcal{T} . Then there exist two natural (unique) isomorphisms $\mathbf{i} : \mathbf{X} \to \mathbf{X}'$ and $\mathbf{j} : \mathbf{Y} \to \mathbf{Y}'$ in pro- \mathcal{P} with respect to \mathbf{p} , \mathbf{p}' and \mathbf{q} , \mathbf{q}' , respectively. Consequently $\underline{\mathcal{J}}(\mathbf{i}) : \mathbf{X} \to \mathbf{X}'$ and $\underline{\mathcal{J}}(\mathbf{j}) : \mathbf{Y} \to \mathbf{Y}'$ are isomorphisms in pro*- \mathcal{P} . A morphism $\mathbf{f}^* : \mathbf{X} \to \mathbf{Y}$ is said to be *pro**- \mathcal{P} equivalent to a morphism $\mathbf{f}'^* : \mathbf{X}' \to \mathbf{Y}'$, denoted by $\mathbf{f}^* \sim \mathbf{f}'^*$, if the following diagram commutes in pro*- \mathcal{P} :

$$\begin{array}{ccc} \mathbf{X} & \stackrel{\underline{\mathcal{J}}(\mathbf{i})}{\longrightarrow} & \mathbf{X}' \\ & & & \downarrow^{\mathbf{f}^*} & \mathbf{f'}^* \\ \mathbf{Y} & \stackrel{\underline{\mathcal{J}}(\mathbf{j})}{\longrightarrow} & \mathbf{Y}'. \end{array}$$

The relation \sim is an equivalence relation on each set $pro^* - \mathcal{P}(\mathbf{X}, \mathbf{Y})$, such that if $\mathbf{f}^* \sim \mathbf{f'}^*$ and $\mathbf{g}^* \sim \mathbf{g'}^*$, then $\mathbf{g}^* \mathbf{f}^* \sim \mathbf{g'}^* \mathbf{f'}^*$ whenever it is defined. The equivalence class of morphism \mathbf{f}^* is denoted by $< \mathbf{f}^* >$.

Let \mathcal{P} be a pro-reflective subcategory of \mathcal{T} . Now, the *(abstract) coarse shape category* $\operatorname{Sh}^*_{(\mathcal{T},\mathcal{P})}$ for the pair $(\mathcal{T},\mathcal{P})$ is defined as follows: The objects of $\operatorname{Sh}^*_{(\mathcal{T},\mathcal{P})}$ are all objects of \mathcal{T} . A morphism $F^* : X \to Y$ which is called a coarse shape morphism, is the pro^{*}- \mathcal{P} equivalence class $\langle \mathbf{f}^* \rangle$ of a mapping $\mathbf{f}^* : \mathbf{X} \to \mathbf{Y}$ in pro^{*}- \mathcal{P} , with respect to any pair of \mathcal{P} -expansions $\mathbf{p} : X \to \mathbf{X}$ and $\mathbf{q} : Y \to \mathbf{Y}$. The *composition* of $F^* = \langle \mathbf{f}^* \rangle : X \to Y$ and $G^* = \langle \mathbf{g}^* \rangle : Y \to Z$ is defined by $G^*F^* = \langle \mathbf{g}^*\mathbf{f}^* \rangle : X \to Z$. The *identity coarse shape morphism* on an object $X, 1^*_X : X \to X$, is the pro^{*}- \mathcal{P} equivalence class $\langle \mathbf{1}_{\mathbf{X}}^* \rangle$ of the identity morphism $\mathbf{1}_{\mathbf{X}}^*$ in pro^{*}- \mathcal{P} .

Since the homotopy category of polyhedra HPol is pro-reflective in the homotopy category HTop [7], the coarse shape category $\operatorname{Sh}^*_{(HTop,HPol)} = \operatorname{Sh}^*$ is well defined. Also, from [7], the pointed homotopy category of polyhedra HPol₀ is pro-reflective in the pointed homotopy category HTop₀. Hence the pointed coarse shape category Sh^*_0 can be defined by $\operatorname{Sh}^*_{(\mathcal{T},\mathcal{P})}$, where $\mathcal{T} = \operatorname{HTop}_0$ and $\mathcal{P} = \operatorname{HPol}_0$.

The faithful functor $\mathcal{J} = \mathcal{J}_{(\mathcal{T},\mathcal{P})} : Sh_{(\mathcal{T},\mathcal{P})} \to Sh_{(\mathcal{T},\mathcal{P})}^*$ is defined as follows: If X is an object in \mathcal{T} , then $\mathcal{J}(X) = X$ and if $F : X \to Y$ is a shape morphism given by $\langle \mathbf{f} \rangle$ in which $\mathbf{f} : \mathbf{X} \to \mathbf{Y}$ is a morphism in

pro- \mathcal{P} , for \mathcal{P} -expansions $\mathbf{p} : X \to \mathbf{X}$ and $\mathbf{q} : Y \to \mathbf{Y}$ of X and Y, respectively, then $\mathcal{J}(F) = F^*$ that is a coarse shape morphism given by $\langle \mathbf{f}^* \rangle$, where $\mathbf{f}^* = \underline{\mathcal{J}}(\mathbf{f})$.

Remark 2.1. Let $\mathbf{p} : X \to \mathbf{X}$ and $\mathbf{q} : Y \to \mathbf{Y}$ be \mathcal{P} -expansions of X and Y, respectively. For every morphism $f : X \to Y$ in \mathcal{T} , there is a unique morphism $\mathbf{f} : \mathbf{X} \to \mathbf{Y}$ in pro- \mathcal{P} such that the following diagram commutes in pro- \mathcal{P} :

If we take other \mathcal{P} -expansions $\mathbf{p}': X \to \mathbf{X}'$ and $\mathbf{q}': Y \to \mathbf{Y}'$, we obtain another morphism $\mathbf{f}': \mathbf{X}' \to \mathbf{Y}'$ in pro- \mathcal{P} such that $\mathbf{f'p'} = \mathbf{q}'f$, and so we have $\mathbf{f} \sim \mathbf{f}'$ and hence $\underline{\mathcal{J}}(\mathbf{f}) \sim \underline{\mathcal{J}}(\mathbf{f}')$ in pro*- \mathcal{P} . Therefore, every morphism $f \in \mathcal{T}(X, Y)$ yields an pro*- \mathcal{P} equivalence class $< \underline{\mathcal{J}}(\mathbf{f}) >$, i.e., a coarse shape morphism $F^*: X \to Y$, denoted by $\mathcal{S}^*(f)$. If we put $\mathcal{S}^*(X) = X$ for every object X of \mathcal{T} , then we obtain a functor $\mathcal{S}^*: \mathcal{T} \to Sh^*_{(\mathcal{T},\mathcal{P})}$, which is called the *coarse shape functor*.

Let X and Y be objects in \mathcal{T} . Corresponding to any shape morphism $F: X \to Y$, one can consider a coarse shape morphism $F^*: X \to Y$ as follows: Let $\mathbf{p}: X \to \mathbf{X} = (X_\lambda, p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{q}: Y \to \mathbf{Y} = (Y_\mu, q_{\mu\mu'}, M)$ be \mathcal{P} -expansions of X and Y, respectively and F is given by $\langle \mathbf{f} \rangle$, where $\mathbf{f}: \mathbf{X} \to \mathbf{Y}$ is represented by (f, f_μ) . Thus, the morphism $\mathbf{f}^*: \mathbf{X} \to \mathbf{Y}$ in pro^{*}- \mathcal{P} which is represented by (f, f_μ^n) and $f_\mu^n = f_\mu$, for all $\mu \in M$ and $n \in \mathbb{N}$, gives a coarse shape morphism $F^* = \langle \mathbf{f}^* \rangle : X \to Y$.

Recall from [7], an inverse system $\mathbf{X} = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ of pro- \mathcal{T} is said to be movable if every $\lambda \in \Lambda$ admits an $m(\lambda) \geq \lambda$ (called a movability index of λ) such that for any $\lambda'' \geq \lambda$ there is a morphism $r^{\lambda} : X_{m(\lambda)} \to X_{\lambda''}$ of \mathcal{T} which satisfies

$$p_{\lambda\lambda^{\prime\prime}} \circ r^{\lambda} = p_{\lambda m(\lambda)}.$$

An inverse system $\mathbf{X} = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ of pro- \mathcal{T} is uniformly movable if every $\lambda \in \Lambda$ admits an $m(\lambda) \geq \lambda$ (called a uniformly movability index of λ) such that there is a morphism $\mathbf{r}(\lambda) : \mathbf{X}_{m(\lambda)} \to \mathbf{X}$ in pro- \mathcal{T} satisfying

$$\mathbf{p}_{\lambda} \circ \mathbf{r}(\lambda) = p_{\lambda m(\lambda)},$$

where $\mathbf{p}_{\lambda} : \mathbf{X} \to X_{\lambda}$ is the morphism of pro- \mathcal{T} given by $\mathbf{1}_{X_{\lambda}}$.

An object $X \in \mathcal{T}$ is called movable (uniformly movable) if it has a movable (uniformly movable) \mathcal{P} -expansion.

From [11], for every inverse sequence $(\mathbf{X}, *) = ((X_n, *), p_{nn+1})$ in Top₀, one can associate a movable inverse sequence $(\mathbf{X}^*, *) = ((X_n^*, *), p_{nn+1}^*)$ in Top₀ by the star construction. If X_n 's are compact connected polyhedra, then X_n^* 's are so, and hence $(X^*, *) = \lim(\mathbf{X}^*, *)$ is a movable continuum (see [7]).

Mashayekhy and the authors [6], defined a topology on the set of coarse shape morphisms as follows: Let X and Y be topological spaces, $\mathbf{Y} = (Y_{\mu}, q_{\mu\mu'}, M)$ be an inverse system in pro-HPol and $\mathbf{q} : Y \to \mathbf{Y}$ be an HPol-expansion of Y. For every $\mu \in M$ and $F^* \in Sh^*(X, Y)$ put $V_{\mu}^{F^*} = \{G^* \in Sh^*(X, Y) | \mathcal{S}^*(q_{\mu}) \circ F^* = \mathcal{S}^*(q_{\mu}) \circ G^*\}$. They proved that the family $\{V_{\mu}^{F^*} | F^* \in Sh^*(X, Y) \text{ and } \mu \in M\}$ is a basis for a topology $T_{\mathbf{q}}$ on $Sh^*(X, Y)$. Moreover, this topology depends only on X and Y.

Also, for topological spaces X, Y and Z and a coarse shape morphism $F^* : X \to Y$, consider $\hat{F^*} : Sh^*(Y, Z) \longrightarrow Sh^*(X, Z)$ and $\tilde{F^*} : Sh^*(Z, X) \longrightarrow Sh^*(Z, Y)$ with $\hat{F^*}(H^*) = H^* \circ F^*$ and $\tilde{F^*}(G^*) = F^* \circ G^*$. They proved that $\hat{F^*}$ and $\tilde{F^*}$ are continuous. Now, let (X, x) and (Y, y) be pointed topological spaces, $(\mathbf{Y}, \mathbf{y}) = ((Y_{\mu}, y_{\mu}), q_{\mu\mu'}, M)$ be an inverse system in pro-HPol₀ and $\mathbf{q} : (Y, y) \to (\mathbf{Y}, \mathbf{y})$ be an HPol₀-expansion of (Y, y). For every $\mu \in M$ and $F^* \in Sh_0^*((X, x), (Y, y))$, put

$$V_{\mu}^{F^*} = \{ G^* \in Sh_0^*((X, x), (Y, y)) | \ \mathcal{S}^*(q_{\mu}) \circ F^* = \mathcal{S}^*(q_{\mu}) \circ G^* \},$$

where S^* : HTop₀ \to Sh_0^* is the coarse shape functor defined in Remark 2.1. Similar to [6], one can see that the family $\{V_{\mu}^{F^*} | F^* \in Sh_0^*((X, x), (Y, y)) \text{ and } \mu \in M\}$ is a basis for a topology $T_{\mathbf{q}}$ on $Sh_0^*((X, x), (Y, y))$. Moreover, if (X, x), (Y, y) and (Z, z) are pointed topological spaces and $F^* : (X, x) \to (Y, y)$ is a coarse shape morphism, then the maps $\hat{F^*} : Sh_0^*((Y, y), (Z, z)) \longrightarrow Sh_0^*((X, x), (Z, z))$ and $\tilde{F^*} : Sh_0^*((Z, z), (X, x)) \longrightarrow$ $Sh_0^*((Z, z), (Y, y))$ with $\hat{F^*}(H^*) = H^* \circ F^*$ and $\tilde{F^*}(G^*) = F^* \circ G^*$ are continuous.

3. Main results

First, we recall the notion *weak coarse shape equivalence* from [2]:

Definition 3.1. [2] Let $m \in \mathbb{N}$. A morphism $\mathbf{f}^* : (\mathbf{X}, \mathbf{x}) \to (\mathbf{Y}, \mathbf{y})$ is said to be an *m*-equivalence of pro^{*}-HTop₀ if the induced morphism

$$\pi_k^*(\mathbf{f}^*): \pi_k(\mathbf{X}, \mathbf{x}) \to \pi_k(\mathbf{Y}, \mathbf{y})$$

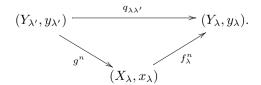
is an isomorphism of pro^{*}-Set for k = 0, an isomorphism of pro^{*}-Group for each k = 1, 2, ..., m - 1 and an epimorphism of pro^{*}-Group for k = m. A pointed coarse shape morphism $F^* : (X, x) \to (Y, y)$ is said to be a coarse (shape) *m*-equivalence if there exists a representative $\mathbf{f}^* : (\mathbf{X}, \mathbf{x}) \to (\mathbf{Y}, \mathbf{y})$ which is an *m*-equivalence in pro^{*}-HPol₀.

Definition 3.2. [2] A weak coarse shape equivalence is a coarse shape morphism $F^* : (X, x) \to (Y, y)$ which is coarse (shape) *m*-equivalence, for all $m \in \mathbb{N}$, i.e., it induces isomorphism between all the homotopy pro^{*}-groups.

In the sense of Dydak [4], for pointed topological spaces (X, x) and (Y, y) and shape morphism F: $(X, x) \to (Y, y)$ with HPol₀-expansions $\mathbf{p}: (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_{\lambda}, x_{\lambda}), p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{q}: (Y, y) \to (\mathbf{Y}, \mathbf{y}) = ((Y_{\lambda}, y_{\lambda}), q_{\lambda\lambda'}, \Lambda)$ of (X, x) and (Y, y), respectively and level representative morphism $(1_{\lambda}, f_{\lambda})$ of F, shape morphism F is a weak shape domination if and only if for any $\lambda \in \Lambda$ there exist $\lambda' \geq \lambda$ and a pointed map $g: (Y_{\lambda'}, y_{\lambda'}) \to (X_{\lambda}, x_{\lambda})$ such that $f_{\lambda} \circ g \simeq_0 q_{\lambda\lambda'}$ (by $f \simeq_0 g$, we mean f is homotopic to g relative to the base point).

In the following, by a similar way, we define the notion of paradomination.

Definition 3.3. Let $F^*: (X, x) \to (Y, y)$ be a coarse shape morphism between pointed topological spaces (X, x) and (Y, y), $\mathbf{p}: (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_{\lambda}, x_{\lambda}), p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{q}: (Y, y) \to (\mathbf{Y}, \mathbf{y}) = ((Y_{\lambda}, y_{\lambda}), q_{\lambda\lambda'}, \Lambda)$ be HPol₀-expansions of (X, x) and (Y, y), respectively and $(1_{\lambda}, f_{\lambda}^n)$ be a level morphism representative of F^* . We say F^* is a paradomination, if for every $\lambda \in \Lambda$ there exist $\lambda' \geq \lambda$ and $n' \in \mathbb{N}$ such that for any $n \geq n'$ there exists a pointed map $g^n: (Y_{\lambda'}, y_{\lambda'}) \to (X_{\lambda}, x_{\lambda})$ such that the following diagram commutes in HPol₀



Proposition 3.4. Let (X, x) and (Y, y) be pointed continua. If $F^* : (X, x) \to (Y, y)$ is a paradomination and (X, x) is uniformly movable, then $\tilde{F^*}(Sh_0^*((Z, z), (X, x)))$ is a dense subspace of $Sh_0^*((Z, z), (Y, y))$, for any pointed continuum (Z, z).

Proof. Let $\beta^* \in Sh_0^*((Z, z), (Y, y))$. Consider HPol₀-expansions $\mathbf{p} : (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_\lambda, x_\lambda), p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{q} : (Y, y) \to (\mathbf{Y}, \mathbf{y}) = ((Y_\lambda, y_\lambda), q_{\lambda\lambda'}, \Lambda)$ of (X, x) and (Y, y), respectively, and level representative $(1_\lambda, f_\lambda^n)$ of F^* .

Let $\lambda \in \Lambda$. (X, x) is uniformly movable, so there exist a $\lambda' \geq \lambda$ and a morphism $\mathbf{r}(\lambda) : (X_{\lambda'}, x_{\lambda'}) \to (\mathbf{X}, \mathbf{x})$ in pro-HPol₀ such that $\mathbf{p}_{\lambda} \circ \mathbf{r}(\lambda) = p_{\lambda\lambda'}$, where $\mathbf{p}_{\lambda} : (\mathbf{X}, \mathbf{x}) \to (X_{\lambda}, x_{\lambda})$ is the morphism of pro-HPol₀ given by $1_{X_{\lambda}}$. Note that $\mathbf{r}(\lambda)$ determines the morphisms $\mathbf{r}(\lambda)^{\mu} : (X_{\lambda'}, x_{\lambda'}) \to (X_{\mu}, x_{\mu}), \mu \in \Lambda$ such that

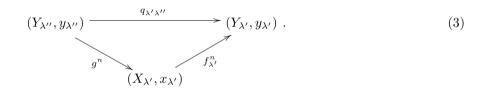
$$p_{\mu\mu'} \circ \mathbf{r}(\lambda)^{\mu'} \simeq_0 \mathbf{r}(\lambda)^{\mu} \text{ (if } \mu' \ge \mu), \text{ and } \mathbf{r}(\lambda)^{\lambda} \simeq_0 p_{\lambda\lambda'}.$$
 (1)

Then $r = \langle [(\mathbf{r}(\lambda)^{\mu})] \rangle$ is a shape morphism and induces a coarse shape morphism $r^* : (X_{\lambda'}, x_{\lambda'}) \to (X, x)$ given by $\langle [(\mathbf{r}(\lambda)^{\mu^n})] \rangle$, where $\mathbf{r}(\lambda)^{\mu^n} = \mathbf{r}(\lambda)^{\mu}$, for all $\mu \in \Lambda$ and every $n \in \mathbb{N}$.

 F^* is a coarse shape morphism, so for $\lambda' \geq \lambda$, there exists $n_1 \in \mathbb{N}$ such that for every $n \geq n_1$

$$f_{\lambda}^{n} p_{\lambda\lambda'} \simeq_0 q_{\lambda\lambda'} f_{\lambda'}^{n} \tag{2}$$

and since F^* is a paradomination, there are $\lambda'' \geq \lambda'$ and $n_2 \in \mathbb{N}$ such that for all $n \geq n_2$ there exists a pointed map $g^n : (Y_{\lambda''}, y_{\lambda''}) \to (X_{\lambda'}, x_{\lambda'})$ such that the following diagram commutes in HPol₀:



For every $n < n_2$, consider g^n is the constant map at the point $x_{\lambda'}$ of $X_{\lambda'}$ and hence we have a coarse shape morphism $g^* : (Y_{\lambda''}, y_{\lambda''}) \to (X_{\lambda'}, x_{\lambda'})$ is given by $\langle [(g^n)] \rangle$. Define $\alpha^* = r^* \circ g^* \circ \mathcal{S}^*(q_{\lambda''}) \circ \beta^*$ which is a coarse shape morphism from (Z, z) to (X, x). We show that $\tilde{F^*}(\alpha^*) \in V_{\lambda}^{\beta^*}$.

Suppose $\mathbf{s} : (Z, z) \to (\mathbf{Z}, \mathbf{z}) = ((Z_{\nu}, z_{\nu}), s_{\nu\nu'}, N)$ is an HPol₀-expansion of (Z, z) and $\beta^* = \langle [(\beta^n_{\lambda}, \eta)] \rangle$. Hence for $\lambda'' \ge \lambda$ there exist $\nu \ge \eta(\lambda), \eta(\lambda'')$ and $n_3 \in \mathbb{N}$ such that for all $n \ge n_3$

$$q_{\lambda\lambda''} \circ \beta^n_{\lambda''} s_{\eta(\lambda'')\nu} \simeq_0 \beta^n_\lambda s_{\eta(\lambda)\nu}. \tag{4}$$

We know $\mathcal{S}^*(q_{\lambda}) \circ F^* \circ \alpha^*$ and $\mathcal{S}^*(q_{\lambda}) \circ \beta^*$ are coarse shape morphisms from (Z, z) to $(Y_{\lambda}, y_{\lambda})$ are given by $\langle [(f_{\lambda}^n \mathbf{r}(\lambda)^{\lambda^n} g^n \beta_{\lambda''}^n, \eta_0)] \rangle$ and $\langle [(\beta_{\lambda}^n, \eta_1)] \rangle$, respectively, in which $\eta_0, \eta_1 : \{\lambda\} \to N$ with $\eta_0(\lambda) = \eta(\lambda'')$ and $\eta_1(\lambda) = \eta(\lambda)$. Put $n_0 = \max\{n_1, n_2, n_3\}$. For every $n \ge n_0$, by (1), $f_{\lambda}^n \mathbf{r}(\lambda)^{\lambda^n} g^n \beta_{\lambda''}^n s_{\eta(\lambda'')\nu} \simeq_0$ $f_{\lambda}^n p_{\lambda\lambda'} g^n \beta_{\lambda''}^n s_{\eta(\lambda'')\nu}$ and by (2), $f_{\lambda}^n p_{\lambda\lambda'} g^n \beta_{\lambda''}^n s_{\eta(\lambda'')\nu} \simeq_0 q_{\lambda\lambda'} f_{\lambda'}^n g^n \beta_{\lambda''}^n s_{\eta(\lambda'')\nu}$. Also, by (3) and (4), one obtains $q_{\lambda\lambda'} f_{\lambda'}^n g^n \beta_{\lambda''}^n s_{\eta(\lambda'')\nu} \simeq_0 q_{\lambda\lambda'} q_{\lambda''} \beta_{\lambda''}^n s_{\eta(\lambda'')\nu} \simeq_0 \beta_{\lambda}^n s_{\eta(\lambda)\nu}$. Therefore, one can conclude that $f_{\lambda}^n \mathbf{r}(\lambda)^{\lambda^n} g^n \beta_{\lambda''}^n s_{\eta(\lambda'')\nu} \simeq_0 \beta_{\lambda}^n s_{\eta(\lambda)\nu}$, for every $n \ge n_0$ and hence $\mathcal{S}^*(q_{\lambda}) \circ F^* \circ \alpha^* = \mathcal{S}^*(q_{\lambda}) \circ \beta^*$. \Box

As it is mentioned in [9], out of pointed compact connected polyhedra, there is a countable set $\{(P_n, p_n) : n \in \mathbb{N}\}$ containing one of each pointed homotopy type that forms the inverse sequence $((P_n, p_n), q_{nn+1})$, where $q_n : (P_{n+1}, p_{n+1}) \to (P_n, p_n)$ is the constant pointed map. Applying the starconstruction of Overton–Segal [11] to the inverse sequence $((P_n, p_n), q_{nn+1})$, one obtains the pointed movable connected space (W, w) which shape dominates every pointed finite polyhedron (see [9]). **Proposition 3.5.** Let (X, x) and (Y, y) be pointed continua and $F^* : (X, x) \to (Y, y)$ be a coarse shape morphism. If $\tilde{F}^*(Sh_0^*((W, w), (X, x)))$ is a dense subspace of $Sh_0^*((W, w), (Y, y))$ and (Y, y) is uniformly movable, then F^* is a paradomination.

Proof. Let $\mathbf{p} : (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_{\lambda}, x_{\lambda}), p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{q} : (Y, y) \to (\mathbf{Y}, \mathbf{y}) = ((Y_{\lambda}, y_{\lambda}), q_{\lambda\lambda'}, \Lambda)$ be HPol₀-expansions of (X, x) and (Y, y), respectively and $(1_{\lambda}, f_{\lambda}^{n})$ be a level representative of F^{*} . Given $\lambda \in \Lambda$. Since (Y, y) is uniformly movable, there exist a $\lambda' \geq \lambda$ and a morphism $\mathbf{r}(\lambda) : (Y_{\lambda'}, y_{\lambda'}) \to (\mathbf{Y}, \mathbf{y})$ in pro-HPol₀ such that $\mathbf{q}_{\lambda} \circ \mathbf{r}(\lambda) = q_{\lambda\lambda'}$, where $\mathbf{q}_{\lambda} : (\mathbf{Y}, \mathbf{y}) \to (Y_{\lambda}, y_{\lambda})$ is the morphism of pro-HPol₀ given by $1_{Y_{\lambda}}$. Hence there are the morphisms $\mathbf{r}(\lambda)^{\mu} : (Y_{\lambda'}, y_{\lambda'}) \to (Y_{\mu}, y_{\mu}), \mu \in \Lambda$ such that

$$q_{\mu\mu'} \circ \mathbf{r}(\lambda)^{\mu'} \simeq_0 \mathbf{r}(\lambda)^{\mu} \text{ (if } \mu' \ge \mu), \text{ and } \mathbf{r}(\lambda)^{\lambda} \simeq_0 q_{\lambda\lambda'}$$

and so $r = \langle [(r_{\mu} = \mathbf{r}(\lambda)^{\mu})] \rangle, \mu \in \Lambda$, is a shape morphism from $(Y_{\lambda'}, y_{\lambda'}) \to (Y, y)$ such that

$$r_{\lambda} = \mathbf{r}(\lambda)^{\lambda} \simeq_0 q_{\lambda\lambda'}.$$
 (5)

From [9, Proposition 5], (W, w) shape dominates every pointed finite polyhedron, so there are shape morphisms $i': (Y_{\lambda'}, y_{\lambda'}) \to (W, w)$ and $r': (W, w) \to (Y_{\lambda'}, y_{\lambda'})$ such that $\mathcal{S}(1_{Y_{\lambda'}}) = r' \circ i'$. Consider the coarse shape morphisms r^* , i'^* and r'^* corresponding to the shape morphisms r, i' and r', respectively and put $\beta^* = r^* \circ r'^* \in Sh_0^*((W, w), (Y, y))$. By the hypothesis, there exists a coarse shape morphism $\alpha^* \in Sh_0^*((W, w), (X, x))$ given by $\langle [(\alpha_{\lambda}^n, \alpha)] \rangle$ such that $\tilde{F}^*(\alpha^*) = F^* \circ \alpha^* \in V_{\lambda}^{\beta^*}$.

Let $\mathbf{s} : (W, w) \to (\mathbf{W}, \mathbf{w}) = ((W_{\nu}, w_{\nu}), s_{\nu\nu'}, N)$ be an HPol₀-expansion of (W, w) and r' and i' given by $\langle [(r'_{\lambda'}, \varphi)] \rangle$ and $\langle [(i'_{\nu}, \psi)] \rangle$. Put $\nu' = \varphi(\lambda')$. We know $r' \circ i' = \mathcal{S}(1_{Y_{\lambda'}})$, so

$$r_{\lambda'}' \circ i_{\nu'}' \simeq_0 1_{Y_{\lambda'}}.$$
(6)

Also, we know $\mathcal{S}^*(q_{\lambda}) \circ F^* \circ \alpha^* = \mathcal{S}^*(q_{\lambda}) \circ \beta^*$ and β^* is given by $(r_{\mu} \circ r'_{\lambda'}), \mu \in \Lambda$. Hence there exist $\nu \geq \alpha(\lambda), \nu'$ and $n' \in \mathbb{N}$ such that for every $n \geq n'$

$$f_{\lambda}^{n} \circ \alpha_{\lambda}^{n} \circ s_{\alpha(\lambda)\nu} \simeq_{0} r_{\lambda} \circ r_{\lambda'}' \circ s_{\nu'\nu}.$$
(7)

Now for every $n \ge n'$, put $g^n = \alpha_{\lambda}^n \circ i'_{\alpha(\lambda)} : (Y_{\lambda'}, y_{\lambda'}) \to (X_{\lambda}, x_{\lambda})$. From (7), $f_{\lambda}^n \circ \alpha_{\lambda}^n \circ s_{\alpha(\lambda)\nu} i'_{\nu} \simeq_0 r_{\lambda} \circ r'_{\lambda'} \circ s_{\nu'\nu} i'_{\nu}$ and by (5) and (6), it follows that $f_{\lambda}^n \circ g^n = f_{\lambda}^n \circ \alpha_{\lambda}^n \circ i'_{\alpha(\lambda)} \simeq_0 r_{\lambda} \circ r'_{\lambda'} \circ i'_{\nu'} \simeq_0 r_{\lambda} \simeq_0 q_{\lambda\lambda'}$. \Box

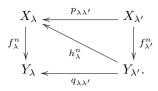
In the following, by Proposition 3.4 and Proposition 3.5, we characterize paradominations of uniformly movable pointed continua.

Corollary 3.6. Let (X, x) and (Y, y) be uniformly movable continua and $F^* : (X, x) \to (Y, y)$ be a coarse shape morphism. Then the following statements are equivalent:

- a) F^* is a paradomination.
- b) $\tilde{F}^*(Sh_0^*((Z,z),(X,x)))$ is a dense subspace of $Sh_0^*((Z,z),(Y,y))$, for every pointed continuum (Z,z).
- c) $\tilde{F}^*(Sh_0^*((W,w),(X,x)))$ is a dense subspace of $Sh_0^*((W,w),(Y,y))$.

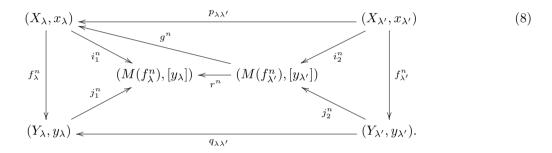
Bilan in [1], proved the following lemma which is a similar result to the well known Morita lemma [8], and characterizes isomorphisms in the category $\text{pro}^*-\mathcal{T}$.

Lemma 3.7. [1] Let $\mathbf{X} = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{Y} = (Y_{\lambda}, q_{\lambda\lambda'}, \Lambda)$ be inverse systems over the same index set and $\mathbf{f}^* : \mathbf{X} \to \mathbf{Y}$ be a morphism in pro^{*}- \mathcal{T} which admits a level representative $(1_{\Lambda}, f_{\lambda}^n)$. Then \mathbf{f}^* is an isomorphism if and only if for every $\lambda \in \Lambda$ there exist $\lambda' \geq \lambda$ and $n' \in \mathbb{N}$ such that, for every $n \geq n'$ there exists a morphism $h_{\lambda}^{n}: Y_{\lambda'} \to X_{\lambda}$ in \mathcal{T} , such that the following diagram commutes in \mathcal{T} :



Now, using techniques similar to those employed by Geoghegan in [5], we give another characterizations of isomorphisms in pro^* -HPol₀.

Lemma 3.8. Assume $((X_{\lambda}, x_{\lambda}), p_{\lambda\lambda'}, \Lambda)$ and $((Y_{\lambda}, y_{\lambda}), q_{\lambda\lambda'}, \Lambda)$ are inverse systems in pro^{*}-HPol₀. A level map $(f_{\lambda}^{n} : (X_{\lambda}, x_{\lambda}) \to (Y_{\lambda}, y_{\lambda}))$ in pro^{*}-HPol₀ is an isomorphism if and only if for every $\lambda \in \Lambda$, there exist $\lambda' \geq \lambda$ and $n' \in \mathbb{N}$ such that for every $n \geq n'$, there exist morphisms r^{n} and g^{n} making the following diagram commute in HPol₀



The space M(f) is the mapping cylinder of $f: (X, x_0) \to (Y, y_0)$ with base point $[x_0, 1] = [f(x_0)] = [y_0]$ and $i: (X, x_0) \to (M(f), [y_0])$ and $j: (Y, y_0) \to (M(f), [y_0])$ are maps given by i(x) = [x, 1] and j(y) = [y], for all $x \in X$ and $y \in Y$.

Proof. First, suppose for every $\lambda \in \Lambda$, there are $\lambda' \geq \lambda$ and $n' \in \mathbb{N}$ such that for every $n \geq n'$, there exist morphisms r^n and g^n that commute the above diagram. For every $n \geq n'$, put $h^n_{\lambda} = g^n \circ j^n_2 : (Y_{\lambda'}, y_{\lambda'}) \to (X_{\lambda}, x_{\lambda})$. We have

$$h_{\lambda}^{n} \circ f_{\lambda'}^{n} = g^{n} \circ j_{2}^{n} \circ f_{\lambda'}^{n} \simeq_{0} g^{n} \circ i_{2}^{n} \simeq_{0} p_{\lambda\lambda'},$$

and

$$f_{\lambda}^{n} \circ h_{\lambda}^{n} = f_{\lambda}^{n} \circ g^{n} \circ j_{2}^{n} \simeq_{0} q_{\lambda\lambda'}.$$

Then by the previous lemma, the level representative (f_{λ}^n) gives an isomorphism in pro^{*}-HPol₀.

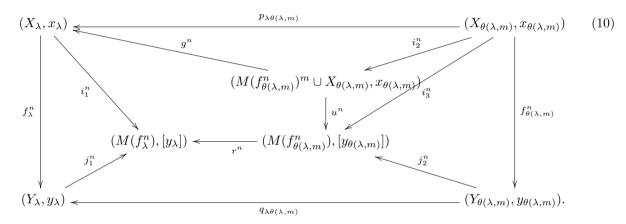
Conversely, since (f_{λ}^n) is an isomorphism in pro^{*}-HPol₀, by the previous lemma, for every $\lambda \in \Lambda$, there exist $\lambda' \geq \lambda$ and $n_1 \in \mathbb{N}$ such that for every $n \geq n_1$ there exists a morphism $h_{\lambda}^n : (Y_{\lambda'}, y_{\lambda'}) \to (X_{\lambda}, x_{\lambda})$ that $h_{\lambda}^n \circ f_{\lambda'}^n \simeq_0 p_{\lambda\lambda'}$ and $f_{\lambda}^n \circ h_{\lambda}^n \simeq_0 q_{\lambda\lambda'}$. Since F^* is a coarse shape morphism, there is $n_2 \in \mathbb{N}$ such that $f_{\lambda}^n \circ p_{\lambda\lambda'} \simeq_0 q_{\lambda\lambda'} \circ f_{\lambda'}^n$, for every $n \geq n_2$.

Put $n' = \max\{n_1, n_2\}$. For every $n \ge n'$, consider the map $H^n : X_{\lambda'} \times I \to Y_{\lambda}$ such that $H^n(-, 0) = f_{\lambda}^n \circ p_{\lambda\lambda'}$ and $H^n(-, 1) = q_{\lambda\lambda'} \circ f_{\lambda'}^n$. Define $r^n : (M(f_{\lambda'}^n), [y_{\lambda'}]) \to (M(f_{\lambda}^n), [y_{\lambda}])$ by $r^n([x, t]) = [p_{\lambda\lambda'}(x), 2t]$, if $0 \le t \le \frac{1}{2}$ and $r^n([x, t]) = [H^n(x, 2t - 1)]$, if $\frac{1}{2} \le t \le 1$ and $r^n([y]) = [q_{\lambda\lambda'}(y)]$, for every $x \in X_{\lambda'}$ and $y \in Y_{\lambda'}$, and define $g^n = h_{\lambda}^n \circ \pi^n : (M(f_{\lambda'}^n), [y_{\lambda'}]) \to (X_{\lambda}, x_{\lambda})$ in which $\pi^n : (M(f_{\lambda'}^n), [y_{\lambda'}]) \to (Y_{\lambda'}, y_{\lambda'})$ is projection. It is obvious that the diagram (8) commutes, for every $n \ge n'$. \Box

Consider the following diagram which commutes up to homotopy, for all but finitely many n

The maps r^n : $(M(f^n_{\lambda'}), [y_{\lambda'}]) \to (M(f^n_{\lambda}), [y_{\lambda}])$, which always exist by Lemma 3.8, are said the maps associated with the bonds.

Lemma 3.9. Let $((X_{\lambda}, x_{\lambda}), p_{\lambda\lambda'}, \Lambda)$ and $((Y_{\lambda}, y_{\lambda}), q_{\lambda\lambda'}, \Lambda)$ be inverse systems and $(f_{\lambda}^n : (X_{\lambda}, x_{\lambda}) \to (Y_{\lambda}, y_{\lambda}))$ be a level morphism in pro^{*}-HPol₀. Suppose the level map $(f_{\lambda_*}^n : \pi_k(X_\lambda, x_\lambda) \to \pi_k(Y_\lambda, y_\lambda))$ is an isomorphism in pro^{*}-Group, for all $k \leq m$. Then for every $\lambda \in \Lambda$, there exist $\theta(\lambda, m) \geq \lambda$ and $N \in \mathbb{N}$ such that for every $n \geq N$, there exist maps r^n and g^n making the following diagram commute in HPol₀



Proof. The level map $(f_{\lambda_*}^n : \pi_k(X_\lambda, x_\lambda) \to \pi_k(Y_\lambda, y_\lambda))$ is an isomorphism in pro^{*}-Group, so by Lemma 3.7, for every $\lambda \in \Lambda$ there exist $\beta \ge \lambda$ and $\gamma \ge \beta$ and $n_0 \in \mathbb{N}$ that for every $n \ge n_0$ there exist homomorphisms $a^n: \pi_k(Y_\beta, y_\beta) \to \pi_k(X_\lambda, x_\lambda) \text{ and } b^n: \pi_k(Y_\gamma, y_\gamma) \to \pi_k(X_\beta, x_\beta), \text{ where } f^n_{\lambda *} \circ a^n = q_{\alpha\beta *} \text{ and } b^n \circ f^n_{\gamma *} = p_{\beta\gamma *}.$

Also, there is $n_1 \in \mathbb{N}$ so that for every $n \ge n_1$, there are maps

$$(M(f_{\gamma}^n), [y_{\gamma}]) \xrightarrow{r_{\gamma}^n} (M(f_{\beta}^n), [y_{\beta}]) \xrightarrow{r_{\beta}^n} (M(f_{\lambda}^n), [y_{\lambda}])$$

associated with the bonds.

Consider X_{λ} as a subspace of $M(f_{\lambda}^n)$, with the map $l: X_{\lambda} \to M(f_{\lambda}^n)$, where $l(x) = [x, 0], x \in X_{\lambda}$, $\lambda \in \Lambda, n \in \mathbb{N}$. We abbreviate the pointed triple $(M(f_{\lambda}^n), X_{\lambda}, x_{\lambda})$ to $(M(f_{\lambda}^n), X_{\lambda})$. For the map r^n : $(M(f_{\lambda'}^n), [y_{\lambda'}]) \to (M(f_{\lambda}^n), [y_{\lambda}])$ associated with the bonds, it is obvious that $r^n(X_{\lambda'}) \subseteq X_{\lambda}$, and so we have the induced homomorphism $r_*^n : \pi_k(M(f_{\lambda'}^n), X_{\lambda'}) \to \pi_k(M(f_{\lambda}^n), X_{\lambda}).$

Put $n' = \max\{n_0, n_1\}$ and for every $n \ge n'$ consider the following commutative diagram

in which horizontal rows are exact. It is obvious that $r_{\beta_*}^n \circ r_{\gamma_*}^n : \pi_k(M(f_{\gamma}^n), X_{\gamma}) \to \pi_k(M(f_{\lambda}^n), X_{\lambda})$ is zero. Now take $\gamma = \gamma_{\lambda,k}$, then for every $\lambda \in \Lambda$ and $k \leq m$ there is $n' \in \mathbb{N}$ such that for every $n \geq n'$ there exists $r_{\lambda}^n : (M(f_{\gamma_{\lambda,k}}^n), [y_{\gamma_{\lambda,k}}]) \to (M(f_{\lambda}^n), [y_{\lambda}])$ associated with the bonds such that the induced homomorphism $r_{\lambda_*}^n : \pi_k(M(f_{\gamma_{\lambda,k}}^n), X_{\gamma_{\lambda,k}}) \to \pi_k(M(f_{\lambda}^n), X_{\lambda})$ is zero.

Consider the sequence $\lambda_0 = \lambda, \lambda_1 = \gamma_{\lambda_0,m}, \dots, \lambda_i = \gamma_{\lambda_{i-1},m-(i-1)}, \dots, \lambda_m = \gamma_{\lambda_{m-1},1}$. For every $1 \leq i \leq m$, there exists $n_i \in \mathbb{N}$ such that for every $n \geq n_i$ there exists map $r_i^n : (M(f_{\lambda_i}^n), [y_{\lambda_i}]) \to (M(f_{\lambda_{i-1}}^n), [y_{\lambda_{i-1}}])$ which induces the zero homomorphism $r_i^n : \pi_{m-(i-1)}(M(f_{\lambda_i}^n), X_{\lambda_i}) \to \pi_{m-(i-1)}(M(f_{\lambda_{i-1}}^n), X_{\lambda_{i-1}})$. Put $N = \max\{n_i\}$, then for every $n \geq N$, the map $s^n = r_1^n r_2^n \dots r_m^n : (M(f_{\lambda_m}^n), [y_{\lambda_m}]) \to (M(f_{\lambda}^n), [y_{\lambda}])$ induces the zero homomorphism $s_i^n : \pi_m(M(f_{\lambda_m}^n), X_{\lambda_m}) \to \pi_m(M(f_{\lambda}^n), X_{\lambda})$. We can find a cellular map $r^n : (M(f_{\lambda_m}^n), [y_{\lambda_m}]) \to (M(f_{\lambda}^n), [y_{\lambda}])$ homotopic to s^n rel X_{λ_m} such that $r^n(M(f_{\lambda_m}^n)^m) \subset X_{\lambda}$. Now take $\theta(\lambda, m) = \lambda_m \geq \lambda$ and $N = \max\{n_i\}$, then for every $n \geq N$, we have maps $r^n : (M(f_{\theta(\lambda,m)}^n), [y_{\theta(\lambda,m)}]) \to (M(f_{\lambda(n)}^n)) \cup X_{\theta(\lambda,m)} : (M(f_{\theta(\lambda,m)}^n)^m \cup X_{\theta(\lambda,m)}, x_{\theta(\lambda,m)}) \to (X_{\lambda}, x_{\lambda})$ such that the diagram (10) commutes. \Box

Let $\mathbf{p}: (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_{\lambda}, x_{\lambda}), p_{\lambda\lambda'}, \Lambda)$ be an HPol₀-expansion of a pointed topological space (X, x). Consider the inverse system

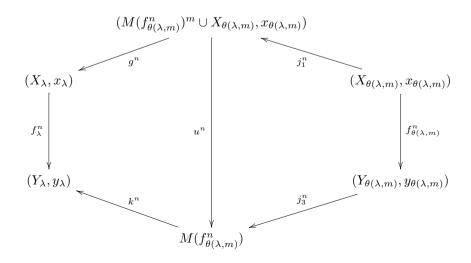
$$\mathbf{Sh}_0^*((Z,z),(X,x)) = (Sh_0^*((Z,z),(X_\lambda,x_\lambda)), p_{\lambda\lambda'*},\Lambda)$$

in pro-Top₀, for every pointed topological space (Z, z). Now, similar to the Theorem 1 of [10], we prove the following useful result.

Theorem 3.10. Let $F^* : (X, x) \to (Y, y)$ be a weak coarse shape equivalence. Then the induced morphism $\overline{F^*} : \mathbf{Sh}_0^*((P, p), (X, x)) \to \mathbf{Sh}_0^*((P, p), (Y, y))$ is an isomorphism in pro^{*}-Top₀, for every compact connected pointed polyhedron (P, p).

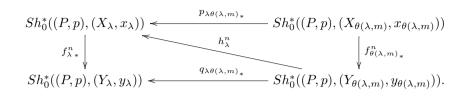
Proof. Let $\mathbf{p} : (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_{\lambda}, x_{\lambda}), p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{q} : (Y, y) \to (\mathbf{Y}, \mathbf{y}) = ((Y_{\lambda}, y_{\lambda}), q_{\lambda\lambda'}, \Lambda)$ be HPol₀-expansions of (X, x) and (Y, y), respectively and $(1_{\lambda}, f_{\lambda}^{n})$ be a level representative of F^{*} .

Let (P, p) be a compact connected pointed polyhedron, so dim $P = m < \infty$. Given $\lambda \in \Lambda$. By hypothesis, $(f_{\lambda*}^n : \pi_k(X_\lambda, x_\lambda) \to \pi_k(Y_\lambda, y_\lambda))$ is an isomorphism in pro*-Group, for all $k \leq m$, then by Lemma 3.9, there exist $\theta(\lambda, m) \geq \lambda$ and $N \in \mathbb{N}$ such that for every $n \geq N$ there are maps r^n and g^n for which diagram (10) commutes. Consider the following commutative diagram



in which $k^n = \pi^n \circ r^n$ and $\pi^n : (M(f^n_{\lambda}), [y_{\lambda}]) \to (Y_{\lambda}, y_{\lambda})$ is projection. By the approximation theorem, we conclude that $u^n_* : Sh^*_0((P, p), (M(f^n_{\theta(\lambda,m)})^m \cup X_{\theta(\lambda,m)}, x_{\theta(\lambda,m)})) \to Sh^*_0((P, p), (M(f^n_{\theta(\lambda,m)}), [y_{\theta(\lambda,m)}]))$ is a

bijection, so for every $n \ge N$ we have the map $h_{\lambda}^n = g_*^n \circ u_*^{n-1} \circ j_{3*}^n = Sh_0^*((P,p), (Y_{\theta(\lambda,m)}, y_{\theta(\lambda,m)})) \to Sh_0^*((P,p), (X_{\lambda}, x_{\lambda}))$ such that the following diagram commutes



Now by Lemma 3.7, the result holds. \Box

Theorem 3.11. Let (X, x) and (Y, y) be pointed continua and $F^* : (X, x) \to (Y, y)$ be a coarse shape morphism. If F^* is a weak coarse shape equivalence and (Y, y) is movable, then F^* is a paradomination.

Proof. Let $\mathbf{p} : (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_{\lambda}, x_{\lambda}), p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{q} : (Y, y) \to (\mathbf{Y}, \mathbf{y}) = ((Y_{\lambda}, y_{\lambda}), q_{\lambda\lambda'}, \Lambda)$ be HPol₀-expansions of (X, x) and (Y, y), respectively and $(1_{\lambda}, f_{\lambda}^{n})$ be a level representative of F^{*} .

Given $\lambda \in \Lambda$. (Y, y) is movable, so there is movability index $\lambda' \geq \lambda$ such that for every $\lambda'' \geq \lambda$, there exists $r_{\lambda} : (Y_{\lambda'}, y_{\lambda'}) \to (Y_{\lambda''}, y_{\lambda''})$ with $q_{\lambda\lambda''} \circ r_{\lambda} \simeq_0 q_{\lambda\lambda'}$.

By Theorem 3.10, $\overline{F^*}$: $\mathbf{Sh}_0^*((Y_{\lambda'}, y_{\lambda'}), (X, x)) \to \mathbf{Sh}_0^*((Y_{\lambda'}, y_{\lambda'}), (Y, y))$ is an isomorphism in pro^{*}-Top₀. Hence by Lemma 3.7, there exist $\lambda'' \geq \lambda$ and $n' \in \mathbb{N}$ so that for every $n \geq n'$, there exists h_{λ}^n : $Sh_0^*((Y_{\lambda'}, y_{\lambda'}), (Y_{\lambda''}, y_{\lambda''})) \to Sh_0^*((Y_{\lambda'}, y_{\lambda'}), (X_{\lambda}, x_{\lambda}))$ that commutes the following diagram

$$\begin{array}{c|c} Sh_0^*((Y_{\lambda'}, y_{\lambda'}), (X_{\lambda}, x_{\lambda})) & \longleftarrow & p_{\lambda\lambda''*} \\ & & & & \\ f_{\lambda^**}^n & & & \\ Sh_0^*((Y_{\lambda'}, y_{\lambda'}), (Y_{\lambda}, y_{\lambda})) & \longleftarrow & Sh_0^*((Y_{\lambda'}, y_{\lambda'}), (X_{\lambda''}, x_{\lambda''})) \\ & & & \\ & & \\ Sh_0^*((Y_{\lambda'}, y_{\lambda'}), (Y_{\lambda}, y_{\lambda})) & \longleftarrow & Sh_0^*((Y_{\lambda'}, y_{\lambda'}), (Y_{\lambda''}, y_{\lambda''})). \end{array}$$

Let $r^*: (Y_{\lambda'}, y_{\lambda'}) \to (Y_{\lambda''}, y_{\lambda''})$ be the coarse shape morphism corresponding to the map $r_{\lambda}: (Y_{\lambda'}, y_{\lambda'}) \to (Y_{\lambda''}, y_{\lambda''})$. Consider the coarse shape morphism $h_{\lambda}^n(r^*)$ which is given by $(a^m: (Y_{\lambda'}, y_{\lambda'}) \to (X_{\lambda}, x_{\lambda}))$, $m \in \mathbb{N}$. We know $f_{\lambda*}^n(h_{\lambda}^n(r^*)) = q_{\lambda\lambda''*}(r^*)$, in which $f_{\lambda*}^n(h_{\lambda}^n(r^*))$ and $q_{\lambda\lambda''*}(r^*)$ are coarse shape morphisms from $(Y_{\lambda'}, y_{\lambda'})$ to $(Y_{\lambda}, y_{\lambda})$ given by $(f_{\lambda}^n \circ a^m)$ and $(q_{\lambda\lambda''} \circ r_{\lambda})$, respectively. Then there exists $N_n \in \mathbb{N}$ such that for every $m \geq N_n$, $f_{\lambda}^n \circ a^m \simeq_0 q_{\lambda\lambda''} \circ r_{\lambda}$.

Now, if we consider $\lambda' \geq \lambda$ and $n' \in \mathbb{N}$, then there exists the map $g^n = a^{N_n} : (Y_{\lambda'}, y_{\lambda'}) \to (X_{\lambda}, x_{\lambda})$ with $f_{\lambda}^n \circ g^n = f_{\lambda}^n \circ a^{N_n} \simeq_0 q_{\lambda\lambda''} \circ r_{\lambda} \simeq_0 q_{\lambda\lambda'}$, for every $n \geq n'$. \Box

Theorem 3.12. Let (X, x) and (Y, y) be pointed continua and $F^* : (X, x) \to (Y, y)$ be a coarse shape morphism. If F^* is a weak coarse shape equivalence and (Y, y) is movable, then F^* is an epimorphism in the category Sh_0^* .

Proof. Let $\mathbf{p} : (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_{\lambda}, x_{\lambda}), p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{q} : (Y, y) \to (\mathbf{Y}, \mathbf{y}) = ((Y_{\lambda}, y_{\lambda}), q_{\lambda\lambda'}, \Lambda)$ be HPol₀-expansions of (X, x) and (Y, y), respectively and $(1_{\lambda}, f_{\lambda}^{n})$ be a level representative of F^{*} .

Consider the coarse shape morphisms $G^*, H^* : (Y, y) \to (Z, z)$ such that $G^* \circ F^* = H^* \circ F^*$, in which (Z, z) is a pointed topological space with HPol₀-expansion $\mathbf{r} : (Z, z) \to (\mathbf{Z}, \mathbf{z}) = ((Z_{\nu}, z_{\nu}), r_{\nu\nu'}, N)$ and G^* and H^* are given by $\langle [(g_{\nu}^n, \varphi)] \rangle$ and $\langle [(h_{\nu}^n, \psi)] \rangle$, respectively. We show that $G^* = H^*$.

Given $\nu \in N$. Since $G^* \circ F^* = H^* \circ F^*$, there exist $\lambda \ge \varphi(\nu), \psi(\nu)$ and $n_1 \in \mathbb{N}$ such that $g_{\nu}^n \circ f_{\varphi(\nu)}^n \circ p_{\varphi(\nu)\lambda} \simeq_0 h_{\nu}^n \circ f_{\psi(\nu)}^n \circ p_{\psi(\nu)\lambda}$, for every $n \ge n_1$.

Also, since F^* is a coarse shape morphism, there is $n_2 \in \mathbb{N}$ so that $f_{\varphi(\nu)}^n \circ p_{\varphi(\nu)\lambda} \simeq_0 q_{\varphi(\nu)\lambda} \circ f_{\lambda}^n$ and $f_{\psi(\nu)}^n \circ p_{\psi(\nu)\lambda} \simeq_0 q_{\psi(\nu)\lambda} \circ f_{\lambda}^n$, for every $n \ge n_2$. Hence for every $n \ge n_1, n_2$,

$$g_{\nu}^{n} \circ q_{\varphi(\nu)\lambda} \circ f_{\lambda}^{n} \simeq_{0} h_{\nu}^{n} \circ q_{\psi(\nu)\lambda} \circ f_{\lambda}^{n}.$$

$$\tag{11}$$

On the other hand, by Theorem 3.11 F^* is a paradomination, so there exist $\lambda' \geq \lambda$ and $n_3 \in \mathbb{N}$ such that for every $n \geq n_3$ there exists a map $g^n : (Y_{\lambda'}, y_{\lambda'}) \to (X_{\lambda}, x_{\lambda})$ with

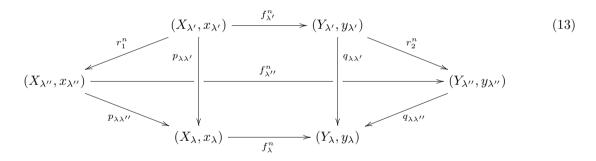
$$f_{\lambda}^n \circ g^n \simeq_0 q_{\lambda\lambda'}. \tag{12}$$

Now, if we consider $\lambda' \ge \varphi(\nu), \psi(\nu)$ and $n' = \max\{n_1, n_2, n_3\}$, then by (11) and (12),

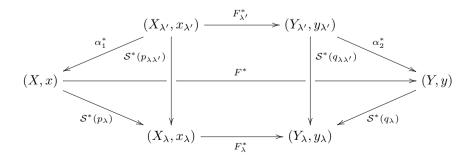
$$\begin{split} g_{\nu}^{n} \circ q_{\varphi(\nu)\lambda'} &\simeq_{0} g_{\nu}^{n} \circ q_{\varphi(\nu)\lambda} \circ q_{\lambda\lambda'} \\ &\simeq_{0} g_{\nu}^{n} \circ q_{\varphi(\nu)\lambda} \circ f_{\lambda}^{n} \circ g^{n} \\ &\simeq_{0} h_{\nu}^{n} \circ q_{\psi(\nu)\lambda} \circ f_{\lambda}^{n} \circ g^{n} \\ &\simeq_{0} h_{\nu}^{n} \circ q_{\psi(\nu)\lambda} \circ q_{\lambda\lambda'} \\ &\simeq_{0} h_{\nu}^{n} \circ q_{\psi(\nu)\lambda'}, \end{split}$$

for every $n \ge n'$. It follows that $G^* = H^*$. \Box

Definition 3.13. Let (X, x) and (Y, y) be pointed topological spaces and $F^* : (X, x) \to (Y, y)$ be a coarse shape morphism. We say (X, x) and (Y, y) are simultaneously movable according to F^* if there are HPol₀-expansions $\mathbf{p} : (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_\lambda, x_\lambda), p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{q} : (Y, y) \to (\mathbf{Y}, \mathbf{y}) = ((Y_\lambda, y_\lambda), q_{\lambda\lambda'}, \Lambda)$ of (X, x) and (Y, y), respectively and a level representative $(1_\lambda, f_\lambda^n)$ of F^* such that for every $\lambda \in \Lambda$, there exist $\lambda' \geq \lambda$ and $n' \in \mathbb{N}$ so that for every $\lambda'' \geq \lambda$ and $n \geq n'$ there exist maps $r_1^n : (X_{\lambda'}, x_{\lambda'}) \to (X_{\lambda''}, x_{\lambda''})$ and $r_2^n : (Y_{\lambda'}, y_{\lambda'}) \to (Y_{\lambda''}, y_{\lambda''})$ with the following commutative diagram



Also, we say (X, x) and (Y, y) are simultaneously uniformly movable according to F^* if for every $\lambda \in \Lambda$, there exist $\lambda' \geq \lambda$ and coarse shape morphisms $\alpha_1^* : (X_{\lambda'}, x_{\lambda'}) \to (X, x)$ and $\alpha_2^* : (Y_{\lambda'}, y_{\lambda'}) \to (Y, y)$ such that the following diagram commutes



in which F_{λ}^* and $F_{\lambda'}^*$ are coarse shape morphisms given by $\langle [(f_{\lambda}^n)] \rangle$ and $\langle [(f_{\lambda'}^n)] \rangle$, respectively.

Theorem 3.14. Let (X, x) and (Y, y) be pointed continua and $F^* : (X, x) \to (Y, y)$ be a weak coarse shape equivalence. If (X, x) and (Y, y) are simultaneously movable according to F^* , then F^* is a coarse shape equivalence.

Proof. Let $\mathbf{p} : (X, x) \to (\mathbf{X}, \mathbf{x}) = ((X_{\lambda}, x_{\lambda}), p_{\lambda\lambda'}, \Lambda)$ and $\mathbf{q} : (Y, y) \to (\mathbf{Y}, \mathbf{y}) = ((Y_{\lambda}, y_{\lambda}), q_{\lambda\lambda'}, \Lambda)$ be HPol₀-expansions of (X, x) and (Y, y), respectively and $(1_{\Lambda}, f_{\lambda}^{n})$ be a level representative of F^{*} .

First, we show that for every $\lambda \in \Lambda$, there exist $\lambda' \geq \lambda$ and $M_{\lambda} \in \mathbb{N}$ such that the triple $(\lambda, \lambda', M_{\lambda})$ satisfies the following condition:

(**) For any $n \ge M_{\lambda}$ and any compact connected pointed polyhedron (P, p), (i) Every map $h: (P, p) \to (Y_{\lambda'}, y_{\lambda'})$ admits a map $k^n: (P, p) \to (X_{\lambda}, x_{\lambda})$ so that

$$f_{\lambda}^n \circ k^n \simeq_0 q_{\lambda\lambda'} \circ h.$$

(*ii*) For any two maps $k_1, k_2 : (P, p) \to (X_{\lambda'}, x_{\lambda'})$ with $f_{\lambda'}^n \circ k_1 \simeq_0 f_{\lambda'}^n \circ k_2$, we have

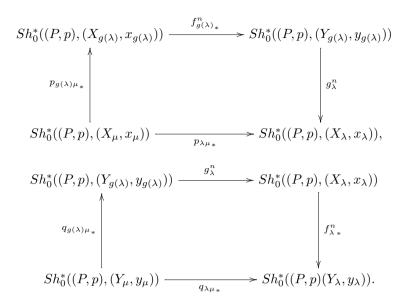
$$p_{\lambda\lambda'} \circ k_1 \simeq_0 p_{\lambda\lambda'} \circ k_2$$

Given $\lambda \in \Lambda$. (X, x) and (Y, y) are simultaneously movable according to F^* , so there exist $\lambda' \geq \lambda$ and $n_0 \in \mathbb{N}$ which satisfy in Definition 3.13.

Let (P,p) be a compact connected pointed polyhedron. By Theorem 3.10, the morphism $\overline{F^*}$: $\mathbf{Sh}_0^*((P,p),(X,x)) \to \mathbf{Sh}_0^*((P,p),(Y,y))$ is an isomorphism in pro*-Top₀, so there exists a morphism $G: \mathbf{Sh}_0^*((P,p),(Y,y)) \to \mathbf{Sh}_0^*((P,p),(X,x))$ given by (g_λ^n,g) which is the inverse of $\overline{F^*}$. Since $G \circ \overline{F^*} = id$, so by the definition there exist $\lambda_1 \geq \lambda, g(\lambda)$ and $n_1 \in \mathbb{N}$ such that for every $n \geq n_1$ the following diagram commutes:

and since $\overline{F^*} \circ G = id$, so there exist $\lambda_2 \ge \lambda, g(\lambda)$ and $n_2 \in \mathbb{N}$ such that for every $n \ge n_2$ the following diagram commutes:

Hence for a $\mu \geq \lambda_1, \lambda_2$, the following diagrams are commutative, for every $n \geq \max\{n_1, n_2\}$



Since $\mu \geq \lambda$, by Definition 3.13, for any $n \geq n_0$, there exist the maps $r_1^n : (X_{\lambda'}, x_{\lambda'}) \to (X_{\mu}, x_{\mu})$ and $r_2^n : (Y_{\lambda'}, y_{\lambda'}) \to (Y_{\mu}, y_{\mu})$ satisfying (13).

Also, since F^* is a coarse shape morphism, for $\mu \ge g(\lambda)$, there exists $n_3 \in \mathbb{N}$ such that for every $n \ge n_3$,

$$f_{g(\lambda)}^n \circ p_{g(\lambda)\mu} \simeq_0 q_{g(\lambda)\mu} \circ f_{\mu}^n.$$
(14)

Put $M_{\lambda} = \max\{n_0, n_1, n_2, n_3\}$ and let $n \ge M_{\lambda}$.

To prove (i), consider a map $h: (P,p) \to (Y_{\lambda'}, y_{\lambda'})$. Let α^* be the coarse shape morphism from (P,p) to (Y_{μ}, y_{μ}) given by $\langle [(a^m)] \rangle$, where $a^m = r_2^n \circ h : (P,p) \to (Y_{\mu}, y_{\mu})$, for every $m \in \mathbb{N}$. Then $\beta^* = (g_{\lambda}^n \circ q_{g(\lambda)\mu_*})(\alpha^*)$ is a coarse shape morphism from (P,p) to $(X_{\lambda}, x_{\lambda})$ given by $\langle [(b^m)] \rangle$. We know $f_{\lambda*}^n \circ g_{\lambda}^n \circ q_{g(\lambda)\mu_*}(\alpha^*) = q_{\lambda\mu_*}(\alpha^*)$, i.e., two coarse shape morphisms $f_{\lambda*}^n(\beta^*)$ and $q_{\lambda\mu_*}(\alpha^*)$ given by $\langle [(c^m = f_{\lambda}^n \circ b^m)] \rangle$ and $\langle [(d^m = q_{\lambda\mu} \circ r_2^n \circ h)] \rangle$, respectively, are equal. So by the definition, there exists $M_n \in \mathbb{N}$ that for every $m \geq M_n$,

$$f_{\lambda}^n \circ b^m \simeq_0 q_{\lambda\mu} \circ r_2^n \circ h$$

Take $k^n = b^{M_n} : (P, p) \to (X_\lambda, x_\lambda)$. Hence, by (13)

$$f_{\lambda}^{n} \circ k^{n} = f_{\lambda}^{n} \circ b^{M_{n}} \simeq_{0} q_{\lambda\mu} \circ r_{2}^{n} \circ h \simeq_{0} q_{\lambda\lambda'} \circ h.$$

To prove (*ii*), suppose $k_1, k_2 : (P, p) \to (X_{\lambda'}, x_{\lambda'})$ are maps with $f_{\lambda'}^n \circ k_1 \simeq_0 f_{\lambda'}^n \circ k_2$ and so $r_2^n \circ f_{\lambda'}^n \circ k_1 \simeq_0 r_2^n \circ f_{\lambda'}^n \circ k_2$. By (13), $r_2^n \circ f_{\lambda'}^n \simeq_0 f_{\mu}^n \circ r_1^n$, so $f_{\mu}^n \circ r_1^n \circ k_1 \simeq_0 f_{\mu}^n \circ r_1^n \circ k_2$ and then $q_{g(\lambda)\mu} \circ f_{\mu}^n \circ r_1^n \circ k_1 \simeq_0 q_{g(\lambda)\mu} \circ f_{\mu}^n \circ r_1^n \circ k_2$. From (14), $f_{g(\lambda)}^n \circ p_{g(\lambda)\mu} \circ r_1^n \circ k_1 \simeq_0 f_{g(\lambda)}^n \circ p_{g(\lambda)\mu} \circ r_1^n \circ k_2$, hence $f_{g(\lambda)_*}^n \circ p_{g(\lambda)\mu_*}(l_1^*) = f_{g(\lambda)_*}^n \circ p_{g(\lambda)\mu_*}(l_2^*)$, in which l_1^* and l_2^* are coarse shape morphisms in $Sh_0^*((P, p), (X_{\mu}, x_{\mu}))$ given by $\langle [(l_1^m = r_1^n \circ k_1)] \rangle$ and $\langle [(l_2^m = r_1^n \circ k_2)] \rangle$, respectively. Then $g_{\lambda}^n \circ f_{g(\lambda)_*}^n \circ p_{g(\lambda)\mu_*}(l_1^*) = g_{\lambda}^n \circ f_{g(\lambda)_*}^n \circ p_{g(\lambda)\mu_*}(l_2^*)$ and so $p_{\lambda\mu_*}(l_1^*) = p_{\lambda\mu_*}(l_2^*)$ as coarse shape morphisms which are given by $\langle [(p_{\lambda\mu} \circ l_1^m = p_{\lambda\mu} \circ r_1^n \circ k_1)] \rangle$ and $\langle [(p_{\lambda\mu} \circ l_2^m = p_{\lambda\mu} \circ r_1^n \circ k_2)] \rangle$, respectively. Therefore,

$$p_{\lambda\mu} \circ r_1^n \circ k_1 \simeq_0 p_{\lambda\mu} \circ r_1^n \circ k_2$$

and by (13),

Finally, to prove that F^* is a coarse shape equivalence, by Lemma 3.7, it is sufficient to show that the morphism $\mathbf{f}^* : (\mathbf{X}, \mathbf{x}) \to (\mathbf{Y}, \mathbf{y})$ given by the level map (f^n_{λ}) is an isomorphism in pro^{*}-HPol₀.

Given $\lambda \in \Lambda$. By the above argument, there exist triples $(\lambda, \lambda', M_{\lambda})$ and $(\lambda', \lambda'', M_{\lambda'})$ satisfying the condition (**).

Since F^* is a coarse shape morphism, there exists $n_0 \in \mathbb{N}$ that for every $n \ge n_0$,

$$f_{\lambda}^n \circ p_{\lambda\lambda'} \simeq_0 q_{\lambda\lambda'} \circ f_{\lambda'}^n$$

and there exists $n_1 \in \mathbb{N}$ that for every $n \ge n_1$,

$$f_{\lambda'}^n \circ p_{\lambda'\lambda''} \simeq_0 q_{\lambda'\lambda''} \circ f_{\lambda''}^n$$

Now consider $\lambda'' \geq \lambda$ and put $N = \max\{n_0, n_1, M_\lambda, M_{\lambda'}\}$. Let $n \geq N$. If $P = Y_{\lambda''}$ and h = id: $(Y_{\lambda''}, y_{\lambda''}) \to (Y_{\lambda''}, y_{\lambda''})$, then by (i) there exists a map $k^n : (Y_{\lambda''}, y_{\lambda''}) \to (X_{\lambda'}, x_{\lambda'})$ such that

$$f^n_{\lambda'} \circ k^n \simeq_0 q_{\lambda'\lambda''}. \tag{15}$$

Also, put $P = X_{\lambda''}$ and $k_1 = k^n \circ f_{\lambda''}^n$ and $k_2 = p_{\lambda'\lambda''}$ which are maps from $X_{\lambda''} \to X_{\lambda'}$. Hence

$$f_{\lambda'}^n \circ k_1 = f_{\lambda'}^n \circ k^n \circ f_{\lambda''}^n \simeq_0 q_{\lambda'\lambda''} \circ f_{\lambda''}^n \simeq_0 f_{\lambda'}^n \circ p_{\lambda'\lambda''} \simeq_0 f_{\lambda'}^n \circ k_2.$$

So by (ii),

$$p_{\lambda\lambda'} \circ k_1 \simeq_0 p_{\lambda\lambda'} \circ k_2.$$

Take $h_{\lambda}^n = p_{\lambda\lambda'} \circ k^n : (Y_{\lambda''}, y_{\lambda''}) \to (X_{\lambda}, x_{\lambda})$. We have

$$f_{\lambda}^{n} \circ h_{\lambda}^{n} = f_{\lambda}^{n} \circ p_{\lambda\lambda'} \circ k^{n} \simeq_{0} q_{\lambda\lambda'} \circ f_{\lambda'}^{n} \circ k^{n} \simeq_{0} q_{\lambda\lambda'} \circ q_{\lambda'\lambda''} \simeq_{0} q_{\lambda\lambda''},$$

and

$$h_{\lambda}^{n} \circ f_{\lambda''}^{n} = p_{\lambda\lambda'} \circ k^{n} \circ f_{\lambda''}^{n} = p_{\lambda\lambda'} \circ k_{1} \simeq_{0} p_{\lambda\lambda'} \circ k_{2} = p_{\lambda\lambda'} \circ p_{\lambda'\lambda''} \simeq_{0} p_{\lambda\lambda''}. \qquad \Box$$

Acknowledgement

This research was supported by a grant from Ferdowsi University of Mashhad—Graduate Studies (No. 3/41763).

References

- [1] N.K. Bilan, N. Uglesic, The coarse shape, Glas. Mat. 42 (2007) 145–187.
- [2] N.K. Bilan, N. Uglesic, The Whitehead type theorems in coarse shape theory, Homol. Homotopy Appl. 15 (2013) 103–125.
- [3] E. Cuchillo-Ibanez, M.A. Morón, F.R. Ruiz del Portal, J.M.R. Sanjurjo, A topology for the sets of shape morphisms, Topol. Appl. 94 (1999) 51–60.
- [4] J. Dydak, The Whitehead and the Smale theorems in shape theory, Diss. Math. 156 (1979) 1–55.
- [5] R. Geoghegan, Elementary proofs of stability theorems in pro-homotopy and shape, Gen. Topol. Appl. 8 (1978) 265–281.
- [6] F. Ghanei, H. Mirebrahimi, B. Mashayekhy, T. Nasri, Topological coarse shape homotopy groups, Topol. Appl. 36 (2010) 255–266.
- [7] S. Mardešić, J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
- [8] K. Morita, The Hurewicz and the Whitehead theorems in shape theory, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 12 (1974) 246–258.
- [9] M.A. Morón, F.R. Ruiz del Portal, On weak shape equivalences, Topol. Appl. 92 (1999) 225–236.
- [10] M.A. Morón, F.R. Ruiz del Portal, Ultrametrics and infinite dimensional Whitehead theorems in shape theory, Manuscr. Math. 89 (1996) 325–333.
- [11] R.H. Overton, J. Segal, A new construction of movable compacta, Glas. Mat. 6 (1971) 361–363.