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Abstract A special class of higher curvature theories of
gravity, Ricci cubic gravity (RCG), in general d dimen-
sional space-time has been investigated in this paper. We
have used two different approaches, the linearized equations
of motion and the auxiliary field formalism to study the mas-
sive and massless graviton propagating modes of the AdS
background. Using the auxiliary field formalism, we have
found the renormalized boundary stress tensor to compute
the mass of the Schwarzschild—AdS and Lifshitz black holes
in RCG theory.

1 Introduction

The Einstein—Hilbert action, as an effective gravitational the-
ory, receives different higher curvature corrections. The ori-
gin of these corrections may come from quantum gravity or
string theory [1-3]. Specifically these gravitational theories
with higher curvature corrections in the presence of a cos-
mological parameter become more important in the context
of AdS/CFT correspondence (see for example [4,5]).

There are many questions arising in these theories when
one studies different black hole solutions. For example the
existence of Schwarzschild—-AdS (SAdS) or Lifshitz black
holes is expected in these theories and consequently the com-
putation of the mass or thermodynamical properties such as
entropy will be a challenging problem.

The linear excitation of the gravitational field or graviton
mode is another important object in these theories. Itis a well-
known property for these theories to have massive excitation
modes in addition to the massless gravitons. The stability
of vacuum solution requires tachyon-free conditions, which
restrict the theory to specific regions of the parameter space.

Another common property in gravitational theories with
higher curvature terms is the existence of the scalar and tensor
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ghost modes. In pure theories of gravity, although a scalar
ghost mode can be eliminated by proper assumptions such
as traceless condition of the linearized equations of motion,
the tensor ghost modes may survive and destroy the unitarity
of the dual CFTs. At first sight, the absence of tensor ghost
modes can be achieved by going to the critical points, but
at these points the massive modes degenerate into massless
graviton mode and are replaced by ghost-like logarithmic
modes. This theory may include a unitary subspace through
the truncation of the logarithmic modes by imposing proper
boundary conditions at the linear level. The unitarity problem
of these theories has been discussed in [6—11].

Many different properties of higher curvature theories of
gravity have been investigated in different space-time dimen-
sions. For example in d = 3, gravitational theories known as
massive gravities have been studied extensively [7,12-21].
Other higher curvature theories of gravity are also studied in
five and six dimensions; for example see [22] and [23]. In
general d dimensions one can follow recent work, for exam-
ple [24-28].

In this paper we are interested in studying a special class
of higher curvature theories of gravity, Ricci Cubic Grav-
ity (RCG), in general d dimensional space-time in the con-
text that we mentioned above. We will employ two different
approaches, the linearized equations of motion and the aux-
iliary field formalism.

In the first approach we study the linear excitations around
ad dimensional Anti-de Sitter (AdS;) space-time and we find
the stability conditions of this black hole. We will show that
there are restrictions on the free parameters of the RCG when
we are eliminating the scalar ghost modes. We also show that
this model includes two massive graviton propagators and a
massless one. We analyze various critical points of this theory
where the massive modes are degenerate with the massless
mode. We also compute the energy of the excitation modes
and the Abbott—Deser [29] energy of different black hole
solutions.
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In the second approach by a reformulation of RCG with the
help of auxiliary fields we will find a Lagrangian of second
order in derivatives of the fields. The linearization around the
AdS, background up to the second order of the gravitational
coupling generates the Fierz—Pauli massive action. We can
read again the mass of the excitation modes by this approach.

The mass of SAdS and Lifshitz black holes can be com-
puted in different ways, either by calculating the free energy
and using the first law of thermodynamics or by computing
the renormalized boundary energy-momentum tensor.

This paper is organized as follows: In Sect. 2, we begin
with a six-derivative action constructed out of Ricci curva-
ture tensor and its covariant derivatives. We study the gravi-
ton modes by linearizing the equations of motion around
the AdS; vacuum. In order to construct a theory free of the
scalar ghost modes, we should impose two constraints on the
couplings of this theory. We show that RCG contains two
massive graviton modes in addition to a massless one. We
also discuss the stability of this vacuum solution. In last part
of this section we calculate the conserved quantities of theory
by the Abbott—Deser method [30].

In Sect. 3, we reformulate the RCG action with the help
of two auxiliary fields and we linearize it around the AdS,
background up to the second order of gravitational coupling.
Then we rewrite this action as a linear combination of three
Fierz-Pauli massive Lagrangians for spin-2 fields [7]. We
also find the energy of the linear excitations to reconfirm the
stability arguments in Sect. 2.

In Sect. 4, we will use the reformulated RCG action to
compute the boundary energy-momentum tensor by using
the technique which has been introduced in [31]. For this
purpose, we will require a well-posed variational principle
which is provided by some generalized Gibbons—Hawking
terms.

We study a SAdS black hole solution of RCG in Sect. 5. We
find the thermodynamical properties, such as temperature,
free energy and entropy. We also compute the finite value of
the mass of SAdS from the renormalized boundary energy-
momentum tensor by adding a proper counter-term to the
boundary terms. We show that this mass is compatible with
the first law of thermodynamics for black holes.

As a more complicated case, the Lifshitz black hole is
investigated in Sect. 6. We have tried to find a finite mass from
the boundary stress tensor, consistent with the first law of
thermodynamics. We observe that this is similar to the three
dimensional case in [31]; there is an ambiguity for writing
the counter-terms.

Section 7 contains the results of previous sections but in
the special number of dimensions d = 3 to obtain the central
charges of dual CFTs. In the last section we summarize and
discuss our results. Almost all parts of the calculations in
this paper have been done by the Mathematica package xAct
[56].
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2 Ricci cubic gravity in d dimensions

Let us start with the most general Ricci cubic gravity (RCG)
in d dimensions by adding all possible independent contrac-
tions of the Ricci tensor and its covariant derivatives to the
Einstein—Hilbert action in the presence of a cosmological
parameter A¢. We restrict ourselves to terms with at most six
derivatives, i.e.,

1
S = = / ddx./—g<oR —2A0+ a1 R"™ Ry, + arR?
+ b1V, RV*R + bV, RopV* R*? + c1 R*P R, Ry,

+ c2RR*P Ry + C3R3), 2.1

where o is a dimensionless parameter and « is the gravi-
tational coupling constant. These parameters together with
the other couplings ai, az, b1, ba, c1, c2 and ¢3 make the
parameter space of this theory. The six-derivative equations
of motion for action (2.1) are given by

7
1 .
0 (Ryw = 5 Rguw) + Aogu + Y H) =0, (2.2)
i=1
where
1
HY = a <(g,wD—VMVV)R + O(Ru = 5 Rgy)
1 p
+2(R;mvﬁ - ZguvRaﬁ)R ) (2.3a)

1
Hl(ﬁ)) = 92<2(8MVD —V,V))R+2R(R,, — ZRg,w)),
(2.3b)
H;(;v) = b <2VMVVDR —2R,WOR+ V,RV,R
(2.3¢)

1
— PR + EVVRVVR)g,W),

HY) = bz( — 2R,y +2VY V(,ORy), — 2RY (,0R,),

—2R* VPV Rap + 2RV Vi Ry p
+ VYRV, Ry, + ViRV, Ryp — 2V R*P Vo Ryyp

1
— (VOVPOR.s + 5VV RV, Raﬁ)g,LV), (2.3d)
3 3
HY) = c <3RWR°‘ﬂRﬁV + EgWVaVﬁ(Rany) + EDRV,LR,,U

1
—6Vy Vi (RP )R ) — 5g,wRO‘ﬂRﬂV Rya>, (2.3e)
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1
H) = cz((R,w — 38R Rug R +2RRY , Ry,
+ 8w Va Vg (RPR) + O(RR )
— 2V),V(M(RVV)R)

+ (g0 — Vi Vi) (Reg R ), (2.3)

1
H(7)—C3<3RWR +3(guwd — V, V) R? —ngR3).

(2.3g)
2.1 The linearized equations of motion

Let us consider a maximally symmetric space in d dimen-
sions as a solution to the equations of motion (2.2). The Rie-
mann, Ricci and scalar curvature tensors can be written as

Ra/tﬂv = A(gaﬁg;w - guﬂgav)7
Rup = AW — Dgap. R = Ad(d — 1),

where A is the cosmological constant. By inserting the above
tensors into the equations of motion (2.3a)—(2.3g) we will
find that the cosmological parameter Ag is related to the
cosmological constant via

2.4

0= %(d - 1)A<(d —2)0 + (d —4)(d — DA(a) + dan)

+(d—6)(d— 1)2A%(c) +dey + d2C3)>. 2.5)

Now we suppose that the metric fluctuations 4, are around
an AdS,; background g,,,, of which the radius has been fixed
by Eq. (2.5) and the metric is given by g, = guv +xhy. If
we insert this into the equation of motion (2.2) we will find
the linearized equation of motion as follows!:

gk, = 6Guu(h) + 016, (G(h)) + 02G,1,(G(G(R)))
+ 0380 =V, Vy + (d — DAZu)RY

+ 004G =V Vy + (d — DAZORY.  (2.6)

In the above equation the various constants are defined as
follows:

5 =0+ (d— 1)A(2a1 +2dar +3(d — 1)
X (cl +d(c +dC3)>A),
o1 = —2(a1 - (21;2 —(d—1)(Bc; + d62)>A>, oy= — 4by,

03 =

Ly d—4 ba(d —3)(d —2)2 +(d—1
5 (4a2 = @ = yar = (b2 =3 =2 + @ - 1)

2.7)
x (3der = 12(c1 +de3) + e2(d(d — 4) - 9)) ) ),

1
o4 = E<_4b1 — by(d(d — 5) +8)).

! We have used the same approach and notation as [7].

In Eq. (2.6) we have used G,,,, (h) as a linearized expression
for the Einstein tensor, which we define by [32]
G =R —

1 1
~Rguv + E(d —1(d - 2)Aguv. (2.8)

2

Therefore the linearized form of the Einstein tensor is given
by

1
Guv(h) = R')) — 2R<1>' —(d — 1)Ahy,
- - 1 _ _
= Vo Viuh EDh‘” — 58w (VaVgh*? — Oh)
1o - 1
= 5Vl + 2 (d = D@uh = 21 A, 29)

where we have used the following linearized Ricci and scalar
curvature tensors:

RY) = 5 (VOV hye + VIV e — Ohyy =V, Vih)

R = —0h 4+ VoV h,, — (d — 1)Ah. (2.10)

2.2 Massless and massive graviton modes
By multiplying Eq. (2.6) with g*” one can find the trace

of the linearized equation of motion in terms of covariant
derivatives of the linearized scalar curvature tensor in (2.10),

2RV + 20RM 4 23PRM =0, (2.11)
where
= L5 - La-nwa—27a
71 = ) o 2 o1
1
G 1)*(d —2)* Aoy +d(d — 1)Aos,
1 1
0 == -2~ (d-1)d-2’Ao
+(d — Vo3 +d(d — 1)Aoy,
1
3= —gld- 230y + (d — 1)oy. (2.12)

As indicated in [32], in order to avoid the propagating scalar
degrees of freedom in AdS,; background we will restrict our-
selves to the parameters that satisfy the relation z3 = zo =0
or

1
az = 1d—D ((bz(d -t —(d- 1)(3d(c1 +4c3(d — 1)

d_,
4d—-1) 2
(2.13)

+er(d® 4 8d — 8)))A —da1>, by = —

With these conditions, the D’ Alembertian operator will
be removed from Eq. (2.11) and therefore the trace of the

@ Springer
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linearized equation of motion reduces to a simpler form,
z1RM = 0. We also assume that z; # 0, therefore RM
must vanish. As noted in [24] we may choose the gauge con-
dition V#h,, = V,h, which from (2.10) leads to R\ =
—(d — 1) Ah, and therefore one can set 7 = 0. Consequently
the gauge condition for /,, would be the transverse and
traceless gauge V*h w = h = 0. The linearized Ricci and
Einstein tensors in this transverse traceless gauge become

1- 1-
1
R\ =dAhy, — 500, Guw = My = 5Oy,
(2.14)
and the linearized equation of motion (2.6) simplifies to

09 = 1 _
ek, = —§2D3hw + 4o+ 3A02) Py,

1 ;
— 7@ +2A01 + 3A%02)0hy,

+ A(@ + Aoy + A%02)h. (2.15)

As we see, this equation depends on three parameters o, o]
and 07 defined in Eq. (2.7). The linearized equation of motion
(2.15) now can be rewritten as

02 = = 2 1= 2
- §(D —2M) (0 -2A - MO -2A —M>)hy, =0,

(2.16)

so that the massless and massive modes satisfy the following
Klein—Gordon equations in Ad S; background:

@ - Ak, =0,

(O —2A — MR =0, (2.17)
@ —2A — MR =0,
where for the values of the masses
o] = ,/012 —4do0p
M2 = ) (2.18)

02

As we see, the parameter space defined by the parameters
{o, a1, b2, c1, c2, c3} now can be considered as a space with
parameters {0, o1, 02} when we study the mass of the gravi-
ton modes. In order to have a free tachyon condition we must
restrict ourselves to Mf_L > 0 together with 012 > 4607. We
have summarized the analysis of these conditions in Table
1. This table shows that the only allowed regions (shown by
asterisk) are those with all values of {0, o1, 02} positive or
all negative.

There are special subspaces in this three-parameter space:

e Atoy = 0 = 0 and for 0» # 0 in this parameter space,

M2 = 0. This corresponds to a tri-critical point where
two massive modes degenerate into the massless one. At

@ Springer

Table 1 Tachyon-free conditions in parameter space

012 > 4609 o1 e} o
(M2 >0, M% > 0)* + + +
(M2 >0, M* > 0)* - - -
(M? <0, M* <0) + _ _
(M2 <0, M? <0) - + +
(M2 >0, M* <0) + + _
(M2 >0, M% <0) - + -
(M2 <0, M% > 0) + — +
(M2 <0, M% > 0) - - +

this point the massive gravitons are replaced by new solu-
tions, called “log” and “log>” ghost modes; for example
see [7]. The linearized equation of motion at this point has
a simple form of an equation of motion for a spin-2 ver-
sion of the rank-three scalar field, i.e. G,,, (G(G(h))) = 0.

e One can find another critical subspace in the parameter
space as (o2 # 0,0 # 0) at 012 = 4009, for which,
in this case, two massive gravitons degenerate into each
other, i.e. M_%_ =M? = o1/03.

e Moreover, we have another critical subspace which is
defined by (02 # 0, 01 # 0) at ¢ = 0, where one of
the massive modes degenerates into the massless mode,
M_ = 0 and My = 201/03. In this critical line, the
degenerate graviton is a logarithmic ghost mode.

e In the special situation when o, = 0 the linearized equa-
tion of motion reduces to

1 - 1 _
gk = it %hy,, — z(a +2A01)0hy,

+ AG + Aoy,
= %(i —2A) (@ = 2A — MP)hy, =0,  (2.19)

where we have just one massive mode with M? =25 /o1.
The stability holds here when both the o and the o
parameters are positive or negative.

As we mentioned in introduction, there will be a unitary
subspace if and only if the ghost-like logarithmic modes
at the critical points are truncated by imposing certain
boundary conditions [6—10]. But it should be noted that
the unitary truncation method is valid only in free theories
at the linear level [11].

2.3 Conserved charges

In order to obtain the conserved charges corresponding to
the symmetries of the theory, following [29,30,33], we may
assume a Killing vector &, and use the linearized equation
of motion to write &,&;" as a surface integral. We use this
method to find the mass of asymptotically Schwarzschild—
AdS black holes in Ricci cubic gravity.



Eur. Phys. J. C (2017) 77:559

Page 5 0f 23 559

In the Abbott—Deser method [29] the linearized equa-
tion of motion Eﬁu is considered as an effective energy-
momentum tensor. This allows us to compute the conserved

charges Q" as follows:

Q&) = /E dix /g8, €1, (2.20)

where ¥ is a spatial (d — 1) dimensional hypersurface. For
calculating the conserved charges, one can show that the
integrand can be written as a divergence of a two-form i.e.
£,E" = V,FH. Therefore the integral in (2.20) reduces to
a surface integral at spatial infinity,

0 (&) = /3 _ds,F (221)

where 0% is the (d — 2) dimensional boundary of X. The
conserved charge associated to the RCG can be found by this
method from the linearized equation of motion (2.6) as

Mgy — 4 -1 /==
0 (é)_md_zcd/zd F

x (36,6 () + 16,9 G

+ 26,9 (G(G(h)))

+ 038, (g0 — VAVY 4 (d — HAGH)RW

+ 048, (30 = V4V + (@ = DAFORD),
(2.22)

where we have found this result by generalizing the approach
of [7] to the d dimensional space-time. The overall factor is
chosen for future proposes in computing the mass of black
hole solutions. Equation (2.22) is written into the form of
V, F" through the following relations:

£GP () = T, <5N[uhp]v L el 4 plegele,

—elng, pelv 4 %thP), (2.23a)
E,GM(G(h) =V, (sﬁ[w“”(m A
+G () VPIg, —£1V, GO (h)
+ %g(h)ﬁﬂg/’), (2.23b)

£,G1V(G(G(h))) =V, (sﬁ'“g“”(g(k)) + elvPlgG ()
+gvlu(g(h))§p]§v _ gluﬁvgplvg(h)

+ %g(g(h))?"s”) (2.23¢)

£,(8"0 = VAVY 4 (d — HAgH)RWD

4 _ 1 ;
_ T [npl - Hep
= d_zvp(";: Vv Q(h)+2g(h)V H ) (2.23d)
£,F*'0 — VAVY + (d — DAgH)HORWD
4 . o 1o =
_ [gpl - o
- d_zvp(g #IAIEG (M) + SOG1) T )
(2.23¢)

where G,,, (h) was introduced in Eq. (2.9). Finally the con-
served quantities can be found from the following relation:

/ a1 /"7 <&svgﬂ“(h>
)

1

O =106

+016,G""(G(h)) + ffz&g‘“’(g(g(h))))

oo

4Q,,Gy

403 ( lugnl
d_2<s“v G(h)

1 - 4oy
+— VHEP ) 4+
ZQ(h) "¢ ) d—2

(S[Mﬁp]ig(h)

1- _
+§Dg(h)V“$p)>. (2.24)
We will use this relation to compute the mass of the black
holes in AdS; space-time.

3 Auxiliary field formalism

In this section we are going to rewrite the Ricci cubic action
into the form of Fierz—Pauli massive action for spin-2 fields.
Writing in this form we will be able again to calculate the
mass of the graviton modes. We will do this by employing
the auxiliary field formalism.

For this purpose we need to reformulate the six-derivative
action (2.1) using the auxiliary fields which produce an action
with just second order derivative terms.

To do this, we need to introduce two rank-two auxiliary
fields (fyv, Auy) [7,31,34]. Let us start from the following
action’:

1
S = ;/ddxv—g(UR — 280+ X1/ Rap + x2f R
+ 13 f P hap + xa fA + Xshaph®P + x6)
+ X7VER PV kg + X8 VFAV 0 + o Ve AP VH A
+ 310V AV Ay + x11 Vg hap VAP + x1227
AR+ A1akaph P, ), G.1)

2 Note that our choice for those terms in 3.1 with covariant derivative
of A, differs from the choice of [7]. We have considered all possible
terms and we do not need to add extra boundary terms like those which
appeared in [7].

@ Springer
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where f and A are traces of the auxiliary fields. We can
find the unknown coefficients by computing the equations of
motion for auxiliary fields in d dimensions as follows:

1 1
Apy = m(R;w - nglu))v (3.2a)
= —1 d—1)(2 A)A
Juv = (d—2)(d—1)(( - )( (X5 + X138 Ao

+ 3122 hvs + 2070000 + 2X9V(u Vahoy®
10V, Yok + 2113 Vi)

— &uv ((2()(5 + x6) + Gx12 + 2x13)A) A

+ (x13 + 3018 xapr® + (x10 + 2007 + x8)) O

— G0+ 206 + 1)) VaVpi?)), (3.2b)
where we have fixed
1
=1 x=-3 xp=-@-2. xu=@-2
(3.3)

by using the freedom in scaling of the fields and demand-
ing that the equation of motion from variation of fyg gives
a value of the auxiliary field A, equal to the Schouten ten-
sor in d dimensions. By inserting the above results into the
Lagrangian (3.1) and comparing with the Lagrangian in the
original action (2.1) one finds the following values:

xs=ai(d —2)* x¢=4ax(d —1)* +a;(3d — 4),
x7 = ba(d —2)%,
X0 =—x10 — x8 + b2(3d — 4) +4by(d — 1)*,
x11 =0,
xi2 = c1(4d — 6) +2(d — D) (4c3(d — 1) + c2(3d — 4)),

x13 = et +2e2(d — D) —2)%, x14 = c1(d —2)°,
(3.4)

where we see that all coefficients have been fixed except xg
and x1o. In the next section we will show that we are able to
fix these remaining coefficients too.

3.1 Graviton mass spectrum

Now we can expand the new action (3.1) around the Ad Sy
maximally space up to the second order of field perturbations.
The perturbation of auxiliary fields around their background
values can be defined through a linear combination of two
fluctuating fields k1 ,,, and k3 ,,, together with the background
metric perturbation /., i.e.

@ Springer

A
)‘MU = E(guv +Khuv) +Kk1;w,
fuv = é-A(guv + th,v) + Kk2;u)a
2Ad —1)

= _ﬁ(z(al +day)

+3(d — D)(c1 +d(c2 +dc3))A), (3.5

where the coefficients are chosen so that the background val-
ues satisfy Egs. (3.2a) and (3.2b). By expanding (3.1) around
these background fields up to the second order of perturba-
tions and by substituting the following expressions for the
Ricci tensor:

Ry =R +kR') +k*RE),
0 -
RY) = A(d — 1)y,

m_ 1 Ok h *V,h “Vyh
le - _5( ,uv"‘vvvu -V V/J. va -V Vv ;wz)’

Iy

1
R® — Z(vﬂh"‘ﬂvuhaﬂ + V9,0, 2Vhe? — Vyh)

+2(Vghye — Vahyg) VP,
+2(Vgh — 2VgheP)V(uh)®

+opep (Vﬁvah;w —2VgVuhyye + Vuvvhaﬂ>>’
3.6)

we will obtain the following Lagrangian:

1._
£P = = Th" G () + E1K1" G (k1) + E2k5 G ()
+ & (k) ki — kiky) + E4 (K ko — kika),  (3.7)

where G,,, (h) is the linearized Einstein tensor (2.9) or equiv-
alently

|
Guv(h) = _§<Dh“” +VyVh — 2V, VP h )

— 20y — (d — 3)Amwh). (3.8)

To find G, (k1) one needs to replace h,, with ki uv in the
above equation. The coefficients in the Lagrangian (3.7) are
given by

1 1

G=0— E(d —2)%A(a) — dAby) — S@d=1
x (3(2 —2d + d¥)e) 4+ d(=2+2d + dP)es
+6d%(d — 1)C3)A2, (3.9)

£1=2by(d—2)?% &=1 & =-d+2,
g3 =(d —2)*(a1 + (d — )(Bc1 + dea) A — 2Aby),
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where for computing these coefficients we have used the rela-
tion between the cosmological constant A and the cosmo-
logical parameter A in equation (2.5). We have also used
the constraints in (2.13). In order to write the Lagrangian in
the specific form in Eq. (3.7), we need to fix the remaining
unfixed coefficients as
X8 =—bad =% 10 =2b2(d —2)". (3.10)
We can go further and write the Lagrangian (3.7) as a diag-
onalized form by the following field redefinitions:

2by(d —2)M3
hl‘«V = h;w - = /l;w + ng;w’

M,
2(d —2)G
ko = Ky, + 2b2(d — 2)M3K,

Kty = ki — @3.11)

1pvs

which immediately gives rise to

2by(d — 2)Mi

gﬂv (h) = g/w (h/) + gp,v (k ) + = g/}.v(kz)

2

Guv (ki) = Gy (ky) — X Guv (k3). (3.12)

M7
2(d -2
Thus, we find a linear combination of the massive Fierz—
Pauli Lagrangians which contains a massless spin-2 field 4’/ L
and two massive spin-2 fields &} ,, and k5 ,, with M2 mass
squares, respectively,

£ _ 4(d —2)%b,
&

1_ -
_Egh"”g,w(h’) + (& + baM?)
1 1
x (—k’?“g,w(k’o — M2 (KK 1 — k?))
256+ b (KL G )

1
— MEK K g — k%)).

Z (3.13)

The values of these masses obtained confirm exactly the val-
ues of mass we have found from Eq. (2.18) by linearizing
the equation of motion. In order to have a ghost-free theory
we need all kinetic terms to have the same sign. As we see
from (3.13) for ¢ # O this is impossible and we always have
a rank-two ghost field. This is a general property for higher
derivative gravity theories; this has been reported in various
papers; for example see [34].

The holographic studies of critical gravities show that the
dual gauge theories are log CFTs; for example see [32] and
[34]. For RCG we have found the set of these critical points
at the end of Sect. 2.2.

3.2 Energy of the linear excitations

Using the linearized form of the Lagrangian in (3.13) we are
able to compute the energy of graviton modes by constructing

the Hamiltonian. Let us redefine h;w, the massless mode, by

w and massive modes, kl;w and ké/w’ by wffv as follows:

o

’ /
h W,w’ luy = 2b (d 2)M2 I/I,w,

ké/w =0 W;Zv ’
(3.14)

and calculate the Hamiltonian by the Ostrogradsky formal-
ism. We recall that the fields are fixed in the transverse and
traceless gauge. The Hamiltonian is given by

Iy 0, 4b2(d — 2
H = 2/(2 d X [ — O'h/ V ]’l + T
_ My 0
== VO
X (O’ + i ) "
| byM?
+ 5_2( 6+ £ )i, VKLY £<2>]. (3.15)

Therefore the on-shell energies of the linearized modes are
0 _ 6 dd 1 x F w VO wOMV ,

53 (3.16a)

)/dd IXFWMVVO i;w

(3.16b)

1
M =
E + T<G+

To have ghost-free modes, the energy of the massless and
massive gravitons should have the same sign in Egs. (3.16a)
and (3.16b). This is equivalent to requiring that all kinetic
terms in the linear action (3.13) have the same sign. As we
told before, in general we have ghost modes in this the-
ory except at the critical points. The results here have been
observed already for d = 3 in [7].

4 The boundary stress tensor

We showed that the generic Ricci cubic curvature theory in
arbitrary d dimensions admits a reformulation by using two
auxiliary fields in a two-derivative action. Variation of this
action (3.1) produces the following boundary terms:

1
— / d /=y (Béfj&)»“,g

+B2558% + Bgﬁsv%gﬁ‘s),

88V =
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BY = (2009 +8an 010V A+ 2499355

+ 8" OU0Vshi + 223 Vuh)), (4.12)

1
Bog = 7 <X1 (Ve fap — 2V fua + 8upVs fi')

+2x2(8ap VS — 8auVp f)

+ 45700 Vahas — 2o’ Vhps)

+2x9(hape Varp® — hap Vo,

+ (8apru’ — Zaprp’)Vors?)

+ X10Aap Vot + (Zaphn® — 28auhp’) Vsh

— Aap VM)>, (4.1b)

1
53,35 = Enﬂ (Xl(zfozﬂgéu - fﬂﬁgom - fomg;%)

+2(0 + X2 (8us8p — Saugps) ) (4.10)
where n* is a vector normal to the boundary and all coeffi-
cients are given in Egs. (3.4) and (3.10). In the computation of
the above expressions we have used f*, and A*,, as our fun-
damental fields; see [31]. In order to have a well-defined vari-
ational principle we need the generalized Gibbons—Hawking
terms [35,36]. To do this we employ the method that is intro-
duced in [31].

Let us choose the coordinates x* = (r, x') corresponding
to a slicing of the d dimensional bulk, by the (d — 1) dimen-
sional Lorentzian submanifolds for each value of the radial
coordinate r. We can make an ADM-like split of the metric
as
ds? = N2dr? + y;;(dx’ + N'dr)(dx/ + N7dr), 4.2)
where y;; defines the boundary metric while N and N* denote
the lapse and shift functions, respectively. Inserting (4.2) into
(4.1¢) one finds

B2y Vesg" = 5K <x1fij +y7 Q20+ 2027
+ O+ 2X2)frr)> — 8Yij ((0 + x5

. 1 S
+ O+ f KT = 5Dy ),
(4.3)

where K;; = —%8, vij is the extrinsic curvature tensor and
D is the covariant derivative with respect to the boundary
metric y;;. Here we have considered N = 1 and N; = O for
simplicity but we can always get the generalized results in
the final answer, similar to the work of [31]. By using the
above result we can read the Gibbons—Hawking terms,

@ Springer

1 - .
S = —K—Z/dd lx\/__V<X1f”Kij

+(20+ 0u+20) 17 + 20l )K), @44

where K = K;. Now we are able to find the boundary
energy-momentum tensor through a variation with respect to
the boundary metric y;;,

2 (SStot
vy 8vij

871G T = sS© = 58P + sSCH, (4.5

by using the Gibbons—Hawking terms in Eq. (4.4) and the
boundary terms (4.1b) and (4.1c),

47 GaTY = O‘(Ki'i — Kyij) + T]ij + Tz” + ’77” + ’Tgij + T]i({,
77 = iX‘ (4st1 + 2D, f — 4D ) — 450, KK
+ (2D,s — 4sK + 4th’<)yff),
’Tzij =2 <sKij + (D, f —sK +D,-s)yij
+ f(KY - Ky"f')),
T = 2X7( — (S’KY + HyHY K'Y —3HYHU KD,
— KUpRp — 2 GkDD) gy - HE DU D)

— HIDD§ + 5QK "k + DO H”)>,
73 = X9<%D,(HiHj) —2H*HUK), —H'H/K
+ HYD* 4+ 0 (SK — D, S — KyaX — Dy HY)
+ yij (HkDI)\.kl + HyD,H* —2H*H' K}
— K(S* + HyH") + S(D, S + KM + Dm"))),
. 1 . _
Ty = 5)(10( — DS+ AU +2HDDs
+2HUDI ) 4 o1 (SD,(S +2)

HDLS + A))>, (4.6)

where we have used A/, = H', A", = S, fi, = h', 7, =
s, f¥. = f and Ak, = A for simplicity in notation. We
also use D, as a covariant r-derivative and D; as a covariant
derivative with respect to the boundary metric,
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DA = ﬁ<aﬂw — Nl + 2A"“8kN’>),

1 .
Dyh = N(M — N793;jn). 4.7

As has been shown in [31], in order to take into account the
non-trivial lapse and shift functions, it is enough to replace all
the above fields with the following combinations of auxiliary
fields:

W=7+ 2HUND 4+ sNINY,

fi = fU 4 2rND 4 sNINY,

= N(H' + SN"), hi' = N(h' + sN"),
= N?5, §=N%.

el

(4.8)

In the next section we will use the boundary stress tensor
(4.6) to compute the conserved charges of the RCG for differ-
ent background space-times. To do this, we decompose the
boundary geometry in ADM-like form. Consider the bound-
ary coordinates as x' = (z, x%), where the x¢ belong to the
d — 2 dimensional space-like hyper-surface o, the metric on
the boundary can be written as

yijdxdx/ = —=NZdt* + Pap(dx® + N9dr)(dx® + NPdr).
(4.9)

By using a time-like normal vector u’, we can calculate the
conserved charges associated to the Killing vector &':

O: = / A2 Pu' T E (4.10)
b
For example we can find the mass as follows:
M = / A2 PN T jul . .11
=

We will use this relation to find the mass of different solu-
tions of the RCG such as SAdS and Lifshitz black holes in d
dimensions.

In addition to the boundary stress tensor we have two other
boundary tensors which achieve by variation with respect to
the auxiliary fields )\3 and f!,

2 58t0t
=y 8)»5.

8 Gy Tli- = , 871Gy 123- R

NS
(4.12)

By using the action (4.4) and the boundary terms in Eq. (4.1a)
one can find these new boundary tensors,
87Ga 1’y = 2x7D M + 2xsDr (b + S)y ]

+ x10(DkH* — KS + D,.S)y},

871Gy, = —2x2Ky) — 1K' (4.13)

In holographic terms, it is well known that the energy-
momentum boundary tensor 7% is a holographic response
function conjugate to the &;; source. On the other hand the
auxiliary field formalism in Sect. 3 and specifically equations
(3.5) and (3.11) show that a mixed combination of fluctua-
tions of the auxiliary fields describes the massive graviton
modes. So it is probable that a mixture n; and ‘52; plays the
role of holographic response functions conjugate to the k} v
and k), " (massive graviton modes).

To check this proposal holographically there are several
suggestions. For example in [7] and for three dimensional
tri-critical gravity the energy-momentum tensor has been
expanded in terms of the leading and sub-leading terms in
a Fefferman—Graham expansion of the metric and central
charges have been computed. One may perform the same
calculation for 7;’, and 'L'zé-. We postpone the holographic
study of RCG model for future work [57].

5 Schwarzschild—AdS black hole in RCG

In this section we study the SAdS black hole as a solution of
the RCG. First we study the thermodynamics of this black
hole and then we compute its mass by a renormalized bound-
ary stress tensor.

Let us start with the following AdS, black hole which is
a solution of the equations of motion (for simplicity we have
considered a flat boundary space but it is possible to consider
spherical or hyperboloid spaces)

2 d-2

2
dr? + ;—2< — f(di® + Z(Sabdx“dxb>,
a=1

ds?

G
o1 (2)

Here rg is the radius of the horizon and the cosmological
parameter A is related to value of /, the radius of AdS space-
time, through the following relation:

5D

d—1
216
+u—®m+@mﬁ—u—m%)

Ay =

((d — D(=d = 6)(d — D)(c1 +d(c2 + c3d))

(5.2)

5.1 Black hole thermodynamics

To study the thermodynamics of this black hole we start from
temperature and then compute the entropy. The value of the
temperature can be read from the Euclidean version of the
metric by using the following relation:

_ @~ Dro

= 5.3
r=ro 47'[[2 ( )

1
T=—Ve"or(Jer)

@ Springer
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To find the entropy we employ two techniques, the free
energy and the Wald formula. To compute the free energy
we must insert the metric into the Euclidean action,

1 1/T R Jo
_ dr [ dr | d*2x gL
16nGd/0 T/O r/ TVEE

_ Vioa rg 2( R4~ l)
- o d-l
)

S 2(d — 1)Gy 192
where o is given in Eq. (2.7) and we have considered V;_;
as the regulator volume of d — 2 dimensional flat space. In
the above equation R is a regulator for the radial coordinate,
which we will send it to infinity later. To remove the divergent
part of the above expression we need to subtract the value of
the action for the AdS background at temperature 7”,

l/T/ g 2
d d d
16nGd/ ’f rf Veek

Va2 | — 3 _
= O—’
2(d —1Gy r()ld72 Rd*1

IBH[T] =

5.4

1295(77]

(5.5)

where T is defined in such a way that the time periodicity
of the Euclidean AdS background will be equal to the black
hole’s one at the regulator surface r = R. In other words,

d—1
I Nl L ol U W R
T T\ gAS| .~ rold—1) Ri-1
Finally the free energy is given by
Vaor§ ™" _
FT:T(IBHT—IAdST’)) e
7] e TI=TgPT) e 87 G 414
5.7
and the entropy by
OF 1 [ 4ml \?
S=-20 - (L) i (5.8)
oT 2G4 \d -1

It is worth to mention that the same result for the entropy can
be found from the well-known Wald formula for the entropy
in higher curvature theories of gravity [37]. Starting from

oL
=87 | a'*xM /¢! -V :
7 f ga//.gﬁu 14 avy Rotﬂ;w
d— 2 H / 16 J_otﬂ
2Gd d ( (

(—3c1R,3”R,3u —2Rgs(ar + c2R))
- gé‘ﬁ Lap (a + c2R* Ry + RQaz + 3C3R))

+g aa<glﬂ6(361RﬁvRsv +2Rgs(a) + c2R))

@ Springer

+ g 4(0 + 2R Ry + RQay + 3C3R))))

— 2byg g PV, VY Rys — 2b1g g P ﬂvuv“R),
(5.9)

where gj;ﬂ denotes the metric projection onto the subspace
orthogonal to the horizon; one can find the same entropy as
(5.8) exactly.

5.2 Mass from renormalized boundary stress tensor
The auxiliary field components can be determined by their

field equations (3.2a) and (3.2b) in terms of the SAdS black
hole metric as follows:

)»]:—ﬁ)/ls M= f"=0, M =— 21212f()

ui 2d—1)

= (3(d — 1)(e1 +d(ca + e3d))
—2(a; + azd)l2),

crr 2(d 1)

7= m(3(d—1)(cl+d(cz+63d))

24 + azd)zz) f(r) (5.10)

Using these relations the value of the mass can be computed

from Eq. (4.11). To find the mass we need 7% from (4.6)

together with Eqgs. (4.7) and (4.8). The value of the mass

with this technique becomes

M= (d4 2D)Va- 2(ro)d 1(
wlGy

(1)‘”>&, (5.11)

ro

which diverges obviously when computed on boundary at
r — 00. To remove this divergence we need to renormalize
the energy-momentum tensor as follows:

d—2

——— 0. 5.12
87erlUy” ( )

ren __ .
;" =1

This can be done by adding a boundary counter-term to the
Lagrangian just proportional to the volume of boundary. Con-
sequently the mass is given by

M= (d _2)Vd—2(

’"_O)a'—l —
87lGy

l (5.13)

As a check of our results, it is easy to show that the value of
mass in (5.13) and the values of entropy (5.8) and temper-
ature (5.3) will satisfy the first law of thermodynamics for
black holes i.e. dM = TdS, if one differentiates mass and
entropy with respect to the location of the horizon at r = ry.
As another check one may compute the mass of the AdS



Eur. Phys. J. C (2017) 77:559

Page 11 of 23 559

black hole from the first approach by linearizing the equa-
tions of motion i.e. from Eq. (2.24). It can be shown that for
asymptotically Ad S solutions only the first term in (2.24) has
a contribution to the AD mass. This computation reconfirms
the value of the mass in Eq. (5.13).

6 Lifshitz vacuum and Lifshitz black hole in RCG

In addition to the SAdS black hole we discussed in the previ-
ous section, one can find other interesting solutions such as
the Lifshitz vacuum and Lifshitz black hole [38—47]. It should
be noted that the Lifshitz solutions with different scalings of
space and time have interesting applications as gravity duals
of non-relativistic quantum field theories. In this section we
will find conditions to have such solutions in RCG. We also
use the auxiliary field formalism to compute the mass of Lif-
shitz black holes.

Let us start from the Lifshitz vacuum as a solution for
equations of motion. This background is characterized by a
dynamical exponent z, which governs the anisotropy between
spatial and temporal scalings i.e. x — Ax,r — A~ 'r and
t— At

r22 2 2 d—2
ds2=—szdt +—dr +— Zéabdx“dx 6.1)

a=1

Moreover, the cosmological parameter Ao and the Lifshitz
length [ in the metric above can be fixed by the equations of
motion and are given by

Ao = 116( - %(d —2)(d - Dl*o + 122 +d —2)
x(2+d* —2(z = 2)z —d(3+22))a; + 31*(2
—3d +dH?* —4d - 2)*2* - 8(d — 2)° — 47%)ar
+Q—d)(z—1)*z(12 -5z +d(3z — 14
+4d))by + 5 ((d —2)*(6z — (d — 1))
—6(d —3)(d —2)*2* +2(d —2)(5+ (d — Hd)Z
+3(d —2)(d — DZ* +6(d —2)2° +42°)cy
— @ 42— 1> +d2z—3)’(2+d> -4z

~)2-dG+40)(c3 + (@ +d = 2)e2)). (620)

1
2=~ (a@+d =2 +a(d+2c - 1)

+d2z—3) + %«/3)

§=4a1P+d—2) +a(d® +2(— D +d2z - 3)))
—4((12 — 36d + 39d* — 184 + 3d*
4 (—48 4 96d — 60d> + 12d%)z + (72 — 84d + 24d%)7*
+ (—48 + 24d)2” + 122 ¢3 + 3(d°
+2(z— DX(2 =2) +d* (P +22-5)

+d(8 — 8z —2%) +22%)cr + 3(* +d — 2)%¢c; + (2d*z
—4dz + 62° — 2d%Z% — 62° + 4d2>)br)o. (6.2b)
6.1 Lifshitz black hole

Motivated by SAdS solution at z = 1 one may choose the
following ansatz to write the Lifshitz black hole:

2 d-2
dr? + = 7 Z(Sabdx”dx

ds? = — r f(r)dt + L
l2z Zf( )

== (@)

Similar to the Lifshitz background, the above metric is a
solution for equations of motion in a special region on the
parameter space of the theory. These special values are pre-
sented in Egs. (B.1b)—(B.1h) in Appendix B.

The auxiliary fields in this background are given by

(6.3)

(@=D@ =) +2z(1 =) + B =3d +20)(c = D)~ 520
2(d — 1)(d - 2) 2
142 =2)z+dQz—1)) — (z— D(I —d +27)(L)d=1 %
( ) :

)Lab —

M= -
2(d — 1)12<1 — ("%)d—l) r¥
N2 = —(d =142 —Dz) + G —3d +22)(z — D(2)4!
- 2d - »
K=K = = [ =0 (6.4)

, | sab rd=1 y2d=2
ab _
fU= 3d—DE 7 fo+ S P + 202

1 lZz d 1 2d 2
= o oo | f20t+ f21 + f22
4(d72)l4(17(70)d 1) r24 rd—1 y2d=2

) | rd-1 242\
N2frr—— _
f 1d—oF <f30+f31 =l + /2 oy 2) T

where all the constant values fio to f3» are given in Egs.
(A.1a)—(A.1i).

6.2 Thermodynamics of Lifshitz black hole

In the same approach as SAdS black holes we can read the
value of the temperature from the Euclidean metric,

_d—1lr;

. 6.5
Al 2 6.5)

To compute the entropy we suppose that the Wald entropy for-
malism still holds here and its value can be found by putting
the black hole solution (6.3) into the Wald formula which we
have computed in Eq. (5.9)
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_ Vuo rg 2
= 8AG, 142
5 =(d— 1)((d ~ DBei(1 = 32)% + 6¢2(1 +2(d — 5)z
+92%) + 12¢3(d — 3 + 32)?

+16(2b1 (1 = d +22) +b2(3 = 24 +20)(z — 1))

|
+ l—z(al(l —32) = 2ar(d — 3 + 3z)> +4le. (6.6

Using the first law of thermodynamics for black holes, dM =
TdS, we find that the mass is given by

Vao(d —1)(d —2) r§t472 _
T 32aBG (2 +d —2) zz+d 29

(6.7)

As we see the value of the mass leads to the SAdS black
hole’s mass (5.13), when we insert z = 1.

As a general result, we observe that the entropy (6.6) and
mass (6.7) for SAdS or Lifshitz black holes in RCG, are both
proportional to the critical parameter 6. Stability of these
solutions restricts this critical parameter to positive values,
ie.o > 0.

Several investigations in thermodynamical properties of
the Lifshitz black holes have been done in other gravitational
theories, for example see [48-50].

6.3 Mass from the renormalized boundary stress tensor

To find the mass of Lifshitz black hole from auxiliary field
formalism we need to compute the integral in Eq. (4.11) and
the value of 7% can be found by inserting the values of
auxiliary field components in Eq. (6.4) into the relation (4.6).
The non-renormalized black hole’s mass in this way is given
by

d—1
B Va2 1_ "o pd+z=2
327Gy [3+d+z rd—1
rgd72 y
“Hi_5 M3
72d=2
S (= —— Y
327Gy [3+d+z 1
d—1 r2d72

.
+ G (Mo = M) + -G (M3 — M) —

M =

d 1
<M1 + 0 M+ (6.8)

where

My = =2(d —2) fio + f20 — f30 +8(d — 2)
x (2ba(d — 2)(z — 1)*z +1*0),

@ Springer

" r3d=3
3343 )

My =2f11 + for — fa1 +4ba(z — 1)?
X (4+dQd —5))d —1—22) —4(d —2)%2)
+16b1(d — 1)2(d — 1 — 22)(z — D)2,
M3 =2dfis + foo — fi — 4ba(z — 1)?
x (4 +dQd —5))d — 1 —22)
—16b1(d — 1)2(d — 1 — 22)(z — D)2,

(6.9)

and this mass diverges as one goes to the boundaries at r —
oo. To have a finite non-zero mass for Lifshitz black holes,
the above relation suggests that the only possible massive
black holes are those withz = 1,z =d and z = 2d — 1. The
case with z = 1 or SAdS black hole has been studied already
in the previous section. We now try to find the renormalized
mass for two other cases.

Similar to the SAdS black hole we need to find a renor-
malized boundary energy-momentum tensor here. As noted
in [31], there is an ambiguity in choosing the boundary terms.
For example we can choose the following scalar tensors to
construct the counter-terms on the boundary:

s _

ct —

1
— /dd_lx -y — Mc(tl)

d—1
_ Vi 1 — o pd+z=2
- 47 Gy Jd+z-2 rd—1

1 gt 3 3”’ -2
(it

d—1 k @)
/d XA/=y A — Mg

O _

ct =

= M(l) 2 2 1 g
=~>p d+2z—-3-2(z— )d

) (6.10)
and so forth. One may find different scalars in order to con-
struct the renormalized action. For example if we restrict
ourselves to at most cubic terms with at most two covariant
derivatives we can choose the following scalars:

{fkk’frr’kkk’krr’fiikjj’ FEAr L T,
Fred e Fn AT 02, ()2,
AE )P AT AT ek AT 0 ok A
G WG % 0

Therefore to find a renormalized mass one encounters the
ambiguity in choosing the correct combination of terms as
indicated in [31]. To find a renormalized mass we will follow
the same steps as [31] and fix the coefficients by using the
value of the mass in (6.7) which is consistent with the first
law of thermodynamics for black holes.



Eur. Phys. J. C (2017) 77:559

Page 13 0of 23 559

As an example let us start with the following combina-
tion of boundary counter-terms, which have been chosen for
simplicity:

1 .

See = el / d_lx\/—_y(()l] + ok + Ol3()»kk)2 + aghij A

+as(WF 0 4+ aphii A5 oz by (6.11)

By adding these counter-terms and demanding a finite value

for mass equal to the value in (6.7) forz =d and z = 2d — 1

simultaneously, we can fix the unknown coefficients « to o7
which are given in Appendix C.

7 Ricci cubic gravity in three dimensions

In this section, as an application of our results, we are try-
ing to study the RCG in three dimensions. We will compute
the values of central charges corresponding to the dual CFT
of the AdS3 space-time. We also find the BTZ black hole
mass and angular momentum from the renormalized energy-
momentum tensor.

7.1 Central charges

The central charges of the dual CFT of AdS3 space-time can
be computed by applying the renormalized boundary stress
tensor (4.6). We will review and use the method in [31,51].

To find the central charge we need the anomalous behavior
of the energy-momentum tensor under the conformal trans-
formation. In light-cone coordinates these transformations
are
SxtT=—eT(xh), 8x =—&£"(x7), (7.1
and consequently the energy-momentum tensor components
transform as [51]

& C _
8Tyy = £§T++—maig+, §T__ = EgT__—mafé .
(7.2)

Each transformation contains two parts, a Lie derivative
part, which comes from the boundary-preserving diffeomor-
phisms, and an anomalous part, which comes from the fact
that the asymptotic symmetry group of AdSs is larger than
the boundary-preserving diffeomorphisms.

To compute the central charges from the anomalous terms,
let us start with the AdS3 metric written in the light-cone
coordinates,

12
ds? = —zdr2 — r2dx+dx7,
r

(7.3)

together with the Brown and Henneaux boundary conditions
[52] to define the asymptotic behavior of the metric,

2

,
8+ =—3+0(1), g++=0(), g-—=0(),

12 1 1 1
8rr = 2 + O(}j% 8+r = O(ﬁ)s 8—r = O(ﬁ)

(7.4)

The diffeomorphisms which respect to the Brown and Hen-
neaux boundary conditions are parametrized by the following
vector fields®:

r

ET(T), X == (06" +0.87).
(1.5)

12
+ et * 2
X* =5 () 507

These diffeomorphisms (asymptotic symmetry group of
Ad S3) do not belong to the class of boundary-preserving dif-
feomorphism [31] and therefore they will produce anomalous
terms similar to those in (7.2).

To compute the transformation of the boundary energy-
momentum tensor we need to compute the transformation of
the boundary metric, the extrinsic curvature and the auxiliary
fields components under (7.5). For example we have

Ox8uv = Exg;w = Xpapg;w + aungpu + avngups
Sx MV = Ly = XpapA“” —)»”'pava — kpv8pXM.
(7.6)

Using these relations, all components of the metric remain
invariant, except the two components g4 and g__, which
transform as

Py Py,
Sxgas = —5 026", Sxg— = —z0lE". (7.7)
The extrinsic curvature K;; and its trace are also invariant
and the only possible non-trivial components for auxiliary
fields (5.10) are (for more details of this computation see
Appendix A in [31])

1, - 1,
Sxatt = —;7‘375 , OxATT = —743+§+,
2 30 78 216 3 _
8Xf++ = —r—4(a1 — l—zcl — 1762 — ZTC:; —+ ﬁb2>az§ s
__ 2 30 78 216 3
éx [T = —74(611 —Ea-pae-pat ﬁb2>ai§+,

(7.8)

3 We note that in the ADM decomposition, the vectorial diffeomor-
phism parameter X* can be decomposed as X" = (&', 1) where &' and
A are arbitrary functions of the coordinate x* = (x', r) [31].

@ Springer



559 Page 14 of 23

Eur. Phys. J. C (2017) 77:559

where we have used the scalar ghost-free conditions in (2.13)
to write the above relations.

Now we can use (7.7) and (7.8) to compute §x Ty + from
the renormalized energy-momentum tensor which we found
in (5.12)

l 1 15 39
877G8XT++ = _§8i§+(0' + ﬁal — 1—401 — l_4C2
108 3 T
T + sz) = —Eai$+ad:3. (7.9)

By comparing the above result with the second term in Eq.
(7.2), one can read the central charge as

(7.10)

c = E(_Idzg.
This value coincides with the value computed by another
method in [16].

An example of the three dimensional RCG is Extended
New Massive Gravity (ENMG), which is a theory free of
scalar ghosts. It has been shown in [16] that it is possible
to write the action of ENMG in terms of three dimensional
Schouten tensor, A, = Ry, — %ng and Cotton tensor
Cuy =€,V (M) as

ﬁ:UR—ZAo—f-W(RWR“”—gR )

1
+ 3 (2adet() =6 C"' ) (7.11)
where
1 3 17
det()») = —ng'uvaRu'p + gRRMURMv — @R s
3
CM'Cpy = RuyOR™ — S ROR —3R", R\ R,
5 [y 1 3
+ SRRuWRY — SR, (7.12)

Simply one can match the two actions in (2.1) and in (7.11)
as follows:

1 3 3 b
al_m29 02— sz’ 1= 8m47 2_m4’
9b — 2a 3a — 10b 48b — 17a
‘g=—, ) =———, (3= ———
T BT 3T 96m?
(7.13)

By substitution of these values into the definition of ;-3 in
(2.7), the central charge (7.10) will be equal to the central
charge reported in [16], i.e.

3l 3, ] a
= —0J=3 = — | O —_— .
CENMG = 5504=3 = 55 2m22  8mAlt
(7.14)
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An alternative way is that the values of central charges
can be computed from the conserved charges of (2.24). This
method has been used in [7] and [20], which again confirms
the above value for the central charges,

31

=557 (7.15)

Cl, = CR
7.2 BTZ black hole

The BTZ black hole is a solution of pure gravity [53]. Here
for RCG we have such a solution again. Starting from

ds? = 12[ - dr?
(2 =2 = r2)

2 N2 2
LT ) Gy gy - dt)z},

r2 r2
(7.16)

where r4 are outer and inner event horizons, the ADM-like
metric for rotating BTZ black hole is given by

ds? = N2dr? — N72de? + r?(dg — Nydr)?

1
r?  16G*J*\ 2 4GJ
N=(-8GM+ 5 +— L Np=——3
_AEE (7.17)
8GI2 4Gl

We can use this metric to compute the conserved charges
from (4.10) by using the stress tensor in (4.6) and after renor-
malization. Then the mass and angular momentum become

Mgtz = M&4=3, Jprz = Jd4=3. (7.18)

Moreover, the angular velocity at horizon is defined as

1r_

1
Qg = -N, = -——. 7.19
H=7 p(re) I (7.19)

To find the thermodynamical parameters of the BTZ black

hole we observe that the Hawking temperature in ADM form
of the metric can be obtained from the surface gravity « as

(7.20)

K 1 8rN ry r-
TH=—=— =—|1-=].

2 2@l Jg, 2wl r2
Now by using the Smarr relation M = %THSBH + Qg J for

BTZ black holes in three dimensions we can evaluate the
entropy. The Bekenstein—Hawking entropy is given by

o r404=3
SBH =005
As we see, all conserved charges such as mass, angular
momentum and entropy are proportional to the central charge

of the dual CFT, therefore the BTZ black hole is stable when-
ever this central charge is positive.

(7.21)
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8 Summary and conclusion

In this paper we have studied the most general Ricci Cubic
Gravity (RCG) in d dimensional space-time. Our Lagrangian
in (2.1) is constructed out of the Ricci tensor up to cubic
terms and its covariant derivatives such that the equations
of motion only contain at most six partial derivatives. We
have also considered a cosmological parameter. Since we
are interested in studying this theory from the auxiliary field
formalism point of view, we have restricted ourselves to Ricci
tensors. As has been shown in [31], in three dimensions one
needs to consider two rank-two auxiliary fields to construct
a Lagrangian with at most two derivatives in its equations of
motion. A similar situation holds in general d dimensions.

If we add terms including the Riemann tensor, then we
will need to consider rank-four auxiliary field [31], where
we have postponed study of these terms for future work. Our
study of RCG is divided into two main parts.

e The linear excitations of gravitational fields around the
maximally symmetric AdS; space-time: We have used two
different approaches to the study of gravitons in RCG. In
the first approach in Sect. 2, we linearize the equations of
motion, following the work of [7], to write these equations
as (2.6). To get rid of scalar ghosts in this theory it would be
enough to set the trace of linearized equations of motion to
zero. Doing this, we will find two constraints among the nine
free parameters (couplings and cosmological parameter) in
this theory, (2.13).

The scalar ghost-free condition allows us to use the trans-
verse traceless gauge so that the linearized equation of motion
now can be decomposed as Eq. (2.16). This suggests the exis-
tence of three exciting modes in the AdS; background, two
massive gravitons in addition to a massless one. Although
seven free parameters have remained in the parameter space
of the theory, the mass of the massive modes, (M), depends
only on the three parameters {7, o1, 02} in (2.18). These
parameters have already been defined in (2.7) as a linear
combination of the parameters of the theory. The stability
of the theory in this background (tachyon-free condition or
Mi > 0) suggests that the allowed regions of parameter
space are restricted. We have summarized our results in Table
1. Similar to the three dimensional case, as discussed in [7],
here we have also special subspaces in our three-parameter
space {0, 01, 02} where we have two or three degenerate
massless gravitons or two degenerate massive gravitons.

In the second approach in Sect. 3, we employ the auxiliary
field formalism, which has been introduced in [31]. To find
the graviton mass spectrum we consider the excitation modes
around the background metric g;,, and the auxiliary fields
(fuv, Auv) and we show that, similar to three dimensions
[7], we can find a linear combination of three Pauli-Fierz
spin-2 Lagrangians (3.13). The mass spectrum in this way
confirms the results of the first approach.

On the other hand, the second approach shows that, for
o # 0, in general it is impossible to avoid the rank-two
ghost fields. Our computations confirm the known obser-
vation for pure gravitational theories with higher curvature
terms that we cannot have both the tachyon-free condition
and the ghost-free condition simultaneously. This statement
can be verified by computing the energy of the linear excita-
tions too. This results from the Hamiltonian formalism and
by comparing the overall signs of energies. The results are
given in Egs. (3.16a) and (3.16b).

e Black hole solutions and conserved charges: The RCG
as a theory of gravity with higher curvature terms admits
different solutions for equations of motion. In this paper we
have focused on two types of solutions: The Schwarzschild—
AdS (5.1) and Lifshitz black holes (6.3). In Sect. 5 we have
investigated different properties of SAdS solution such as the
mass, Hawking temperature and entropy.

The mass has been computed in two different ways. In
Sect. 3.2 we first use the Abbot—Deser method [33] to find
the conserved charges corresponding to the symmetries of the
solution. This can be done by using the linearized equation
of motion following [7] and the conserved charge is given by
Eq. (2.24). We can use it to compute the mass of the black
hole simply by considering a time-like Killing vector.

On the other hand we can also compute the conserved
charges in auxiliary field formalism. This can be done by
computing the boundary stress tensor in this formalism. The
energy-momentum tensor can be found by variation of the
action with respect to the auxiliary fields and metric. To have
a well-defined variational principle we need a generalized
Gibbons—Hawking term (4.4). The final result is presented
in Eq. (4.6) and the mass can be computed from (4.11).

The value of the mass in this way diverges, as one goes
to the boundary at r — oo; see Eq. (5.11). To find a finite
answer, we must renormalize the boundary terms by adding
some proper counter-terms. The final value of the mass in
this way is given in Eq. (5.13) and agrees with the mass from
the first approach.

We have studied the thermodynamical properties of SAdS
black holes in Sect. 5, where we have found the entropy of
the black hole both by direct computation of the free energy
(5.8) and Wald’s entropy formula (5.9). The values of the
mass, temperature and entropy satisfy the first law of ther-
modynamics for black holes, i.e. dM = TdS.

To complete our analysis for more complicated cases, in
Sect. 6 we study the Lifshitz black hole and try to compute its
mass from the boundary stress tensor which we found from
the auxiliary field formalism. To have such a solution we
need to restrict ourselves to the special values in parameter
space of the RCG. In this case all constants can be written in
terms of the two constants, b, and o of the parameter space
and also the dynamical exponent z (see Appendix B).
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Computing the mass again gives a divergent answer (6.8),
but unlike the SAdS black hole it contains four different diver-
gent behaviors when one goes to the boundary. We show that
in order to have a finite massive Lifshitz black hole, we have
just three options for the dynamical exponent, z = 1 or SAdS,
z=dandz=2d — 1.

As has been noted in [31] for three dimensional Lifshitz
black holes, there is an ambiguity in choosing the counter-
terms to renormalize the boundary terms. In our study this
happens again and there are various possibilities to have a
finite mass. Although it is not known whether Wald’s entropy
formula works here for Lifshitz black holes but one can use
it naively to find a finite mass from the validity of the first
law of thermodynamics for Lifshitz black holes. The value
of this mass is given in Eq. (6.7). We fix the coefficients of
the counter-terms (6.11) on the boundary so that the value
of the mass is equal to its value in Eq. (6.7) (see Appendix
C). We should note that we will recover the SAdS results at
z=1.

In Sect. 7, as an application of our results, we have stud-
ied the three dimensional RCG. For example we have com-
puted the central charge associated to the dual CFT of AdS3
space-time. We have also calculated the mass and angular
momentum of the BTZ black holes. Our results confirm the
well-known results in the literature when one considers spe-
cial values of parameters in NMG or ENMG theories. By
looking at the values of the mass and entropy of the BTZ
black hole one can show that the stability condition holds
when 64—3 > 0. This coincides with the unitarity condition
of the dual CFT, because the value of central charge is also
proportional to 64=3.

As a general result in d dimensional space-time, we
observe that the entropy (6.6) and mass (6.7) for the black
holes in RCG we have considered in this paper are both pro-
portional to a specific parameter &, and stability of the solu-
tions requires that this critical parameter of the theory must
have a positive value i.e. & > 0. For z = 1 the value of &
reduces to ¢ for SAdS black holes. A similar behavior has
been already reported for Gauss—Bonnet gravity in [54].

There are some open questions which we have postponed
for further work [57]:

1. It would be interesting to solve the ambiguity in choosing
the counter-terms which renormalize the boundary stress
tensor. Our choice for these counter-terms in (6.11) is
motivated by the holographic renormalization (see for
example [55]). As we mentioned before, we have fixed
the coefficients in an auxiliary field formalism so that A ,,,
becomes the Schouten tensor in d dimensions. By sub-
stituting (3.2a) into Eq. (6.11) we will have a Lagrangian
with counter-terms constructed out of the Ricci tensors
alone. These terms have been made out of the induced
metric on the boundary. It would be interesting to build
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such a Lagrangian by the method of holographic renor-
malization and then translate it to the auxiliary field for-
malism.

2. One can consider the contribution of the Riemann tensor
into our analysis. But as indicated in [31] one needs to
introduce a rank-four auxiliary field into the game. This
will make the analysis more complicated due to the exis-
tence of total derivative terms such as a Gauss—Bonnet
term [57].
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Appendix A Lifshitz parameters

Coefficients related to the auxiliary fields in Eq. (6.4) are
fio =4a1l*(d — 2 + (d — 2)z + 22°%) + Saxl*(d?
+2(z = 1)* +d(2z —3)) +8b2(d — 2)(z — 1)z
—6c1((d —2)* + (d —2)dz* +2(d - 2)° +22%)
—4er(d* +2(z — 1)* +d(2z — 3))(—4
+d2+2) +2(32 — 2)) — 12¢3(d* +2(z — 1)?

+d2z - 3)), (A.1a)

fit = (z = D(4a1l*>Q2d — 3 — 2z2) + 8axl*(d — 1 — 22)
—8bi(d —1)(d—1—-22)(d —2) + b(4
—2d(1 +d) + 20z + 8(d — 2)dz — 8(d — 1)z%)
—6¢1(10+d((3d — 11) + 6z + (d — 5)dz +2(d
—1z? —42%) —dea (-2 +d(7T+dQ2d — 7)) + 24z
+4(d = S)dz +2(1 + d)z* — 122°)

+24c3(2 —d)(d — D* +2(d — 3)z* +42°), (A.1b)

fiz=@—-DBbid—1)(d—-1-22)2d — 1 —2z)
+2by(—8+d(17 +d(4d — 13)) — 6z +4(3
—2d)dz 4+ 4(d — 1)z*) = 3ci(z — D(13 4 5d°
—8d(2+2) +42(3 +2)) — 2c2(z — 1)(9d”
—4d (6 +52) + (3 +22)(5 + 62))

—12¢3(d — 1 -22)*(z - 1)), (A.lc)

f0=4QRaP(—2+d*@—1) =4z -2
+d(3+ (z — 6)2)) —daxl?(d® +2(z — D +d(2z - 3))
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+4by(d —2)(z = D% +3¢1((d —2)%d — 1)

+2(d - 2%z — (d - 23+ (d - 5)d)2>

—2(d —3)(d —2)2> = (d — Hz*) = 2cx(d? + 2z — 1)?
+dQ2z—3)(d*@ =)+ @ =50z +d(2 + (z — 6)2))
+6c3(d? +2(z — )% +dQ2z - 3)°), (A.1d)

for =2(z = D(2a1d — HI*d — 1 —22) — 8apl*(d — 1
—22) +8b1(d — 1)(d — 1 = 22)(1 + (d — 2)z)
+2by(d — 1 —22)(5d — 4 — d* + (d — 2)(5d — 8)z)
+6¢1(2—3d+d* —(d—2)(7+(d—Hd)z

+ (44 (d = 3)d) > +2(d — H2?)
+2c(—8—d(—26+d(27+ (d — 10)d)) + 282
—2d(15+ (d — 6)d)z +4(11 + (d — 6)d)2*

+8(d — 5)2°%) 4+ 24e3(d — 1 —22)(d* +2(z — 1)?
+d(2z - 3)), (A.le)

f=(@E—=18bid—-1)d—-1-27)

(14 d*+4z —2d(Q2 +2)) + 2ba(d — 1 — 22)( — 4(1
+4z) +d(17 4+ d(4d — 17 — 62) 4 20z))
—3c1(z = )((d — 11)(d = 3)d — 4(d = Tdz
+4d — 47 — 45 +82)) —4derz — (- 13+ d°
—d*(11 +42) — 42(7 4 52) + d(42(7 + 2) + 23))
+24c3(d — 1 —22)*(z — 1)), (A.1f)

f30 =4Q2a1l*(2 —4(z = Dz +d((z —2)z — 1))
—darP(d® +2(z — 1)? +d(2z — 3)) — 4by(d

—2)2(z = )2 =3c1(d =242 -4z — 1)z
+d(— 1+ (z—2)2)) = 2c2(d* +2(z — 1)?

+dQ2z = 3))(4+ @ —5)z+d( -2+ (z—2)2))
+6c3(d% +2(z — 1)? +d2z —3))), (A.lg)

1 =2z —D(2arl*(12+d@3d — 13 — 22) + 82)
—8apl*(d — 1 —22) — 8by(d — 1)(d — 1 —22)((d
—2)d +z) —2by(8+4(d —3)d+ 12z +d(— 1+
—4)d)z —2(12+d(3d — 11))z%) + 6¢1(22
+d(—35—-3(d—6)d)+ 18z +3(d — 5)dz
—(d—=3)3d =" +2(d — H2?) +2c2( - 16
+d(50 4 d(— 53 4 (22 — 3d)d)) + 682
—2d(39+dQ2d —15))z — 4(d — 3)(1 + d)z* + 8(d
—5)2%) = 24c3(2 — d)(d — 1)* +2(d — 3)z* + 42%)),
(A.1h)

2= —1DBbi(d—1)(d—1-22)(3+d(3d —8) +2z)
+2by(28 + (d — 3)d(21 + d(4d — 11))
+2d(4+d —d*)z — 44 + (d — 3)d)Z?)
—3cp(z — 1)(9d° — 2d%(29 + 62) — 4(17 + 4z(4
+2)) +d(113+4z(15+2))) —4ca(z — 1)
x(3(d = 1)(7+ d —6)d) —4(11 +d(2d — 11))z
+4(d - 5)2%) + 24e3(d — 1 —22)%(z — 1)). (A.10)

Appendix B Lifshitz couplings

The values of the couplings are fixed by the equations of
motion for a Lifshitz black hole,

202(d —2)(z — 1)(d — 1 —27)2
Ed—-1)
x (144 d® +d7(—1349 4 245 2) + d®(5069

by = (br@—1?

— 16817 — 282%) + d°(—9631 + 4214 7 + 503 7>
—3662%) — 2d%(— 4699 + 2221 7 + 122772

— 109823 + 697%) + d° (—3841 + 14937 + 538472

— 610023 + 704z* + 29627 + d?(—229 — 2697

— 579872 4+ 958473 — 2028z% — 12847 + 4082%)
(421 + 11287 + 242522 — 61507% + 5362%
424087 — 64078 — 12877) — 2(—9 + 344z — 176>
+42272% — 1775z% + 13982 + 17220 — 50477

+ 12828)) Fort(z— 1)( —36d5 +394*(5 + 32)
—3d3(134 + 169z + 332%) + d*(399 + 789z + 3162°
+82%) 4+ d(—192 — 5497 — 31972 — 207° + 1274
F2(18 4 75z 4+ 6922 — 2273 — 474 + 8z5))a>, (B.1a)

2
a = =Qz—d+ 1)(b1(d - 1)2(96d‘2 — 4q"

x (313 + 155z) +d ' (5748 + 11168z — 2084z7)
—2d°(2380 + 43717z — 1458422 + 6232%)

—24%(29538 — 194013z + 832512% — 255973 — 1681z%)
+d" (283749 — 1064198z + 4790362% + 592527

— 57337z 4 53062°) + d®(—639651 + 18300527

— 618548z — 557360z> + 376829z* — 581487
+8582%) — 2d° (—420065 + 932631z + 98489z>
—9991912 + 623451z* — 105002z — 8679z°
+242277) — 4(z — 1)3(729 + 2043z — 186937>
+4308773 — 23934z — 24407° 4 59122°

— 177677 +256z%) — 2d*(323943 — 431617z — 9208277>
+ 18853472° — 1080780z* 4 880962 + 1046002°
—277747" 4 11967%) + d* (258053 + 198738z

— 25730162 + 3774132z° — 1580157z* — 706838z°
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+ 8014042 — 2163007" + 13088z + 3682°)

4 d?(—22947 — 4035687 + 15082447% — 14967367>
—571491z* 4 20718287> — 14233982°

+ 34804477 +29367% — 102247° + 7682'0)
+2d(=7560 + 652207 — 106625z% — 2067487°
+862502z* — 10902362° + 606427z% — 963727

— 4529678 +218727° — 3440710 + 256z”))

T4 — 1)( — 484° + 64%(73 +912) — d”

x (1067 + 6051z + 1090z%) + d®(—2216 + 268877

+ 1218722 + 1262%) 4+ d*(17779 — 59698z — 5731322
— 6702 +2062%) + 2d*(—21109 + 31661z

+719062% + 386123 — 3173z* + 4107°) — d°

x (—51745 + 113237 + 20310072 + 385882° — 30914z*
+37362° + 2962°) 4 d*(—34574 — 405897

+ 1557072 + 81754z> — 59310z + 37162° + 28247°
—30477) — 2(711 + 5151z — 203122 — 1516773
+8904z* + 1520z° — 19842° + 24077 + 642%)

+d (11583 + 37208z — 54777z% — 7931823

1 512562* + 233625 — 63682° + 86477 + 64z8))a),

(B.1b)

1
ay = :(bl(d - 1)2(960112(1 +2) —4d" (373 + 4922

+2152%) + 2d'°(4439 + 10435z + 526572

+3092%) + 2d°(— 9625 — 70978 7 — 24276 7°

—4618 7> + 729 7%) + d®(—45851 + 648636 ¢

+ 88120z + 52314z — 18061z* 4 23302°) — 24’
x(—213422 + 1010682z — 20359z + 629667°

— 47134z% 4 132442° +9997%) + d®(—1351601
44315236z — 407200z% + 7950z° — 271511z*
+1024622° + 44600z% — 672077) + d° (2505650

— 6248772z + 41183427 4 756888z> 4 398394z*
—701767° — 321534z° + 681967 — 8967%)
+d*(—2971401 + 5919268z + 764380z> — 23485147°
+196217z* —7341787° 4+ 11455722° — 23624077
—21600z%+64322") + d° (2264148 — 3324172 ¢

— 2560626 7% 4 4208820 2> — 2310448 z* + 2819176 2°
— 22687462°+26796077 + 2052327
—571842°+9922'%) 4+ d%(—1057077+770046
+3165710z% — 502414473 +4741735z* — 46329747°
+24043682° 427875277 —6097122% + 1513282°

+2560z'0 — 512z'1) — 2d(—133650 — 79020z
+999513z% —18141862° +2177468z* — 18065847°
449933378 + 4687027 — 375688z% + 58112 7°
+20944 7'0 — 50882!! + 5127!2) + 4(—6561 — 23490 7
+ 134703 22 — 290208 z° + 3815537*
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cl =

C) =

—2549227% —2709120+16061227 —820922° —42167°
15520210 — 432071 + 512z12))

T — 1)(48d1° +6d°(=213 + 2572) + d3 (13865

—20391z — 34342%) + d’ (—80167 + 109448
44606572 + 7582%) 4+ d®(277079 — 3017872
—261672z% — 10010z> + 2654z%) + d° (—604465
44220907 + 816557z + 714982° — 32848z* — 10967°)
+d* (847481 — 156491z — 15230762>
— 2767027 4 139852z* + 15200z° — 816z%)
— d?(753973 + 386740z — 172879572 — 5913947
+279236z% + 684567 — 795270 4 28877)
+d? (404505 + 6252917 — 11539202% — 703870z°
+277954z% + 139184z° — 213762° — 208077 + 9927%)
+6(2133 + 14787z — 8655z> — 189517
+2190z% + 85127° — 7042° — 139277 + 2247% + 1287°)
— d(115893 + 381684z — 40319172
— 4406067° + 123980z* + 1341127° — 199362°
— 934477 + 268878 + 38419))0),

412 d — 1 —2z7)?
T T 3EWd-D)
+d®(8174 +2276 7 — 850 2%)
—d’(15125 + 16127z — 789722 + 2612°) + d°(6543
455761z — 29143z% + 383z° 4 10162%)
+2d° (11468 — 52082z 4 246037% + 4179z> — 3953z*
+3292%) — 4(z — 1)3(—9 — 667 — 48177
+24247% — 696z* — 5847 4 3847°) — 244(21939
— 51140z 4 9653z° + 241987> — 14750z*
+13202° + 524z°%) + d° (32965 — 40005z — 5843777
+ 11631323 — 65592z* + 424073 + 70202°
—130477) + d*(—10955 — 7665z + 8677972 — 1295237
+70072z* 4 50847 — 166807° 4 327277
+1922%) + 2d(594 + 3954z — 1802977 + 221112° — 471z*
— 174972° 4 95947° + 153677 — 230478
+51219)) - 1)(96d7 — 484°(13 + 112)

(B.1lc)

(bl(d - 1)2(192d‘° —12d°(167 +92)

+2d5 (701 + 15967 + 4872%) — d*(973 + 7024z

+53172% + 6062°) + d*(—847 + 6324z + 1091772
4300623 — 104z%) + d*(1693 — 880z — 1023577

—55667° + 362* 4 1682°) + 4(36 + 2287 + 15z% — 5937
+54z% + 847° — 402%) + d(—891 — 19967

+38172% 4 505827 + 100z* — 42475 + 96z6))a), (B.1d)

202(d —1-22)
T E@d-1
x (7 + 52) + d° (1748 + 8728z — 1020z%)
+d®(9153 — 51719z + 90472% + 1119z%) + 2d" (—30663

( —by(d— 1)2(96d“ — 1244'°
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=

+ 832937 — 125842% — 81677 + 1169z

+d®(159487 — 309623 z — 9071 7> + 98107 2°

— 223487 4+ 722°) + d° (—226438 + 310048 7
4209684z — 3138962° + 83778z* + 41687° — 24967°)
—d*(—177839 + 93857z + 5214237>

—5705612° + 136684z* + 472487 — 219482° + 75277)
+2d3(—31245 — 584917 + 30353272

— 2774877 +8835z% + 959762 —39536:°0+ 111277
+7842%) + d*(—4979 + 118111z — 32348977

+ 1772972 + 270180z — 3662082° + 12799220 + 917677
— 955278 4 89627) + 4(—378 — 1001z

4825022 — 26583 2 + 41305 z* — 2533827 — 31412°
4980277 — 246075 — 8407° + 384717)

—2d(—4645 + 133347 — 11392 22 — 69538 23

+ 187549 z* — 1620447° + 347522° + 20800z’
90728 — 2562° +51221%)) + 14z — 1) — 495
+48d® — 42727 — 330322 + 80302> + 22487*

— 15842 + 1620 + 22477 — 6d7 (41 +912) + d®(—181
+ 3891z + 1618z%) — d°(—3910 + 9625z

+ 1152922 + 16922%) + d*(—11339 + 6684z + 31675z°
+ 1103623 +3927%) 4 d*(—11193 24191z

+231702% + 381262° + 4240z% — 11122°) + 243 (7780
45571z — 20590z% — 14379z — 1018z*

+1362%) — d(—3936 — 16917z + 707z> + 265022

- 44447% — 202475 + 9675 + 12827))0), (B.1le)
12
3E@d-1)

X (542 4 6477 + 2392%) + 2d° (4137 + 13375z

+ 582122 +8112%) + d8(—575—1480597 —671777>
— 1476573 + 272z*) + d7 (—104799 + 4955347
425433922 + 516557 — 7448z + 10552°) — d°

X (—422579 + 1048799z 4 705765z% 4 9257373

— 66154z + 69162° 4 49847°) + d° (—883077

+ 13917667 + 1439961z + 131129z° — 2735807*
— 113632° 4 51308z° + 41627) + d* (1130881

— 1050285z — 2087619z% — 2404257> 4 5547767
+2084547° — 206350z° — 1164077 + 3680z%) + d°
x (—909813 + 2465627 + 2092313z% 4 2994657°
— 420636z* — 7028397 + 3838847° + 925367’
—30160z% + 2727°%) + d* (442189 + 266887z

— 142970372 — 227237 — 266418z* + 10432407°
—2571362°% — 2754727 + 7512028 + 62402°
—25602'%) —2(—5787—304387 + 7523072 —86563z°
+ 125480z* — 497477° — 855552 + 6707677

<2b1(d _ 1)2(96d“(2 4 7) — 4410

Ao

+ 776028 — 14560z +15207'0+7682'") + d(—115257
— 2387402 +641505z% —2823837° + 6044647*
—6567572° — 1181522% 4 33596077 — 49600z%
—299682° + 64002 + 10242'1))

FlA - 1)( — 55534484 — 447547 —2517372

+ 4877223 + 38020z* —6080z° — 4912z° + 185677
470428 4+ 64%(—221 + 233z) + d’ (12479 — 129637
—57322%) + d®(—58800 + 412587 + 5452472
+83062°) — d°(—159342 + 32779z + 204587z7>
+7125623 + 47762%) + d* (—262123 — 1110447

+ 38579127 + 24444473 4 332767* + 3682°) + d°

x (263275 + 3250037 — 3744587% — 4336447°
—94216z* 4 8002 + 642°) 4 2d* (77539 — 1841657
+754537% 4 212799z% 4 68792z% — 35047°

—5282° +33627) + d (47736 + 202211z + 1805772

— 22279623 — 107296z* + 11824z + 43042°

— 249677 — 384z8))a), (B.1f)

_d—-1D*(z—D(d-2)
N 64 B

<b1<d — 1)

x <96d13 —4d" 301 +1672) +2d" (2321 + 4446 ¢

+649z%) + d'°(4494 — 371947 — 321387% + 5662°)

—d’ (91761 + 46637z — 3328437% 4 190437°
+44747%) 4 243 (142628 + 5526607 — 9785477>
+116805z° + 19033z* 4 3252°) + d’ (—209009

— 52437457 +7366309z% — 1506913z —54008z*

— 2901427 +104122°%) —4d° (242497 — 35009607
+46778467% — 14253082 + 748457% — 226047

+ 1513528 + 57777) 4 d° (3326409 — 239963077
432437993 72 — 12680361 z° + 32802z* + 1250264 2°
—3541007° + 111284 77 — 12352 7%)
—2d*(2549650— 13499190z +18601679z> — 71522617
— 4002317z + 515825527 — 20704802°

+ 49240477 — 6457228 4 20962°) + 24(z — 1)?

X (—2673 —683724590302% — 19463823+ 1848957*
—510972° — 202122 + 2015677 — 623278 — 167°
+1282'0) — 4d(z — 1)2(— 156789 + 27327z
+8693447% — 35970207 4 3281227z* — 10116437°

— 634782° + 1462887 — 5054478 + 8647°

+3842'0) + 34507267 — 193193837 + 2534647372
— 4504397° — 31360644z* + 330416102°
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— 148448767° + 34661287 — 36268078 — 336967° +2(6543 + 352927 — 9080472 + 211427° + 280097*
+136962'%) + 2d%(—1159953 + 39634537 +6090z° — 107362° — 665677 + 3120z%
—3307361z% — 9615401z° + 26992568z* — 27014098z> +7367° — 512z1°)). (B.1h)

+127375227° — 268999877 — 5295628

9 10 1 Appendix C Counter-term coefficients
+ 19243277 — 47072z 4 8647 ))

The coefficients of the counter-terms in Eq. (6.11) are as
+ 14( — 484" — 6410 follows:
a1 = (—by(d — 1)*(—=395016343175136
+2348550175021544d — 33165714550592684°
—9312466632690362d> + 41832587177120467d*

x (=229 4 305z) + d°(—16133 + 29463z — 2026z2)
+d®(103997 — 2115567 + 3349772 — 17542)
+d"(—414271 + 888009z — 21362872

5
—91367° + 143467*) + d%(1079933 — 23924407 —59950661474513668d
66542922 1 2529882° — 1579862* — 103162 +54652385337180473d° + 128519961747254140d"
— 255642279986199850d°

+d°(—1888171+4263303z —9389087> — 14742347
+ 6946667* +1048447° +6682°) +d* (2215571

— 4973808z — 98209z° + 4201870z — 15678567*

— 4417727° —3404z° 4 105627) + d° (— 1703657
43591603z + 2358120z% — 68317162> 4 2037678z*
+8696162° + 60772° — 2090477 + 34562%)

+12(z — D)2(1755 + 7281z — 3794172 — 13057
—9142z% — 18407° + 34647° — 70477 — 5128

4 647”) —d*(—8095054 13743227 +3511149z>

— 66274327 + 1817538z* + 6547962° + 2434202°

+284182844961412260d° — 2099603792682292864'°
+ 106564661277557906d !

—36670939831292789d'? + 8074817985963160d '
—9439709796767194'*

+ 10294748426892d 13 + 71492429794684'°)
+2(—2507607366432 + 9370485047140d

— 15322963757344d* + 291943874854794°
—34599990417180d* — 1010181213311694°

+ 569000982666250d° — 1443232620917570d”

8

— 4811277 — 84647 + 63362°) + 2d(— 104580 +2383139360258160d
4681637 + 11560052% — 18663852 + 6584152 —2637960123419686d° + 19205562770583164'°

11
— 3667025 + 13712826 + 1572477 — 2775225 + 74407 — 8920607270098454

" +251884406261660d "> — 38888689855581d '
2882 )> ) B12) 4 1851979430970a'
+ 3448682837284 ")1%0)/ Y, (C.la)

E=(d—2)d— iz — 1)(48d1° +6d°
g 5 ay = 4% <2b1(d — 1)*(=76757505990096
x (=205 + 281 z) + d®(13283 — 23739 7 — 848 %)

—2d7 (38719 — 70645z — 6983z + 1001z°) +452153505555884d — 6249808070532484>
+d®(271048 — 460549z — 106277z% + 325062 —1809192261855057d> + 79528757689889624*
—2048z%) + d°(—599393 + 8819587 + 4534837> — 11226865296348523d°

— 187002z% 4 7594z* 4 57522°) + d* (851281 +740755958471253d% + 23887391502121540d
— 963709z — 1153994z + 518884z + 35970z* — 469751291792192254°

—480247° — 25762°) — 2d° (382936 — 235875z + 518796082814998604° — 382104209065724964 1°
— 89196677 + 379545z° 4 111998z* — 70298z° +193916260112529414"!

—101282% 4 51227) + d*(414374 4+ 973012 — 6690472887584954d 2 + 1480665214857635d 3
— 1643993z + 587670z° + 399372z* — 1601567° — 1743921890273094 '

— 65600z + 510427 +960z%) + d(—119187 + 1988579461512d" + 1327387196073d'%)

— 216572z + 8349557 — 2315867° — 273774z* + (1990194128808 — 7386025312660d

+434122° + 827362° — 59277 — 662478 + 12802%) + 11742213076986d> — 21594332747301d°
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+23694835045670d* + 83844566027911d°
—437291091342750d° 4 1076981245232830d”
— 17545676378125404°

+1934727144371834d° — 1409181677959554d '°
+6555197892300554 "

— 185368649436290d > + 287330734803394 '3

— 14057183979304 4

- 254604527232d15)14a> /d -1, (C.1b)

@ = 4z4< — by (d — 1)*(1408481241557088

—7962097900340552d + 87023288964125484°
+40621533255118130d° — 1446227835399831594*
+ 152594357275463212d°

+ 1189116708466301784° — 56039668364375931847
+ 7649907484371822034°

— 490234816648922540d° — 278282848897088124'°
+3612803045617386624 !
—3623595636391094094 "2
+202400102173512036d 3 — 713250896814379024 4
+ 15535905541976574d "> — 17425695966816034 '
+10872378426212d"7

+130313203593484'%) + 2(9079919253456
—31647743507020d + 41985077042700d>
—71966579675217d° + 599724412601064*
+475565980123096d° — 2033918977126280d°
+4370244951580351d7 — 5843504482948030d°
+41350739142354684°

+309968734691532d'0 — 3588169908956611d !

+ 34706106622008464 '

—1717595387287272d '3 + 4842092911108004 '
—72910129367115d" + 3042549337270d '

+ 609885548208d17)14a> /9(d — D*7, (C.1¢)
oq = 8(d — 2)1* <b1 (d — 1)3(—528808080422496

+3130553990186984d
— 43790204544754484° — 124592266947264824°

+ 554393338032037624*

—78953331948719473d° + 58067891289935784°
+168554151710199165d

—333816422809221600d4° + 370185524282685110d°
—2732208708699873964 '

+ 138699652880065216d'! — 47789659274303054d "2

+105461377800036354 "3

— 1236609482027534d " + 13691674656437d "
+93911696731484'°)

+2(3384337452252 — 12612711742540d
+20346088117159d° — 38096175355894d°
+43891199458605d* + 138169028535484d°

— 7553446038375004° 4 1895200175897020d”
—3114206365072010d® + 3442492641342796d°
—25067361333516014'°
+1164981189763170d'! — 3291528712071354 2
+50916198362516d'® — 2456245454170d '

- 450654150008d15)14a> /9(d — 13, (C.1d)

as = _416< — bi(d — 1)3(359778834028416

—4953309366088160d -+ 21513244670246864d>
—257332957965450484° — 889165131463804324"
+392638707702220032d°

— 618350454473661033d° + 191645008663521032d”
+11089399517254410174°
—26280985352931230384d° 4 3328476896217706846d'°
—28263963977166890524"!

+ 1683301856093304062d 2 — 693105132653871760d "
+ 181474277097201271d"*
—20572142542150452d " — 3854293317416223d"'°
+ 18897842344928784 "7

— 262274701598268d '8 4 29601580176324"°

+ 1786518075960d°) + 4(1138565977896

— 13135644442796d + 451471195571344>

— 84986822962523d° + 146870086724791d*

— 145372529469655d° — 498268517295789d°
+2798356123102759d”

— 73147410503557084% + 12688604682534093d°
—15370507537963346d'°

+129218398829758794"'! — 7328568420878773d >
+26305994531189354 '3

— 488404739538533d'* — 112297591831234 3

+ 278259470948024 '

— 5713942549473d'7 + 2625030653664 '8

+42373630080d19)14a> /9(d — 3)(d — 1)°, (C.1e)
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g = —2(d — 2)l6<b1(d — 1)3(902871864042048

—2611066522935696d

—10000441381807568d° + 515968556141484964°

— 412001652616643284*

— 1815951799624219994d° + 533465796657080410d°
—513376878534607377d"

—2790785829102667964% + 1491989115301771590d°
—22472851000782749124'°
+20666738316845840184 !
—1294190663758530772d "% + 563666594089214817d '3
— 1677089478431616104'* + 31807182182030383d '
—30677223795317684'°

—15879451896872d"7 + 22671972030304d'%)

— 4(2899692106488 — 2065011520884d

— 19172437911422d° + 34519082576341d°

— 834484236283184* + 277332351302717d°

— 3534490498837784° — 467932776789536d
+31073625436503204°

—7360760025239886d° + 104934935122979944'°
—9626241270064687d !

+ 5748085802510894d % — 2210046214383931d "3
+5258725658465184 '

— 68068023018246d ' + 18035014335764 '

+540861289792d17)l4a)/9(d —3)d - 1)°T, (C.1f)

o7 =2(d — 2)216<b1(d — 1)3(—786581801966112

+ 4658820413439448d
— 65295436540299564° — 18497282599374254d°

+ 824840422772745394*

— 117690486380092256d° + 9149225718692941d°
+250315027315438380d”

— 496717867127149950d® + 551374708000114420d°
— 407208903035254662d'°
+206801753285171702d"" — 71269711008561613d '?
+ 157283650067072204 "3

— 1844046118745923d'* + 20374203626764d "

+ 14008411441856d'%)

— 4(—2512500801972 + 9353193417940d
—15028567971649d> + 28141140546484d°

— 32887608597405d* — 100908676070974d°

+ 558339673947000d° — 1407114644223220d”
+2317072816104110d% — 2563402773401356d°

+ 1866929648661211d'°
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— 867565615650120d ! + 245083387747235d >
— 37904656710026d "3 + 1827835429870d '

+ 335120714888d15)14a)/9(d —3)(d — D*,

(C.1g)

T = 1000( — 4362 4 3115d + 17033d* — 32164d°

+21034d* — 5675d° + 631d° + 68d7> ( — 120984

+504826d — 662169d> + 182970d° + 1064384*
+252706d° — 415237d° + 154042d7)15. (C.1h)
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